UC Berkeley
Econ 221 - Industrial Organization Seminar

Title
Trust and Reputation on eBay: Micro and Macro Perspectives

Permalink
https://escholarship.org/uc/item/8vj7d50g

Author
Hortacsu, Ali

Publication Date
2005-08-30
The Dynamics of Seller Reputation: Evidence from eBay

Luís Cabral*
New York University and CEPR

Ali Hortaçsu*
University of Chicago and NBER

June 2005

Abstract

We construct a panel of eBay seller histories and examine the importance of eBay’s reputation mechanism. We find that, when a seller first receives negative feedback, his weekly sales rate drops from a positive 7% to a negative 7%; subsequent negative feedback ratings arrive 25% more rapidly than the first one and don’t have nearly as much impact as the first one. We also find that a seller is more likely to exit the lower his reputation is; and that, just before exiting, sellers receive more negative feedback than their lifetime average.

We consider a series of theoretical models and measure them against these empirical results. Regardless of which theoretical model best explains the data, an important conclusion of our paper is that eBay’s reputation system gives way to noticeable strategic responses from both buyers and sellers.

Keywords: adverse selection, moral hazard, quality, reputation, auctions, eBay.
JEL Code Nos.: D44, L15, L86

*lcabral@stern.nyu.edu; hortacsu@uchicago.edu. We thank Kenny Ballendir, Tim Miller and Jeremy Shapiro for truly outstanding research assistance. We also thank Damien De-Walque, Svetlozar Nestorov, Mike Riordan, Anne Rogers, Steve Tadelis, and seminar participants at Chicago, Essex, Copenhagen, SED meetings, NBER Summer Institute, Georgetown, Tufts, Rochester, NYU, Columbia, Dartmouth (Tuck), Arizona, and the 2004 ASSET meeting for helpful comments and suggestions. Hortaçsu acknowledges financial support from the National Science Foundation (Grant SES-0242031). The usual disclaimer applies.
1 Introduction

Electronic commerce presents the theoretical and the empirical economist with a number of interesting research questions. Traditional markets rely significantly on the trust created by repeated interaction and personal relationships. Electronic markets, by contrast, tend to be rather more anonymous. Can the same level of trust and efficiency be obtained in these markets?

One possible solution, exemplified by eBay auctions, is to create reputation mechanisms that allow traders to identify and monitor each other. In this paper, we present some empirical results regarding the dynamics of eBay seller reputations; and propose various possible theoretical interpretations.

Our focus on eBay's reputation mechanism is justified for two reasons. First, electronic commerce in general and eBay in particular are a significant economic phenomenon: in 2004, more than $34.1bn were transacted on eBay by more than one hundred million users. Second, with its well defined rules and available information, eBay presents the researcher with a fairly controlled environment for theory testing. Specifically, a reasonable assumption on eBay is that the information one trader has about other traders is the same as the researcher's. Essentially, this information consists of a series of positive and negative feedback comments given by past trading partners. In this context, we can make sharper predictions about agent behavior than in other markets, in particular in markets where buyers and sellers share information that is not observed by the researcher.

In our empirical study we assume that (a) the frequency of buyer feedback is a good proxy for the frequency of actual transactions; and that (b) the nature of the feedback is a good proxy for the degree of buyer satisfaction. We then construct a panel data of seller histories and look for salient patterns.

We find that, when a seller first receives negative feedback, his weekly sales rate drops from a positive 7% to a negative 7%; subsequent negative feedback ratings arrive 25% more rapidly than the first one and don't have nearly as much impact as the first one. We also find that a seller is more likely to exit the lower his reputation is; and that, just before exiting, sellers receive more negative feedback than their lifetime average. Finally, a typical seller starts his career as a buyer (that is, will make more transactions as a buyer than as a seller).

Although eBay started in the U.S., it is rapidly becoming a European and worldwide phenomenon. In the second quarter of 2005, 46% of eBay's revenue originated from non-U.S. operations. According to Nielsen, eBay is the leading e-commerce site in Germany, UK, France and Italy.
We consider a series of theoretical models and measure them against the data. While it is not easy to empirically distinguish between theories, we suggest the data points towards a Bayesian-type model rather than a “bootstrap”-type of model. Within Bayesian models, we consider two possibilities: pure adverse selection and a combination of adverse selection and moral hazard in the line of Kreps, Milgrom, Roberts and Wilson (1982) and Diamond (1989). Under pure adverse selection, buyers increase their estimate of a seller value while the latter’s perfect record keeps increasing. With some probability, the seller’s type changes to a lower value. This implies both the first occurrence of negative feedback and an increase in frequency of subsequent negative feedback.

With moral hazard and adverse selection, the story is slightly more complex: while sellers have a perfect record, their incentives to invest on reputation are very high (and increasing). Once the first negative feedback is received and the seller’s reputation is tarnished (i.e., buyers believe the seller not to be of the “good” type), the incentives to continue investing on reputation are much lower. Accordingly, transactions take place less frequently and the frequency of negative feedback increases. In other words, there is a positive correlation between reputation and the incentives to invest on reputation.

A number of authors have conducted empirical studies of eBay’s reputation mechanism. Almost all of these prior studies focus on the buyer response to published feedback aggregates. In particular, a large number of studies estimate cross-sectional regressions of sale prices on seller feedback characteristics: Dewan and Hsu (2001), Eaton (2002), Ederington and Dewally (2003), Houser and Wooders (2003), Kalyanam and McIntyre (2003), Livingston (2002), Lucking-Reiley, Bryan, Prasad and Reeves (2000), McDonald and Slawson (2002), Melnik and Alm (2002), Resnick and Zeckhauser (2001).² Resnick, Zeckhauser, Swanson and Lockwood (2003) point out the potential for a significant omitted variable bias in these cross-sectional regressions, and conduct a controlled field experiment in which a seasoned seller sells identical postcards using his real name and an assumed name. They find an 8% premium to having 2000 positive feedbacks and 1 negative over a feedback profile with 10 positive comments and no negatives. Ba and Pavlou (2002) conduct a laboratory experiment in which subjects are asked to declare their valuations for experimenter generated profiles, and find a positive response to better profiles. Jin and Kato (2004) assess whether the reputation mechanism

²See Dellarocas (2002), Resnick, Zeckhauser, Swanson and Lockwood (2003), and Bajari and Hortaçsu (2004) for surveys of these results.
is able to combat fraud by purchasing ungraded baseball cards with seller-reported grades, and having them evaluated by the official grading agency. They report that while having a better seller reputation is a positive indicator of honesty, reputation premia or discounts in the market do not fully compensate for expected losses due to seller dishonesty. Finally, there are also a number of papers on reputation in markets other than eBay, including Jin and Leslie (2004). We will return to this later.

Our main contribution to the study of online reputation mechanisms is twofold: First, we analyze panel data as opposed to cross-section data. Second, we show the impact of seller reputation on buyer and seller behavior.

We believe that the difference between panel and cross-section data is important. In fact, our results from panel data are typically very significant, whereas most of the previous cross-section studies consistently have weak statistical significance. In fact, we complemented our analysis by running cross-section regressions similar to those in previous papers and found similar weak statistical and economic effects. We thus agree with Resnick, Zeckhauser, Swanson and Lockwood’s (2003) conjecture that there is significant unobservable seller heterogeneity.

To the best of our knowledge, together with Jin and Kato (2004) on baseball card sellers and Jin and Leslie (2004) on L.A. restaurants, ours is one of the first empirical papers to study the seller’s reaction to seller’s feedback record. Besides the interest this approach has in its own right, it also allows us to test various theories of seller reputation.

The paper is structured as follows. In Section 2, we briefly describe the institutional setup of eBay, in particular the mechanics of its reputation mechanism. In Section 3, we describe our dataset. The main empirical results are presented in Section 4, whereas Section 5 develops a series of possible theoretical interpretations. Section 6 concludes the paper.

2 The eBay reputation mechanism

Since its launch in 1995, eBay has become the dominant online auction site, with millions of items changing hands every day. We will not attempt a detailed account of how eBay has evolved and what its trading rules are; the interested reader may find this in a number of survey articles and in the popular press. For the purposes of our analysis, it will not be too inaccurate to

3See Cohen (2002) for an entertaining historical account of eBay. Survey articles on Internet auctions include Lucking-Reiley (1999), Dellarocas (2003), and Bajari and Hortacsu
characterize eBay’s auction mechanism as a variant of the second-price auction.\footnote{4}

eBay does not deliver goods: it acts purely as an intermediary through which sellers can post auctions and buyers bid. eBay obtains its revenue from seller fees, based on a complex schedule that include fees for starting an auction and fees on successfully completed auctions.\footnote{5} Most importantly, to enable reputation mechanisms to regulate trade, eBay uses an innovative feedback system.\footnote{6} After an auction is completed, both the buyer and the seller can give the other party a grade of +1 (positive), 0 (neutral), or −1 (negative), along with any textual comments.\footnote{7}

eBay displays several aggregates of the grades received by each seller and buyer, including (a) the difference between the number of positive and negative feedback ratings, (b), the percentage of positive feedback ratings (since March, 2001), (c) the date when the seller registered with eBay, and (d) a summary of the most recent feedback received by the seller.\footnote{8} Finally, eBay provides a complete record of the comments received by each seller, starting with the most recent ones.

All of the information regarding each seller is publicly available. Hence, as claimed in the introduction, this is an environment where the economic analyst has the same information that a new buyer has about a seller.\footnote{9} We will thus take this informational equivalence as given when formulating our theoretical model and its empirical implications.

\footnote{4}{In reality eBay auctions are dynamic auctions in which bidders place (possibly multiple) “proxy bids” indicating their maximum willingness-to-pay. See Roth and Ockenfels (2002), Ockenfels and Roth (2003), and Bajari and Hortacsu (2003) for detailed analyzes of dynamic bidding behavior on eBay.}

\footnote{5}{Success is defined as a bid above the minimum bid or a secret reserve price set by the seller. eBay collects its fee even if the physical transaction does not take place.}

\footnote{6}{eBay does offer an escrow service for use with especially valuable goods, though this service is used for only a small fraction of the transactions.}

\footnote{7}{There have been several changes on eBay regarding how these ratings can be given by the users. Since 1999, each grade/comment has to be linked to a particular transaction on eBay. Typically, eBay stores transactions data (in particular price) only for 90 days; hence, this restricts the extent of “historical research” that a buyer can conduct.}

\footnote{8}{Indicators (b) and (c) have only been presented since March 1, 2003.}

\footnote{9}{Of course, “old” buyers may know about private transactions that they did not comment on.}
3 Data description

Our data was collected from eBay’s website at monthly intervals between October 24, 2002 and March 16, 2003. We focused our attention on auctions of (arguably) ex-ante homogenous goods to minimize the impact of object-level heterogeneity, but we also wanted to capture possible sources of variation across objects with different characteristics. Hence we collected transaction level information on the following objects (displayed in Figure 1).10

1. Collectible coins. We chose this category since the collectible coin market is one of the most active segments on eBay and several previous studies of eBay auctions have looked at this market.11 We selected at two different kinds of coins: the 1/16 oz. 5 dollar gold coin of 2002 vintage (gold American Eagle); and the 2001 silver proof set (ten coins of different denominations), both produced by the U.S. mint.12 The average sale prices in our data set are $50 for the gold coin $78 for the proof set.

2. IBM Thinkpad T23 PIII notebook computers. We chose this category because, according to the FBI’s online fraud investigation unit, most customer complaints regarding online auction fraud arise from laptop auctions. We further chose this object because, while notebook computers tend to come in many different configurations (regarding memory, disk space, peripherals, screen size), this particular IBM model seemed to have relatively minor differences in configuration compared to other manufacturers. The average sale price of the Thinkpad T23’s in our data set was $580.

3. 1998 Holiday Teddy Beanie Babies, produced by the Ty toy company. Beanie babies are a popular collectors’ item on eBay, and according to the FBI’s Internet Fraud unit comprise the second largest source of fraud complaints on online auctions. This is the least expensive item in our data set, with an average sale price of $10.7.

10eBay stores data on completed auctions for 30 days. We attempted to get data from all completed auctions in the above period.

11Bajari and Hortacsu (2003), Melnik and Alm (2002) and Lucking-Reiley, Prasad and Reeves (2000).

12An important difference between these two types of coins is that, while the proof set is in mint condition (and preserved in a plastic container), the gold coin may come in various grades. In our data, we found three different ones: MS–70, MS–69 and MS–67, in decreasing order of value.
Figure 1: Pictures of auctioned objects considered in this study: the 1/16 oz. 5 dollar gold coin of 2002 vintage (gold American Eagle) and the 2001 silver proof set (ten coins of different denominations), both produced by the U.S. mint; the IBM Thinkpad T23 PIII notebook computer; and the 1998 Holiday Teddy Beanie Baby.
Feedback Summary

- **218** positives, **128** are from unique users.
- **0** neutrals.
- **1 negatives**, 1 are from unique users.

See all feedback reviews for wsb5.

Summary of Most Recent Reviews

<table>
<thead>
<tr>
<th></th>
<th>Past 7 days</th>
<th>Past month</th>
<th>Past 6 mo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>12</td>
<td>51</td>
<td>118</td>
</tr>
<tr>
<td>Neutral</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>51</td>
<td>116</td>
</tr>
</tbody>
</table>

Bid Retractions

| | 0 | 0 | 0 |

View wsb5's Items for Sale | ID History | Feedback About Others

Feedback Reviews for wsb5

<table>
<thead>
<tr>
<th>Left by</th>
<th>Date</th>
<th>Item ID</th>
<th>$/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praise: Nice coin! Fast shipment!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silverpeacegold[26]</td>
<td>Apr-29-03 09:09:31 PDT</td>
<td>3018674118</td>
<td>S</td>
</tr>
<tr>
<td>Praise: In great job nice coin and good service thanks!!!!!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z3forefun[151]</td>
<td>Apr-29-03 06:39:59 PDT</td>
<td>3018676358</td>
<td>S</td>
</tr>
<tr>
<td>Praise: very nice coin, accurately represented, fast shipping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>patrag40[161]</td>
<td>Apr-28-03 17:41:37 PDT</td>
<td>3018673349</td>
<td>S</td>
</tr>
<tr>
<td>Praise: The coin has been cleaned but a great deal.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bernardgreenman[62]</td>
<td>Apr-25-03 18:11:09 PDT</td>
<td>3018410862</td>
<td>S</td>
</tr>
<tr>
<td>Praise: thanks for a nice coin. +++++++++++++++++++++++++AAAAAAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>knugak[114]</td>
<td>Apr-25-03 06:07:31 PDT</td>
<td>3013485158</td>
<td>S</td>
</tr>
<tr>
<td>Praise: HIGHLY RECOMMEND THIS GENTLEMAN!!! Thanks, Willard!!!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ed0819[23]</td>
<td>Apr-24-03 14:37:12 PDT</td>
<td>3018076926</td>
<td>S</td>
</tr>
<tr>
<td>Praise: GOOD TRANSACTION WOULD BUY AGAIN A++++++++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bdfikman[24]</td>
<td>Apr-23-03 15:02:21 PDT</td>
<td>3018075234</td>
<td>S</td>
</tr>
<tr>
<td>Praise: Fast Delivery, Good Packaging, Great Deal. (Very Nice Coins, too.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bdfikman[24]</td>
<td>Apr-23-03 15:02:00 PDT</td>
<td>3018677580</td>
<td>S</td>
</tr>
</tbody>
</table>

Figure 2: Feedback page of user wsb5.
Table 1: Distribution of feedback aggregates across sellers.

<table>
<thead>
<tr>
<th></th>
<th>Number of Positives</th>
<th>Number of Negatives</th>
<th>Number of Neutrals</th>
<th>N/(N + P) (entire history)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1,625</td>
<td>4.9</td>
<td>7.2</td>
<td>0.009</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>3,840</td>
<td>25.1</td>
<td>33.5</td>
<td>0.038</td>
</tr>
<tr>
<td>Min.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Max.</td>
<td>52,298</td>
<td>651</td>
<td>654</td>
<td>1</td>
</tr>
<tr>
<td>1%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5%</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10%</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25%</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50%</td>
<td>397</td>
<td>1</td>
<td>1</td>
<td>0.0028</td>
</tr>
<tr>
<td>75%</td>
<td>1,458</td>
<td>3</td>
<td>4</td>
<td>0.0092</td>
</tr>
<tr>
<td>90%</td>
<td>4,361</td>
<td>9</td>
<td>13</td>
<td>0.021</td>
</tr>
<tr>
<td>95%</td>
<td>7,134</td>
<td>19</td>
<td>29</td>
<td>0.034</td>
</tr>
<tr>
<td>99%</td>
<td>15,005</td>
<td>52</td>
<td>86</td>
<td>0.068</td>
</tr>
<tr>
<td>N</td>
<td>819</td>
<td>819</td>
<td>819</td>
<td>795</td>
</tr>
</tbody>
</table>

Along with transaction-level data, we collected data from each seller’s feedback page, as shown in Figure 2, thus recording the seller’s entire sequence of reviews. We should note that transaction-level data (price, object description, number of bidders, etc) is only available during 30 days. Therefore, while we had access to that data during the six-month period of data collection, our historical record for each seller only includes the feedback comments. Moreover, it is quite possible that the sellers we classify as beanie-baby sellers (because they sold beanie babies during the data collection period) actually sold different objects in the past.

A key assumption in our analysis is that the likelihood of buyer feedback is approximately constant.13 Accordingly, we take the number of feedback comments as a proxy for the number of past sales and refer to a large seller as one with many feedback comments.

\textbf{Seller characteristics.} Table 1 provides some summary statistics on seller size. The average seller in our sample had 1625 total feedback responses. The median seller had 397. The largest seller has 52,298 feedback responses, the smallest 0 (i.e., is yet to be rated, even though at least one sale took place).

13Resnick and Zeckhauser (2001) estimate this probability at approximately 50%.
We found the distribution of seller sizes (proxied by number of feedback points they got) to be approximately lognormal. Sellers were largest in the market for Thinkpads, followed by teddies, gold coins and the proof sets.

While the mean and median seller in our sample is quite large (in terms of transactions conducted), the number of negative comments is rather small. As can be seen from column (2) of Table 1, the average seller in our sample has 4.9 negative feedback points, corresponding to 0.9% of all comments. The maximum number of negative feedbacks received by a seller is 819, but this seller took part in 52,298 transactions. Also notice that the median seller in our sample has only one negative; more than a quarter of the sellers have no negative comments.\(^\text{14}\)

One issue regarding the interpretation of comments is whether neutral comments are closer to positives or to negatives. Our subjective impression, after browsing through eBay community chatboards where users discuss issues regarding the feedback system, is that the information contained in a neutral rating is perceived by users to be much closer to negative feedback than positive. Indeed, observe that in Table 1 the distributions of neutrals and negatives across sellers are extremely similar. The average seller received 7.2 neutral comments in her lifetime, with a median of 1 (as in the case of negative feedback). Given this striking similarity, we will henceforth lump negative and neutral comments together when referring to “negative” feedback.

4 Empirical results

In this section, we present our main empirical findings. They are divided into four subsections. In Sections 4.1 and 4.2 we study the impact of the first few negative feedback ratings in a seller’s history: impact on growth (Section 4.1) and impact on the frequency of negative feedback (Section 4.2). Section 4.3 looks at seller exit: who is more likely to exit and what pattern of feedback do we observe near exit time. Finally, Section 4.4 examines the relative pattern of purchases and sales over a seller’s lifetime.

\(^{14}\)Some negative comments for sellers have the following textual content: “THIS PERSON RIPPED ME OFF, SENT SHODDY ITEM INSTEAD OF ITEM LISTED,” “Sold product he didn’t have! Will not send refund! I am filing charges! No ansr,” “Overgraded junk. Does not respond to emails. An irresponsible seller. Avoid him.” On the other hand, we found that more than 40% of the positive comments contain the expression “A+”. Some more colorful positive comments were: “Heaven must be missing an angel! Transaction couldn’t be better! Thank U!!!!” and “Mega cool mad phat deal nasty crazy cool even. Thanks.”
4.1 Negative feedback and sales

We first use our panel data on sellers’ feedback records to examine the impact of negative feedback on the seller’s sales rate. Our typical seller receives his first negative during the early stages of his career. During this period, sales rates are typically increasing over time. Accordingly, we averaged the weekly sales rates over a four week window before and after the week in which the seller got his first, second, third, fourth and fifth negative feedback.\footnote{For many sellers, longer evaluation periods would include subsequent negative feedback. We believe a four-week window is a good balance between avoiding loss of data and statistical significance.} We then conducted paired t-tests of the null hypothesis of equality of growth rates before and after the negative feedback event.\footnote{Many times, when an eBay seller receives a negative comment, there is a “war of words” between the seller and the buyer who places the negative. During this “war of words,” the two parties can give several negatives to each other within a period of two or three days. We excluded the negative comments that sellers received during such episodes, and concentrated on the timing between \textit{de novo} negative feedback comments.}

The results, reported in Table 2, are striking: For all four object categories, the impact of the first negative feedback comment is to slow growth by 14\% a week, from a positive growth rate of about 7\% to a negative growth rate of \(-7\%\).\footnote{These are the numbers for the Thinkpad. The values for the other products are of similar magnitude.} Moreover, we find this difference is highly statistically significant. The difference in growth rates before an after the second negative feedback is positive. However, except for Golden American Eagle, the difference is not statistically significant. The impact of the third negative feedback also does not appear to be statistically significant.

Two notes are in order. First, our exercise depends importantly on the assumption that the probability of feedback is the same before and after a Negative. However, this is only a problem if buyers are somewhat reluctant to give \textit{positive} comments about a seller after the seller has received her first (or second or third) Negative. Intuition suggests that the opposite is more likely to be true. Second, our strategy for collecting seller histories retrospectively may imply a sample bias (we only have data for surviving sellers). In particular, there may be sellers who exited after receiving the first Negative and are thus excluded from our sample. But intuition suggests that, if anything, this reinforces the point that the first Negative has a negative impact on sales.

In summary, there is significant evidence that the first negative feedback has a strong negative impact on the seller’s growth rate; and that subsequent
Table 2: Impact of negatives on sales growth (%).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Before</td>
<td>7.12</td>
<td>6.85</td>
<td>9.04</td>
<td>14.19</td>
</tr>
<tr>
<td>Negat.</td>
<td>After</td>
<td>−6.76</td>
<td>−7.51</td>
<td>−3.89</td>
<td>−4.28</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>−13.88***</td>
<td>−14.36***</td>
<td>−12.92***</td>
<td>−18.47***</td>
</tr>
<tr>
<td>Std. Error</td>
<td></td>
<td>4.88</td>
<td>3.45</td>
<td>3.58</td>
<td>3.69</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>66</td>
<td>130</td>
<td>95</td>
<td>136</td>
</tr>
<tr>
<td>Second</td>
<td>Before</td>
<td>3.96</td>
<td>4.50</td>
<td>−0.22</td>
<td>7.68</td>
</tr>
<tr>
<td>Negat.</td>
<td>After</td>
<td>9.93</td>
<td>8.00</td>
<td>9.47</td>
<td>8.03</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>+5.97</td>
<td>+3.50</td>
<td>+9.69**</td>
<td>+0.36</td>
</tr>
<tr>
<td>Std. Error</td>
<td></td>
<td>5.00</td>
<td>5.96</td>
<td>4.82</td>
<td>6.12</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>37</td>
<td>78</td>
<td>70</td>
<td>83</td>
</tr>
<tr>
<td>Third</td>
<td>Before</td>
<td>9.19</td>
<td>3.80</td>
<td>3.58</td>
<td>2.00</td>
</tr>
<tr>
<td>Negat.</td>
<td>After</td>
<td>5.28</td>
<td>2.48</td>
<td>−2.09</td>
<td>10.25</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>−3.90</td>
<td>−1.32</td>
<td>−5.68</td>
<td>+8.24</td>
</tr>
<tr>
<td>Std. Error</td>
<td></td>
<td>6.14</td>
<td>3.22</td>
<td>7.44</td>
<td>6.23</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>28</td>
<td>57</td>
<td>52</td>
<td>64</td>
</tr>
</tbody>
</table>

Notes: 1. Standard errors in parentheses. Significance levels 10, 5, 1 percent (one to three stars).
2. Weekly growth rates are based on the number of sales-related feedbacks received by the seller.
3. Growth rate in week \(t = \ln(\text{no. feedbacks in week } t) - \ln(\text{no. feedbacks in week } t - 1) \).
4. Weekly growth rates are averaged over 4 week periods taken before and after the reception of a negative.
negative feedback comments have lower or no impact on the sales rate. Notice that the drop in sales rate might correspond either to buyer behavior (fewer bidders and thus more objects going unsold) or to seller behavior (anticipating fewer bidders, seller puts fewer objects up for sale). In Section 5 we discuss various implications of this and other pieces of empirical evidence.

4.2 Frequency of negative feedback

Our second result relates to the frequency of arrival of negative feedback. We measure “time” in number of sales transactions. As mentioned above, negative comments often came in the context of a “war of words” between seller and buyer. To prevent such incidents from biasing our results, we excluded consecutive negative comments by the same buyer. We also excluded any negative comments that were left within a two-day period after another negative. Finally, we excluded those negative/neutral comments that were received as a “buyer.”

Table 3 displays three magnitudes of a seller’s record, all measured in number of transactions: T1, “time” to the first negative; T2, “time” between the first and the second negative; and ET, the estimated interval between negatives if they are uniformly distributed across a seller’s history. Under the null hypothesis that negative feedback is generated by a stationary process, we would expect all three to be equal.

The results suggest that both T1 and T2 are greater than ET, and moreover T1 is greater than T2. These differences are not uniformly significant. While the difference T1–ET is significant at the 5% level for every product, the difference T1–T2 is not significant for mint coins; and the difference T2–ET is not significant for the American Eagle coin or the Beanie Baby. Notice however that, for the most expensive item, the IBM Thinkpad, all three differences are significant.

The differences are also economically significant. For example, it takes an average Thinkpad seller 93 sales before the first negative is received; but it only takes an additional 58 sales (38% less) before the second negative arrives.

One potential problem with the results in Table 3 is the possibility of sam-

\footnote{As Footnote 2 of Table 2 states, we computed growth rates as differences in logs. When computed as the ratio \((x_{t+1} - x_t) / x_t\), we obtained different values but the same qualitative patterns.}

\footnote{We also experimented with 1 day and 5 day periods. Our results are robust to the choice of window length.}

\footnote{There were only four instances of this in our sample.}
Table 3: Frequency of negative feedback.

T1: Sale-related feedbacks to first negative.
T2: Sale-related feedbacks between 1st and 2nd negative.
ET: Average number of sale-related feedbacks between negatives.

<table>
<thead>
<tr>
<th></th>
<th>All Cat.</th>
<th>Thinkpad</th>
<th>Eagle</th>
<th>Mint</th>
<th>Teddy</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>240.88</td>
<td>93.24</td>
<td>339.66</td>
<td>267.71</td>
<td>226.99</td>
</tr>
<tr>
<td>T2</td>
<td>188.76</td>
<td>58.59</td>
<td>199.24</td>
<td>261.26</td>
<td>199.86</td>
</tr>
<tr>
<td>ET</td>
<td>162.39</td>
<td>50.8</td>
<td>216.1</td>
<td>189.61</td>
<td>163.5</td>
</tr>
<tr>
<td>T1 − T2</td>
<td>52.12</td>
<td>34.66</td>
<td>140.41</td>
<td>6.45</td>
<td>27.13</td>
</tr>
<tr>
<td>T1 > T2: p-val</td>
<td>0.021</td>
<td>0.036</td>
<td>0.017</td>
<td>0.452</td>
<td>0.27</td>
</tr>
<tr>
<td>T1 − ET</td>
<td>78.48</td>
<td>42.44</td>
<td>123.56</td>
<td>78.09</td>
<td>63.49</td>
</tr>
<tr>
<td>T1 > ET: p-val</td>
<td>0.0002</td>
<td>0.0083</td>
<td>0.02</td>
<td>0.025</td>
<td>0.044</td>
</tr>
<tr>
<td>T2 − ET</td>
<td>26.36</td>
<td>7.79</td>
<td>-16.86</td>
<td>71.64</td>
<td>36.36</td>
</tr>
<tr>
<td>T2 > ET: p-val</td>
<td>0.032</td>
<td>0.176</td>
<td>0.73</td>
<td>0.027</td>
<td>0.089</td>
</tr>
<tr>
<td>N</td>
<td>311</td>
<td>58</td>
<td>79</td>
<td>78</td>
<td>96</td>
</tr>
</tbody>
</table>

Notes: 1. Sample includes all sellers with more than 2 negatives received on sales.
2. T-tests are conducted using within seller differences.
3. ET calculated as total feedback/(# negatives & neutrals), where we count only sales transactions.
Table 4: Frequency of negative feedback: correcting for selection bias.

T1: Sale-related feedbacks to first negative.
T2: Sale-related feedbacks between 1st and 2nd negative.

<table>
<thead>
<tr>
<th></th>
<th>All Cat.</th>
<th>Thinkpad</th>
<th>Eagle</th>
<th>Mint</th>
<th>Teddy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample: sellers with 2+ negatives born after Oct 24, 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>196</td>
<td>26.5</td>
<td>175</td>
<td>238</td>
<td>174</td>
</tr>
<tr>
<td>T2</td>
<td>80</td>
<td>23.2</td>
<td>37</td>
<td>501</td>
<td>64</td>
</tr>
<tr>
<td>T1−T2</td>
<td>116</td>
<td>3.2</td>
<td>138</td>
<td>263</td>
<td>110</td>
</tr>
<tr>
<td>T1>T2: p-val</td>
<td>0.03</td>
<td>0.36</td>
<td>0.03</td>
<td>0.22</td>
<td>0.03</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Sample: sellers with 1+ negatives born after Oct 24, 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>257</td>
<td>26.5</td>
<td>206</td>
<td>403</td>
<td>346</td>
</tr>
<tr>
<td>T2*</td>
<td>174</td>
<td>23.2</td>
<td>107</td>
<td>253</td>
<td>277</td>
</tr>
<tr>
<td>T1−T2</td>
<td>83</td>
<td>3.2</td>
<td>99</td>
<td>150</td>
<td>69</td>
</tr>
<tr>
<td>T1>T2: p-val</td>
<td>0.035</td>
<td>0.36</td>
<td>0.03</td>
<td>0.2</td>
<td>0.04</td>
</tr>
<tr>
<td>N</td>
<td>28</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

* T2=T1 for sellers with only 1 negative.
ple selection bias. Specifically, we can think of two possible biases. First, there may be sellers who were born before we started collecting data and who have exited after an early negative feedback. By excluding these, we may overestimate the value of T1. Second, by excluding sellers with one negative only we may also be biasing our estimate of T2. In order to estimate the potential for bias from our sampling strategy, we performed a series of additional calculations, shown in Table 4. First, we redid the calculations from Table 3 by restricting the sample to sellers born after October 24, 2002, the date at which we started sampling from eBay. We get different values of T1, T2, but the difference between T1 and T2 remains significant. This can be seen in the first panel of Table 4. In particular, when we pool all object categories, T1>T2 at the 3% significance level. For individual products, we get no significant difference for the Thinkpad and the Mint coins; but the number of observations at this level is rather small.

The problem of excluding sellers with one negative only is particularly troubling if they got their negative early on during their lives. Then clearly T2>T1 for those sellers, and their exclusion would bias our test of T1>T2 against the null T1=T2. In our sample of sellers born after October 24, 2002 who received negative feedback, 8 out of 28 only had one negative feedback comment only. Their average T1 is equal to 410; the average number of transactions after the first negative is 171. These numbers suggest that the exclusion of one-negative sellers does not imply any significant upward bias in our evaluation of the difference T1−T2. In the second panel of Table 4, we repeat the calculation in the first panel by including all sellers with some negative feedback. For the sellers with one negative comment only we assume T2=T1, consistently with our null hypothesis. The overall results still suggest that T2>T1 (at the 3.5% level, when pooling all objects).

In sum, the empirical evidence suggests that T1>T2: it takes fewer transactions to get the second negative than it takes to get the first one. This result is intriguing. One is naturally led to ask if the change in negative feedback frequency results from a change in seller behavior or simply a change in the buyers’ propensity to give negative feedback. We therefore next consider a series of results to test the hypothesis of buyer behavior.

Suppose that buyers have a threshold of dissatisfaction above which they give negative feedback. Suppose moreover that this threshold drops after the first negative. There are several behavioral mechanisms through which this can happen, and we consider these in turn.

One way in which such a “threshold decline” may occur is through a de-
crease in the cost of writing a negative comment. As we noted above, many negative comments are followed by a “war of words” between buyer and seller. Seller retaliation might impose an economic cost on the complaining buyer, especially if the buyer is also a seller. Such an effect would confound our results if the probability of retaliation by a seller in reaction to her first negative is higher than retaliation to her second negative, an explanation proposed by several eBay users we talked to.\footnote{We should note that it is not at all clear whether this would play out in an equilibrium setting. However, since eBay users suggested this as an alternative explanation, we decided to evaluate its merits.}

To investigate this possibility, we first checked, for every negative or neutral comment-giver in our sample, whether their particular negative comment was accompanied by a retaliatory negative left by the seller. The result was striking: of the almost 10,000 negative/neutral instances in our data, 2462 resulted in a retaliatory comment by the seller. It is also interesting to note that sellers were less likely to retaliate against neutral comments, as opposed to negatives: we found that a buyer leaving a negative comment has a 40% chance of being hit back, while a buyer leaving a neutral comment only has a 10% chance of being retaliated upon by the seller.

However, our data indicates that sellers are not more likely to retaliate upon their first negative, as opposed to subsequent negatives. In Table 5, we regress an indicator for retaliation by the seller following a particular negative/neutral comment on dummy variables for the second through sixth occurrence of such a comment. As displayed in columns (1) and (2), the dummy variables do not enter significantly — the seller is not more likely to retaliate against the first negative comment, as opposed to subsequent negatives. Interestingly, in the first regression, we find that sellers with higher ex-post percentage of negatives are more likely to retaliate (the regression coefficient can be interpreted as saying that a seller with 1% higher n is 4% more likely to retaliate). However, it does not appear that “fear of retaliation” is a significant driver of the difference in inter-arrival times of negative comments.

A second variation on the “threshold” story is that, in addition to time variation, there is also buyer variation in propensity to give negative feedback. So first negatives would primarily be given by negative-prone buyers, whereas subsequent negatives would originate in a wider set of buyers. To test this possibility, we looked at the string of feedbacks that were left by every negative/neutral comment giver in our data set.\footnote{On eBay one can also observe what each user wrote about each other.} We then computed the per-
Table 5: Alternative explanations for differences in arrival times. Dependent variable for (1) and (2): buyer’s negative comment was followed by seller’s negative comment. Dependent variable for (3) and (4): frequency of negative comments by the buyer who gave a particular negative comment.

<table>
<thead>
<tr>
<th></th>
<th>(1) Retaliation</th>
<th>(2) Retaliation</th>
<th>(3) Profile</th>
<th>(4) Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Negative</td>
<td>0.016</td>
<td>0.025</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.063)</td>
<td>(0.013)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>3rd Negative</td>
<td>0.030</td>
<td>0.043</td>
<td>0.003</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.068)</td>
<td>(0.015)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>4th Negative</td>
<td>-0.005</td>
<td>0.000</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.069)</td>
<td>(0.020)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>5th Negative</td>
<td>0.044</td>
<td>0.118</td>
<td>0.015</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.074)</td>
<td>(0.018)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>6th Negative</td>
<td>0.053</td>
<td>0.107</td>
<td>0.045</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.073)</td>
<td>(0.023)*</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Percentage of</td>
<td>4.664</td>
<td>-0.053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negatives</td>
<td>(1.907)**</td>
<td>(0.372)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of</td>
<td>0.000</td>
<td>-0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transactions</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eagle dummy</td>
<td>0.100</td>
<td>(seller f.e.)</td>
<td>-0.079</td>
<td>(seller f.e.)</td>
</tr>
<tr>
<td></td>
<td>(0.120)</td>
<td>(0.038)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mint dummy</td>
<td>0.000</td>
<td>-0.087</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
<td>(0.037)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>teddy dummy</td>
<td>0.091</td>
<td>-0.071</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.089)</td>
<td>(0.039)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.115</td>
<td>0.239</td>
<td>0.105</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td>(0.045)**</td>
<td>(0.043)**</td>
<td>(0.012)**</td>
</tr>
<tr>
<td>Observations</td>
<td>558</td>
<td>567</td>
<td>575</td>
<td>584</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.03</td>
<td>0.38</td>
<td>0.06</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses. Significance levels 10, 5, 1 percent (one to three stars).
centage of negative comments that each of these reviewers left about others, as a measure of each reviewer’s “critical attitude.” In Table 5, columns (3) and (4), we regress the critical attitude of the reviewer leaving a particular negative/neutral comment on dummy variables for the second through sixth occurrence of a negative/neutral. The regression result tells us that buyers who left the first negative were not systematically more “critical” than the buyers who left subsequent negative feedback.23

To conclude our test of the “threshold” story, we directly tested the hypothesis that second negatives have a lower threshold than first negatives. We constructed a series of pairs of first and second negative comments. We then asked a third party (a student) to make a subjective evaluation as to which of the two remarks was more negative.24 The results show that 51% of the second negatives were considered “nastier” than the corresponding first negative, a split that is not statistically different from 50/50.

Finally, we consider the possibility that buyers are influenced by other buyers’ behavior (herding, conformism, etc).25 Faced with poor performance by a seller with a perfect record, a buyer might be inclined to think that there is no ground for a negative feedback. For example, if there is a communication problem between buyer and seller, the former may attribute this to a problem with him or herself, not with the seller. However, if the seller has already received negative feedback, especially regarding the same problem that the buyer is now facing, then the buyer may have a greater inclination to attribute this to a problem with the seller and give negative feedback. This is especially true for aspects of the transaction that are more subjective and difficult to input (e.g., communication problems).

To consider this possibility we classified the first and second negative remarks according to their nature. The breakdown of the reasons for negative

23Interestingly, our data suggests a lower critical threshold for giving negatives in the Beanie Babies market than in the laptop market: the average negative comment-giver in the laptop market gave negatives 10% of the time, whereas the average complainant in the Beanie Babies market complained only 3% of the time. We speculate that this result may very loosely be attributed to our observation that the Beanie Babies market on eBay can be seen as a “community of collectors” with frequent repeated interactions, where wrong doings are less tolerated, whereas transactions in the laptop market are not typically repeated.

24We randomly mixed the order of the comments so that the student could not tell which was the first, which was the second negative. We also allowed for the following possibilities: “repeat” (remarks are literally identical), “mistake” (remarks are clearly positive even though a negative was given), and “difficult to tell.”

25There is an extensive psychology literature on this, including Asch (1946), Snyder and Canto (1979) and Hoch and Ha (1986).
feedback is presented in Table 6. The buyer influence story should imply an increase in the relative importance of “subjective” problems in second negatives. However, the results suggest a very similar pattern for first and second negative (correlation greater than 0.92). Moreover, “item never sent,” arguably the most objective reason for negative feedback, actually increases in relative importance (though by a small amount). At the opposite extreme, “bad communication,” arguably the most subjective reason for negative feedback, also increases in importance (though by an even smaller amount).

In sum, the empirical evidence does not suggest any change in buyer feedback behavior following the first negative. Accordingly, we argue the relevant change is in seller behavior.

4.3 Reputation and exit

In this section, we analyze seller exit behavior. To do so, we supplemented our data set by revisiting our sample of sellers in the first week of January, 2004, and checking whether they were still in business. There was considerable attrition in our sample: of the 819 sellers originally sampled in our sweep of the transaction-level data, we found that 152 had not conducted any transactions within the last 45 days (pre- and post-Christmas are the busiest seasons on eBay). We also could not locate the feedback records for 104 sellers in our
sample, since eBay’s database claimed that these seller ID’s were no longer valid. These two events (not conducting any recent transactions, and not having a valid eBay ID) constitute our definition of “exit.”

We then ran logit regressions of an “exit” outcome on seller’s observable reputational statistics as of May 2003 (at the end of our initial sampling period). As explanatory variables, we consider (a) the (log) number of negatives and neutrals and (b) the (log) number of positives.

The regression results are reported in the upper-panel of Table 7, where we reported our results for the pooled sample of sellers, and also by object category. The signs of the reputational variables appear to conform with intuition – sellers with fewer negatives (more positives) are more (less) likely to exit, though the statistical significance of the number of positives is higher. To get a sense of the economic significance of the results, in Figure 3 we plot the predicted exit probability as a function of the (log) total number of positives that a seller had in May 2003. As can be seen, a variation from 1 to 4 log points in the number of positives is associated with a decline in exit probability from 60% to about 20%, implying an economically significant correlation.

Next, we investigate whether the “exits” we see in our data set are accompanied by “opportunistic” profit-taking by sellers, and whether reputational variables can predict such behavior. In particular, we looked at the last 25 sale transactions conducted by exiting sellers, and counted the number of negative comments for these last 25 sale transactions. Some of the examples were quite striking: one of the sellers in our sample, who had 22755 positives, racked up 11 negatives in her last 25 transactions; whereas she had a total of 54 negatives in her previous transactions (the percentage of negatives and neutrals over her overall history was 0.6%, versus 44% in the last 25 transactions). On average, the percentage of negatives in the last 25 comments of exiting sellers (excluding those who remained as buyers and those sellers whose ID’s became invalid, and thus we could not get data) was 4.38%, as opposed to an average 1.61% over their entire histories. This difference is statistically significant at the 1% level.

To see if reputational statistics as of May 2003 have any predictive power over such “opportunistic” exits, we repeated the logit regressions in Table 7, where we now defined the dependent variable to be an equal to 1 if the percentage of negatives within the last 25 transactions of a seller was more than twice the percentage of negatives within the seller’s entire history. The results

\[26\] For a model of opportunistic use of reputation, see Phelan (2001). See also Gale and Rosenthal (1994).

<table>
<thead>
<tr>
<th></th>
<th>All Exits</th>
<th>Opportunistic Exits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All sellers</td>
<td>Laptop sellers</td>
</tr>
<tr>
<td>Log. number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negat. May 03</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.49)</td>
</tr>
<tr>
<td>Log. number</td>
<td>-0.58</td>
<td>-0.57</td>
</tr>
<tr>
<td>posit. May 03</td>
<td>(0.11)***</td>
<td>(0.23)***</td>
</tr>
<tr>
<td>Observations</td>
<td>819</td>
<td>199</td>
</tr>
</tbody>
</table>

	All sellers	Laptop sellers	Gold sellers	Silver sellers	Beanie sellers
Log. number	1.02	1.98	3.44	-0.92	-0.09
negat. May 03	(0.40)**	(1.09)*	(0.99)***	(0.96)	(0.78)
Log. number	-0.33	-0.96	-1.09	0.36	0.29
posit. May 03	(0.22)	(0.53)*	(0.47)**	(0.54)	(0.38)
Observations	715	174	219	102	220

Notes: 1. Standard errors in parentheses. Significance levels 10, 5, 1 percent (one to three stars).
Figure 3: Predicted exit probabilities.
of these regressions are reported in the bottom panel of Table 7. Notice that although the number of positives that a seller has is still negatively correlated with the probability of exit, the number of negatives enter into this regression much more significantly.

Once again, to assess the economic significance of the results, we plot the predicted probability of “opportunistic” exit, but this time using the (log) number of negatives as the independent variable. Figure 4 shows that an increase from 1 log point of May 2003 negatives to 2 log points is associated with a 10% increase in opportunistic exit probability, once again pointing out an economically significant relationship.

4.4 Traders’ lifecycle

Casual observation of feedback histories suggests that many sellers appear to start out as “buyers,” completing a string of purchases before attempting their first sale. As an example, Figure 4 plots the percentage of sell vs. buy transactions by user *bearsylvania*, an established Beanie Baby dealer, as a
function of the number of weeks he has been active on eBay. As can be seen, bearsylvania started out as a buyer first, and quickly changed the pattern of his transactions from purchases to sales.

To estimate the prevalence of this phenomenon, we looked at the first and last twenty comments received by each seller. We then defined a seller as having switched from being a buyer to being a seller if more than 50% of the first 20 comments referred to purchases, and more than 70% of the last 20 comments referred to sales.27

An important difficulty with implementing the above coding scheme with our data is that eBay does not report a buyer/seller classification for feedback comments received prior to June 16, 2001. Since about two-thirds of our sample sellers began their eBay careers prior to this date, we made our own assignment as buyer vs. seller based on the textual content of the comments.28

27To check the robustness of this definition of a “switch,” we defined a second indicator with thresholds 40% and 80%, respectively.

28We automated the classification procedure by first calculating the empirical frequencies of word-stems such as “buy,” “sell,” “pay,” “ship,” “pack” across buyer/seller categories in a subsample of the post-June 16,2001 data. We then compared the likelihood of a given comment to be a “buyer” or “seller” comment based on the presence of these keywords. The accuracy of our classification of “seller” comments was remarkable: for the post-June 16,2001 data (for which we have eBay’s classifications) we were able to classify all but 117 of
Given the assumptions that go into our classification scheme, we will report some of our results for these two subsamples of sellers separately.

We found that 38% of Beanie Baby sellers, 22% of laptop sellers, 31% of gold coin sellers, and 31% of proof set sellers followed the “buy first, sell later” strategy (as defined above). We also found that, on average, 81% of a seller’s last 20 transactions were sales, compared to 46% of the first 20 transactions. A paired t-test of equality of the two percentages reveals a strongly statistically significant increase in the percentage of sales (t-statistic equal to 25).29

These results show that “buying first and selling later” is a widespread phenomenon on eBay, and is somewhat more prominent in some object categories than others. For example, eBay is widely known as one of the main trading venues for Beanie Babies. It is conceivable that Beanie Baby enthusiasts first start out as buyers in this market, and switch to selling once they accumulate an inventory. On the other hand, laptop sellers are more likely to sell items they have acquired through other channels.

Next, we investigate the correlation of the “buy first sell later” indicator variable with the (log) number of positives and negatives in the seller’s record. Column (1) of Table 8 reports the results of a logit regression using all sellers in the sample for whom we could ascertain the buy/sell breakdown. Column (2) uses the sample of sellers who joined eBay after June 16, 2001 (i.e., the set of sellers for whom we have direct data from eBay). Finally, in column (3) of this table, we look at the subsample of sellers who started their career before eBay began to report buyer/seller classifications of received feedback (thus we had to impute these classifications).

The regression yields very similar results across the samples, and appears to indicate that better sellers (those with many positives and few negatives) are less likely to have displayed this switching behavior. As can be seen in

29To make sure that these results were not driven by the assumptions needed to construct the buyer/seller classification for sellers with missing data, we repeated the same exercise using the post-June 16, 2001 sample of sellers. We found that, on average, 77% of last 20 transactions were sales, as opposed to 46% of the first 20 transactions. Once again the paired t-test strongly rejects equality.

12952 comments correctly. Our classification of “buyer” comments was less accurate, since most of these buyer comments contain very little information (we checked to see if human classification performed better in a subsample of comments; the improvement was marginal, precisely due to the lack of informative content). In particular, we classified 1934 of 5035 “buyer” comments as a “seller” comment, a 60% accuracy rate. Hence, our classification scheme is biased towards finding “sellers” as opposed to “buyers.” To address this problem, when computing the percentage of a sales-related comments that a user gets within a given time period, we add 17% (the average bias in the control sample) on top of the percentage computed using our classification scheme.
Table 8: Seller’s lifecycle. Dependent variable: seller switched from buying to selling.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log number negatives</td>
<td>-0.39</td>
<td>-0.46</td>
<td>-0.36</td>
</tr>
<tr>
<td></td>
<td>(0.10)**</td>
<td>(0.20)**</td>
<td>(0.11)**</td>
</tr>
<tr>
<td>Log number positives</td>
<td>0.33</td>
<td>0.35</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>(0.07)**</td>
<td>(0.13)**</td>
<td>(0.10)**</td>
</tr>
<tr>
<td>Observations</td>
<td>636</td>
<td>240</td>
<td>396</td>
</tr>
</tbody>
</table>

Sample: 1. Pooled sample.
2. Sellers who joined eBay after June 16, 2001. All transactions classified as “buy” or “sell” by eBay.
3. Sellers who joined eBay before June 16, 2001. Transactions were classified using the method described in Section 5.5.

Notes: 1. Standard errors in parentheses. Significance levels 10, 5, 1 percent (one to three stars).

Figure 6, a change in the log number of negatives from 2 to 5 is associated with a drop in this switching probability from 30% to 10%, thus the effect appears economically significant.30

5 Theory implications

Over the past twenty five years or so, a number of economic theories of reputation have been developed. While these theories can be applied to a variety of situations, we will focus here on the issue of seller reputation. Our goal is to determine the extent to which the empirical evidence presented in the previous section can shed light on the validity of economic theory.

For all their variety, the economic theory of reputation can be classified into a few possible frameworks. One, pioneered by the work of Klein and Leffler (1981) and Shapiro (1983), sees reputation as a coordination, or bootstrap,

30We also conducted a robustness check on our dependent variable by changing the threshold of being a “buyer” to having less than 40% of transactions as sales, and the threshold of being a “seller” to having more than 80% of transactions as sales. This modification does not appear to have an important effect on the coefficient estimates.
Figure 6: Buyer to seller switching probability.
equilibrium in a repeated game context. Here, buyers play an active role in “punishing” sellers when it is perceived that the latter have not lived up to expectations. A second framework, pioneered by the work of Kreps, Milgrom, Roberts and Wilson (1982), models reputation as a Bayesian updating process: based on the observation of past transactions, sellers form a belief about the type of seller they interact with.

An alternative way of classifying economic models of reputation is to consider the relative importance of moral hazard and adverse selection. Klein and Leffler’s (1981) model is one of pure moral hazard: buyers do not observe the seller’s effort to provide quality, but other than that all sellers are identical. At the opposite extreme, we can consider a pure adverse selection model whereby sellers’ quality is governed by some stochastic process beyond their control. In between, there are a number of theories that combine elements of adverse selection and moral hazard.

Pure moral hazard. Klein and Leffler (1981) and others have considered bootstrap equilibria whereby buyers trust sellers will provide high quality so long as they have done it in the past. Once a low quality sale is observed, buyers “punish” the seller by lowering their expectations regarding quality and accordingly lowering their demand.

A pure moral hazard model does a good job at explaining the breakdown of sales after the first negative. In fact, once a low quality sale is observed, buyers “punish” the seller by lowering their expectations regarding quality. The model also explains the increase in frequency of negative feedback following the first negative feedback. Knowing that buyers’ expectations are low, the seller accordingly makes low effort; and as a result negative feedback occurs more often.

The pure moral hazard model has two potential problems (which are related). First, since the cost of creating an identity on eBay is very low, one would expect sellers to exit following the first negative feedback and start selling under a different name. Second, buyers’ willingness to pay should be the same before the first negative feedback is received, presumably leading to a

31 See Friedman (1971), Telser (1980) for earlier related work.
32 Klein and Leffler (1981) assume quality is a deterministic function of effort, and that quality is perfectly observable, though ex-post, by buyers. Dellarocas (2003), following earlier work on collusion by Green and Porter (1984) and Porter (1983) on the case of imperfect observability, suggests a stationary mechanism where poor performance is “punished” by buyers for a period of time.
33 On the issue of changing names at low cost, see Friedman and Resnick (2001).
constant sales rate before the first negative arrives.

The issue of free entry can be resolved if there is a significant cost of entering and starting a new reputation. Klein and Leffler (1981) and Shapiro (1983) propose money burning in the form of advertising. But advertising does not play a big role on eBay. Alternatively, low prices can serve as a way to burn money. We don’t have data on prices, but research by Resnik et al. (2003) suggests that new sellers receive a significant negative price premium. But on eBay prices are typically set by buyers, who submit bids, not by sellers.\(^{34}\) It would be difficult for buyers to coordinate on setting low bids for an object they know is worth a high bid. So, in order for buyers to bid less when the seller is new, it must be that they expect lower quality. In a pure moral hazard model, this means that a new seller must start with low effort and gradually increase it over time. We should therefore observe a non-monotonic path in negative feedback hazard rates: first decreasing, then increasing. Our data shows no decrease in hazard rates, though this may result from sample bias.\(^{35}\)

A third way of creating an entry cost is for new sellers to start with a low sales rate and then gradually increase it over time. This is similar to the idea of “building trust” (see Ghosh and Ray, 1996; Kranton, 1996; Datta, 1997; Watson, 1999 and 2002; Ray, 2002). In an efficient equilibrium, the seller is indifferent in each period between offering high quality products or cheat and start a new reputation. This is consistent with the data: initially increasing output, reduction in sales rate and higher likelihood of exit following low quality events. The problem with this view is that it requires a tremendous amount of coordination and monitoring by buyers.

A fourth way of creating an entry cost is for new sellers to start off as buyers. In fact, our empirical evidence shows that this is indeed the case. Suppose that buyers lose money by making purchases (including the opportunity cost of doing it). Suppose that buyers don’t buy from a seller until the latter paid his “dues” as a new agent. Then restarting a reputation implies a significant cost. One problem with this view is, again, that it requires a high level of monitoring on the buyers’ side. In fact anecdotal evidence suggests that buyers do not distinguish in a seller’s history trades as a buyer and trades as a seller.

\section*{Word of mouth effects.} In a recent elegant model, Fishman and Rob

\(^{34}\)In fact, sellers can set minimum bids and “buy now” options. In the limit, a very low “buy now” option would essentially amount to a low posted price. Still, we believe it is fair to say that prices are largely determined by buyers.

\(^{35}\)A simple non-parametric analysis suggests a distribution of timing of first negative close to log-normal, certainly not bimodal as would be implied by a non-monotonic hazard rate.
(2004) consider an infinite series of one-period lived buyers with word-of-mouth effects: with some probability, a new buyer meets an old buyer and learns about the latter’s recent quality experience. The outcome of a transaction is random and positively related to the seller’s investment. If a buyer has a good experience with the seller, then the new buyer visits the same seller; if the old buyer had a bad experience, then the new buyer searches a seller randomly. In this context, a seller with a series of good transaction outcomes increases his customer base over time (through word of mouth) and increases his incentives to invest in quality. In fact, a low quality transaction breaks down the word of mouth chain and puts the seller back in square zero.

Fishman and Rob’s (2004) model is consistent with our first two empirical facts: a seller’s transactions rate increases with the length of his (perfect) record and drastically declines upon receiving a first negative feedback. Notice the model is also consistent with an increasing price: since the seller’s incentives to invest in quality are increasing in size, which is correlated to age, sale price starts off at a low level and gradually increases. One important difference between Fishman and Rob’s (2004) theoretical model and the reality of eBay is that word-of-mouth effects don’t seem very important on the latter. However, one can presumably think of a variation of their model that is closer to the institutional details of eBay and features the same basic intuition.

Pure adverse selection. Consider now the case of pure adverse selection. Suppose that a seller’s type at time t, θ_t, is governed by a dynamic stochastic process. In particular, suppose that a seller starts off with a high value of θ (good type) and that, with some probability, type switches to low permanently. For example, the seller initially lives close to a UPS shipping station and for some exogenous reason has to move to a location that is farther away from a UPS shipping station. Such a shift in seller’s type would lead not only to the first negative but also to an increased frequency of negative feedback, consistently with the results in Section 4.2.

In the Appendix we present a simple model with the property that the likelihood an item is sold is an increasing function of seller reputation. Then simple Bayesian updating would implies a series of results consistent with the

36 The literature on firm growth and industry evolution frequently considers the possibility of firm efficiency evolving according to a Markov process. See Hopenhayn (1992), Ericson and Pakes (1995). More recently, some reputation models have explicitly considered the possibility of changing types. See Mailath and Samuelson (1998), Phelan (2001).

37 The model we present features a buyer’s decision to bid on a product, paying a cost for doing so. Alternatively, we could consider a seller cost of putting an object up for bid.
empirical evidence: a seller starts off selling few products and a low price; conditional on keeping a good record, a seller increases both the sales rate and price. Once a negative feedback is received, both price and sales rate drop. Moreover, subsequent negatives bring no new information, and so we would expect, as the data suggests, that the sales rate does not change any further. The rate of negative feedback arrival, however, increases, since the seller is now of low type.

One problem with the pure adverse selection story is that it would require that shifts from high type to low type be absorbing. In fact, our results show the frequency of negative feedback arrival increases in a permanent way following the first instance of negative feedback. We do not observe instances of a decrease in the frequency of negative feedback arrival, as the switch from low \(\theta \) to high \(\theta \) would require.

One justification for this asymmetry is that sellers have a fixed amount of effort which they must divide among all units they sell. And thus, as their sales rate increases, effort decreases, leading to the observed increase in negative feedback frequency.\(^{38}\) One problem with this view is as follows: we observe that, after the initial shock in sales rate following the first negative, the sales rate picks up again as the seller becomes older. However, we do not observe a corresponding increase in the frequency of negative feedback.

Adverse selection and moral hazard. We finally consider a model that combines adverse selection and moral hazard, in the tradition of Kreps, Milgrom, Roberts and Wilson (1982) and Diamond (1989). Suppose that the probability that a transaction results in a positive feedback is a function of seller type, \(\theta \), as well as seller effort. For simplicity, suppose the seller can only be one of two types. A good seller produces a positive transaction (that is, a transaction with positive feedback) with probability close to one regardless of effort. A bad seller, in turn, has a positive transaction with probability \(\alpha \) if it makes effort and \(\beta < \alpha \) if it does not.

It can be shown (see Appendix) that, if the prior that sellers are good is sufficiently high and the value of the discount factor is intermediate, then there is a unique Markov equilibrium. The equilibrium strategy for a bad seller is to choose high effort while its record is perfect and switch to low effort once the first negative feedback is received. The intuition is that, while the seller’s record is perfect, a bad seller type has a high incentive to pool with the good seller type. Therefore, the bad seller type makes high effort. Once a first

\(^{38}\)We are grateful to Steve Tadelis for this interpretation.
negative feedback is received, however, the marginal benefit from high effort significantly decreases, as buyers know almost for sure that the seller is bad. Moreover, during the perfect record phase, buyers keep increasing their belief the seller is good, which is consistent with an increasing sales rate (see Section 4.1).

Opportunistic exit. One of the most popular stylized facts regarding the dynamics of reputation is that reputation is slow to build but can be destroyed very rapidly. In a recent paper, Phelan (2001) proposes a specific formal model of this phenomenon. He considers a model with adverse selection and moral hazard. While the model is applied to the issue of government trust, some of its features can be adapted to the case of eBay. Suppose a seller can be of two different types: good or bad. A good seller only produces good transactions; a bad seller produces a good transaction at the cost of exerting effort. Suppose moreover that a seller’s type evolves stochastically over time: in each period, a seller changes type with some given probability. For some parameter values, the optimal strategy for a seller is to produce good transaction outcomes—even if the seller is bad and must exert effort. As time goes by, buyers’ beliefs are that the seller is good increase—and so does price. At some point, however, a bad seller gains more from “cheating” buyers than by exerting effort. In Phelan’s (2001) model, there is no possibility of “exit” by changing one’s identity. Exit, however, provides an additional motivation for the type of opportunistic behavior described in Phelan’s model.

The evidence from exits at eBay seems broadly consistent with the possibility of opportunistic behavior of this kind. Notice however that, once again, there are two different stories that fit the data. One is adverse selection and moral hazard, in the line of Phelan (2001). Alternatively, pure adverse selection with changing types would also do the job. In other words, the string on negative feedback comments we observe at the end of exiters’ lives can be interpreted in two different ways. One is that sellers strategically build up a reputation and then, planning to exit soon, decide to cheat on buyers. Another interpretation is that, with some probability, a seller’s type changes to such an extent that (independently of the seller’s actions) a series of negative transactions takes place; and, as a result of such unfortunate sequence of exogenous events, the seller decides to exit. Anecdotal evidence suggests that opportunistic seller behavior is behind many of the cheat-them-and-leave episodes; but more research is required in order to tease out the two alternative interpretations.
Buying a reputation. One of our more robust findings is that traders typically start off as buyers and then gradually turn into sellers. Anecdotal evidence suggests that, in many cases such as the IBM Thinkpad, sellers obtain their products from manufacturers rather than eBay purchases. Consequently, starting off as a buyer does not seem to be a requirement for the business of being a seller. Anecdotal evidence also suggests that it is easier to receive positive feedback as a buyer than as a seller. In other words, it is easier (and cheaper) to create a good reputation as a buyer than as a seller. Putting these considerations together, we come to an alternative interpretation of our life cycle empirical observation, namely that sellers start off as buyers with the intent of building a reputation that they can then use to sell their product.

The economic theory of reputation does not directly address this issue. However, Tadelis (1999), Mailath and Samuelson (2001), and others have considered the problem of buying names (and the associated reputations). Name trades do not take place at eBay (to the best of our knowledge). Still, the question addressed by Tadelis (1999) and Mailath and Samuelson (2001), “Who wants to buy a reputation?,” seems to apply here as well: what type of seller has an incentive to start off by investing (as a buyer) on an initial reputation history? Is it low-type sellers or high-type sellers?

Tadelis (1999) considers two different effects (see Proposition 3). The “reputation maintenance effect” suggests that good types are more likely to buy a good reputation. The idea is that they can more easily maintain that reputation and therefore can get more out of it. Suppose however that only good types buy good reputations. Then a bad type would get a great (signalling) benefit from buying such a reputation. This second effect, which Tadelis (1999) refers to as the “reputation start-up effect,” works the other way around. Mailath and Samuelson’s (2001) Proposition 4 suggests that the value of a reputation is highest for intermediate seller types. In sum, the theory does not seem to have a very clear prediction regarding the coefficients on the first two rows of Table 8.

6 Concluding remarks

We may briefly summarize our empirical findings as follows: a typical eBay seller starts off his record mainly by buying items. Restricting to sales trades, we observe an increasing sales rate until the first negative is received; and a substantial drop thereafter. After the first negative we also observe an increase in the rate of negative feedback. Finally, a typical eBay seller is more likely to
exit the worse his record is; and the last few trades are likely to include more negative feedback than an average trade during his lifetime.

In general, it is difficult to distinguish between various theoretical models, including in particular “bootstrap” and “Bayesian” reputation models. However, in the particular case of eBay we believe the Bayesian model does a better job. This still leaves a variety of possibilities, including pure adverse selection or a combination of adverse selection and moral hazard. More data may be required to tease these out.

Regardless of which theoretical model best explains the data, an important conclusion of our paper is that eBay’s reputation system gives way to noticeable strategic responses from both buyers and sellers. That is, the mechanism has “bite”. Previous research on eBay has highlighted the impact of reputation on consumer demand (see references in the introduction). Our results are broadly consistent with this literature but go one step further by stressing the impact of the feedback mechanism on seller behavior. To the best of our knowledge, the only other documented evidence of a seller’s response to a reputation mechanism is Jin and Leslie (2004), who study restaurants’ incentives for hygiene. Specifically, they show the incentives are greater in chain restaurants and restaurants frequented by repeat customers, which is consistent with a dynamic reputation story. Jin and Leslie (2004) and in particular Jin and Leslie (2003) present evidence that moral hazard plays an important role in restaurant hygiene: the introduction of hygiene grade cards led to a decrease in hospitalizations which can be attributed to higher effort by restaurants.

Obviously, the fact the reputation system has bite does not imply that its current structure is optimal. In fact, we believe an exciting area for future research is precisely the design of an efficient reputation mechanism.

Both these reputation mechanisms are consistent with a positive correlation between reputation and incentives to invest in reputation, as the data suggests. That is, with a perfect record, reputation is high and the incentives to invest on reputation are high. Once the first negative arrives, reputation drops significantly, and so do the incentives to invest on reputation. Since, by assumption, the probability of a positive or negative transaction is a function of effort, the implication is that the likelihood of negative feedback is much lower before the first negative is received than after, as our empirical evidence suggests.

Also related is the work by Abbring, Chiappori, and Pinquet (2003), who develop a test similar to ours in the context of auto insurance. In the French auto insurance market, an accident increases the cost of future accidents. An implication of moral hazard is that the first accident should decrease the arrival rate of future accidents. Abbring, Chiappori, and Pinquet (2003) fail to find evidence of such decrease in accident rate. By contrast, in eBay feedback context, our preferred theory predicts that the marginal benefit of effort decreases when an “accident” (negative feedback) is received; and accordingly the rate of future “accidents” goes up, as we empirically find to be the case.
To conclude, we should mention that our theoretical analysis is based on a fundamental assumption, namely that buyers offer feedback in a non-strategic way. A natural next step is thus to study the strategic motives underlying various agents’ feedback behavior. This we plan to do in a new empirical project (Cabral, Hortaçsu and Yin, 2005).
Appendices

A A simple auction model with endogenous bidder entry

Suppose there are B potential identical bidders, each with valuation v for the product being auctioned. All B potential bidders simultaneously decide whether to enter the auction, paying a cost c if they decide to enter and bid.\footnote{See Levin and Smith (1994), Bajari and Hortacsu (2003). On eBay, this is best thought of as an opportunity cost. If a bidder is only interested in buying one object she will avoid bidding for several objects at the same time.} We assume bidders play the unique symmetric entry equilibrium. In this equilibrium, each bidder enters the auction with probability p, where p is determined by the indifference condition between entering and not entering the auction. Finally, the bidders that decided to enter simultaneously set their bids and payoffs are paid.

There are three relevant possible outcomes of the bidder entry game. If two or more bidders enter, then the seller gets v and each bidder gets zero. If one or zero bidders enter, then the seller gets zero and the bidder (if there is one) gets v.\footnote{We implicitly assume that the seller’s object is perishable. A possible extension is to assume that an unsold object has value v_U to the seller.} The entry probability p is thus given by the indifference condition $(1 - p)^{B-1} v = c$, or simply

$$p(v) = 1 - \frac{B^{-1} c}{v}. \quad (1)$$

The seller’s expected payoff is given by

$$\pi(v) = \left(1 - B p(v) \left(1 - p(v) \right)^{B-1} - \left(1 - p(v) \right)^{B} \right) v. \quad (2)$$

(The expression in parentheses on the right-hand side is the probability that there is more than one bidder, the only case when the seller makes a profit.) Finally, the probability of a sale is given by

$$\sigma(v) = 1 - \left(1 - p(v) \right)^{B}. \quad (3)$$

Notice that $p(v)$, $\pi(v)$ and $\rho(v)$ are all increasing in v.

\[^{41}\text{See Levin and Smith (1994), Bajari and Hortacsu (2003). On eBay, this is best thought of as an opportunity cost. If a bidder is only interested in buying one object she will avoid bidding for several objects at the same time.}\]

\[^{42}\text{We implicitly assume that the seller’s object is perishable. A possible extension is to assume that an unsold object has value v_U to the seller.}\]
B A model with adverse selection and moral hazard

In this appendix, we present a simple model of seller reputation dynamics. This model includes some of the features of the models in Kreps, Milgrom, Roberts and Wilson (1982), Diamond (1989). First, we make the following assumptions regarding buyer behavior:

Assumption 1 A transaction has two possible outcomes: successful or unsuccessful, with consumer benefit equal to 1 and 0, respectively.

More generally, we could assume that consumer benefit is given by \(\omega \) and \(\omega' \), respectively. However, with no loss of generality we assume \(\omega = 1 \) and \(\omega' = 0 \). Another possible extension is that the outcome is continuous and the transaction considered successful if the outcome is above some critical value.

Assumption 2 A successful transaction is reported with probability one as a successful transaction. An unsuccessful transaction is reported with probability one as an unsuccessful transaction.

All of the relevant results can be extended to the case when there is a small probability of error in feedback or a less than 100% feedback rate. However, the analysis becomes substantially more complicated. A more crucial assumption we need is that the probability and accuracy the feedback be independent of the seller and of the seller’s history. Following eBay’s terminology, we refer to a successful transaction as a “positive,” or simply \(P \); and an unsuccessful transaction as “negative,” or simply \(N \).

Assumption 3 Buyers are risk neutral.

Given Assumption 1, Assumption 3 implies that willingness to pay is simply the expected probability of a \(P \) transaction.

Our model combines elements of adverse selection and moral hazard. It is similar in structure to Diamond’s (1989) model of reputation acquisition in credit markets.\(^{43}\) Although the context in which we apply it is quite different, the basic mechanism is the same. In his model, the informed party is a firm who knows its type and must choose effort level. The uninformed parties

are lenders, who must determine the interest rate. In our formulation, the informed party is a seller who knows her type and must choose effort level. The uninformed parties are the buyers, who must determine whether to bid and, if so, how much to bid.

Specifically, we assume that each seller can be of two types. A good seller always produces \(P \) transactions. A bad seller produces a \(P \) transaction with probability \(\alpha < 1 \) at an effort cost \(e \) or with probability \(\beta < \alpha \) at no effort cost. Let \(\mu_0 \) be the buyers’ prior belief that the seller is good. Each seller lives for an infinite number of periods and discounts the future according to the discount factor \(\delta \). In each period, the seller auctions one unit with a second price auction with no secret reserve price or minimum bid.\(^{44}\)

On the buyer’s side, we assume that, in each period, there are \(B \) potential identical bidders who live for one period. Each bidder has a valuation given by

\[
v(\mu, \rho) = \mu + (1 - \mu) \left(\rho \alpha + (1 - \rho) \beta \right),
\]

where \(\mu \) is the posterior belief that the seller is good and \(\rho \) is the belief that the seller, being bad, will make an effort to improve transaction quality. Basically, \(v(\mu, \rho) \) is the buyers’ expected probability of a \(P \) transaction: with probability \(\mu \), the seller is good, in which case \(P \) happens with probability one; with probability \(1 - \mu \), the seller is bad, in which case the outcome is \(P \) with probability \(\alpha \) or \(\beta \), depending on whether the seller exerts effort (probability \(\rho \)) or not (probability \(1 - \rho \)).

As in Appendix A, we assume potential buyers must pay a cost \(c \) in order to bid. We further assume that bidders play the unique symmetric entry equilibrium. The results from Appendix A apply, where \(v \) is now given by \(3 \).

We now turn to the characterization of the seller’s equilibrium strategy. We do so in the context of the following important assumption, which we will maintain throughout:

Assumption 4

\[
\frac{\beta e \left(\alpha - \beta \right)}{\beta e + \left(\alpha - \beta \right) \left(\pi(1) - \pi(\beta) \right)} < \delta < \frac{\beta e \left(\alpha - \beta \right)}{\beta e + \left(\alpha - \beta \right) \left(\pi(\alpha) - \pi(\beta) \right)}.
\]

In words, we assume that the value of the discount factor, \(\delta \), is intermediate. A very high value of the \(\delta \) implies that there is a multiplicity of equilibria. In fact, for \(\delta \) sufficiently close to one any feasible, individually rational payoff profile is attainable as a perfect Bayesian equilibrium of the game. A very low

\(^{44}\)A straightforward extension is to assume the seller puts an object up for auction at an exogenously given rate, independent of its type.
value of δ, in turn, implies that there is only one equilibrium, one where the (bad) seller never exerts effort.

The following result characterizes a Perfect Bayesian equilibrium of this game. This result is different from Diamond’s (1989), who considers a finitely lived seller. However, the basic intuition is the same, namely, the idea that reputation and effort are “correlated” in equilibrium.

Proposition 1 In a perfect Bayesian equilibrium,

1. After the first N, the buyers’ willingness to pay decreases.
2. After the first N, the seller chooses low effort.
3. There exists a t' such that the seller chooses high effort if he has a perfect record longer than t'.

Proof: Consider first the case when the seller’s history includes an N. Bayesian updating implies $\mu = 0$, where μ is the posterior that the seller is good. The only possibility of an equilibrium where the seller chooses high effort is one where an N is punished by never believing the seller will choose high effort again, $\rho = 0$. Such a punishment implies a discounted profit of $\pi(\beta)/(1 - \delta)$, where β is the buyer’s willingness to pay a bad seller who does not exert effort.

If instead buyers expect the seller to choose high effort, that is $\rho = 1$, then the seller’s expected payoff from high and low effort, assuming maximal punishment, is given by

$$
V^H = \pi(\alpha) - e + \alpha \delta V^H + (1 - \alpha) \delta \pi(\beta)/(1 - \delta)
$$

$$
V^L = \pi(\alpha) + \beta \delta V^H + (1 - \beta) \delta \pi(\beta)/(1 - \delta).
$$

Straightforward computation shows that the condition $V^L > V^H$ is equivalent to $\delta < \frac{e}{\beta e + (\alpha - \beta)(\pi(\alpha) - \pi(\beta))}$. It follows that the only equilibrium following an N is low effort.

Consider now the case of a bad seller with a perfect record. Bayesian updating implies that $\mu > \mu_0 \approx \rightarrow 1$. In the limit when $\mu = 1$, the seller’s expected payoff from high and low effort is given by

$$
\tilde{V}^H = \pi(1) - e + \alpha \delta V^H + (1 - \alpha) \delta \pi(\beta)/(1 - \delta)
$$

$$
\tilde{V}^L = \pi(1) + \beta \delta V^H + (1 - \beta) \delta \pi(\beta)/(1 - \delta).
$$

Straightforward computation shows that the condition $V^H > V^L$ is equivalent to $\delta > \frac{e}{\beta e + (\alpha - \beta)(\pi(1) - \pi(\beta))}$.

The above calculations imply that ρ declines as the first N appears. Moreover, Bayesian updating implies that μ drops from a positive value to zero. We thus conclude that v decreases as the first N is given. ■

We should note that Proposition 1 is not a knife-edged result: following the steps of the proof, one can see that continuity arguments apply if we assume that a good type produces a P with probability γ lower than, but close to, one. In fact, below we consider an extension of the basic model where γ is strictly less than one.

Having said that, we should restate that the result depends crucially on the particular values of δ we consider. If δ is very high, then the folk theorem applies: any equilibrium path that is feasible and individually rational is the result of a perfect Bayesian equilibrium for a high enough value of the discount factor δ. In other words, if the discount factor is high enough, then equilibrium theory has no predictive power. At the other extreme, if δ is very low then there is a unique equilibrium where the seller chooses low effort in every period. Points 1 and 2 in Proposition 1 still hold true, but not Point 3.

The results above have various empirical implications. In particular, they imply that (a) the sales rate decreases after the first negative; (b) the negative feedback arrival rate increases upon the first negative; (c) both the sales rate and the frequency of negative feedback remain constant after the first negative.
References

Dellarocas, Chrysanthos (2003), “Efficiency and Robustness of eBay-like Online Reputation Mechanisms in Environments with Moral Hazard,” MIT.

