Title
SINGLE-PARTICLE RESONANCES IN THE RENORMALIZED RPA-TREATMENT OF NUCLEON-NUCLEUS SCATTERING

Permalink
https://escholarship.org/uc/item/8vw472kk

Authors
Garside, L.
Weigel, M.

Publication Date
1970
SINGLE-PARTICLE RESONANCES IN THE
RENORMALIZED RPA-TREATMENT
OF NUCLEON-NUCLEUS SCATTERING

L. Garside and M. Weigel

January 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SINGLE-PARTICLE RESONANCES IN THE RENORMALIZED RPA-TREATMENT OF NUCLEON-NUCLEUS SCATTERING

L. Garside and M. Weigel

Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

January 1970

ABSTRACT

The method of Garside and MacDonald is used to treat the single-particle resonances in the RPA-treatment of scattering. The resonances are shifted by an additional potential to single-particle bound states, which can be handled in the usual manner. The coupling to the continuum is done analytically using separable matrix elements.

†On leave from the Sektion Physik der Universität München, Munich, Germany.
I. INTRODUCTION

In a previous work we have applied the general theory of nucleon-nucleus scattering to a model, in which the so called bound-state problem or nuclear-structure problem has been treated with the full renormalized effective particle-hole force and the influence of the continuum has been taken approximately into account by a schematic force. In the bound-state problem one neglects all single-particle states belonging to the continuum. In our model the amplitudes of the bound-state problem are expected to be already a good approximation for the corresponding amplitudes with coupling to the continuum. But it is well known—for instance from RPA-calculations—that in many cases one has to include into the bound-state problem certain single-particle resonances in order to obtain a good agreement with the experimental situation. An example is for instance the $1d_{3/2}$ resonance in ^{16}O necessary for the calculation of the excited negative parity states of ^{16}O. Several methods are known to overcome this difficulty. We are going to use the method of Garside and MacDonald since we can obtain with it an explicit solution for the nucleon-nucleus scattering amplitude. In this approach the single-particle potential is split off in two parts

$$\tilde{v}_{\mu\nu} = v^B_{\mu\nu} + \Delta_{\mu\nu},$$ \hspace{1cm} (I.1)

in such a way, that the single-particle resonances are shifted into bound-states if one uses $v^B_{\mu\nu}$ instead of $\tilde{v}_{\mu\nu}$.

In order to obtain the scattering amplitude and the (complex) energy-eigenvalues one had to solve a coupled system of equations for certain quasiparticle density matrix elements given in Ref. 1 (A; I.12; A; I.15-I.18).††

††In this paper we are using the same notations and definitions as in Ref. 1. We refer to Ref. 1 as A, so that (A;I.1) means Eq. (I.1) of Ref. 1.
If we use a single-particle representation according to the potential \(\tilde{\nu}^B_{\mu\nu} \) instead of \(\tilde{\nu}_{\mu\nu} \), one has to insert the following replacements:

\[
\epsilon_{\mu} \tilde{\nu}_{\mu\nu,M} + \epsilon_{\mu} \tilde{\nu}_{\mu\nu} + \sum_{\lambda} \Delta_{\mu\nu} \left\{ (1-n_{\mu})(1-n_{\lambda}) + n_{\mu}n_{\lambda} \right\} \tilde{\rho}_{\lambda\nu,M} , \tag{I.2}
\]

\[
\epsilon_{\nu} \tilde{\rho}_{\mu\nu,M} + \epsilon_{\nu} \tilde{\rho}_{\mu\nu} + \sum_{\lambda} \Delta_{\lambda\nu} \left\{ (1-n_{\nu})(1-n_{\lambda}) + n_{\nu}n_{\lambda} \right\} \tilde{\rho}_{\mu\lambda,M} , \tag{I.3}
\]

where the quantities on the right-hand side now refer to the new basis defined by \(\tilde{\nu}^B_{\mu\nu} \). In all practical cases the additional potential \(\Delta \) is small compared with \(\tilde{\nu}^B_{\mu\nu} \).

In order to simplify the treatment, we will restrict ourselves first to the case of a resonance in one single-particle channel only (no extra bound state). The generalization to the case of several channels is straightforward and will be given afterwards. Since we have the freedom of choosing a suitable analytical form for \(\Delta \) we use a separable ansatz for \(\Delta \) which allows us to read off easily the additional scattering amplitude \(6 \) of the single-particle scattering in terms of the wavefunctions defined by \(\tilde{\nu}^B_{\mu\nu} \). For the separable potential

\[
\Delta_{\mu\nu} = \gamma u_{\mu} u_{\nu} , \tag{I.4}
\]

one obtains for the scattering amplitude:

\[
\tilde{t}_{\mu\nu}(\omega) = \frac{i(\delta_{\mu} + \delta_{\nu})}{1 - \gamma \sum_{\alpha} \frac{u_{\alpha}^2}{\omega - \epsilon_{\alpha} + i\eta}} . \tag{I.5}
\]
According to our assumption the additional potential can be assumed to be non zero only in a certain channel—for instance the $d_{3/2}$-states in ^{16}O. The explicit expression (I.5) can be used to fit the position and width of the experimental single-particle resonance.

II. ONE-CHANNEL CASE:

We label the corresponding bound state shifted from the continuum by ξ. Inserting the replacements (I.2) and (I.3) in (A; I.12) and (A; I.15) we obtain instead of these equations the following equations for the particle-hole amplitudes (p and j characterize the initial state; see A; I.1):

\[
\tilde{\rho}_{\nu \mu, M} = \frac{(-i\eta)(n_{\nu} - n_{\mu})\delta_{\nu \mu}^\delta_{\nu \mu, j}}{E_M + \varepsilon_{\nu} - \varepsilon_{\mu} - i\eta(n_{\nu} - n_{\mu})} + \frac{1}{E_M + \varepsilon_{\nu} - \varepsilon_{\mu} - i\eta(n_{\nu} - n_{\mu})} \sum_{\alpha \beta} \tilde{\Gamma}_{\nu \alpha \mu \beta} \tilde{\rho}_{\beta \alpha, M} - \gamma \sum_{\alpha} u_{\alpha}(1-n_{\alpha})[u_{\mu}(1-n_{\mu})\tilde{\rho}_{\nu \alpha, M} - u_{\nu}(1-n_{\nu})\tilde{\rho}_{\mu \alpha, M}] .
\]

(II.1)

Here, $|M\rangle$ denotes the excited states of the system with inclusion of the single-particle continuum. Since we developed the general theory\(^2\) by extending Migdal's approach\(^7\) we have to use as in Ref. 1 renormalized quantities labelled by a tilde.

According to Ref. 1 the solutions of the bound-state problem $|n\rangle = C_n|0\rangle$ are given by the solutions of (II.1) where all matrix elements labelled by at least one quantum number set belonging to the continuum are set equal to zero. But instead of the energy ε_{μ} we are using in the bound-state problem new energies.
defined by $\varepsilon_\mu + \delta_{\mu\zeta} \gamma_{\nu\zeta}^2$. With $|0'\rangle$ we denote the ground-state of the compound-system containing correlations of bound single-particle states only.

Repeating the procedure of Ref. 1 one obtains for the "deviation" matrix elements instead of $(A; II.10; A; II.11)$ the following expressions

$$
\langle 0|c_n^\dagger|M\rangle = \frac{1}{F_{n}^{1}+E_{M}^{1}} \{ -\lambda F_{n}^{0} F_{M}^{0} - \gamma u_{\zeta} \sum_{i} [\hat{\rho}_{i\zeta,n}^{\alpha} R_{M,i}^{(\alpha)} + \hat{\rho}_{i\zeta,n}^{\beta} R_{M,i}^{(\beta)}] \} ,
$$

$$
\langle 0|c_{n}M\rangle = \frac{1}{F_{n}^{1}-E_{M}^{1}} \{ -\lambda F_{n}^{0} F_{M}^{0} - \gamma u_{\zeta} \sum_{i} [\hat{\rho}_{i\zeta,n}^{\alpha} R_{M,i}^{(\alpha)} + \hat{\rho}_{i\zeta,n}^{\beta} R_{M,i}^{(\beta)}] \} ,
$$

with

$$
R_{M,i}^{(\alpha)} = \sum_{k} u_{k}^{(\alpha)} \tilde{R}_{ki,n}^{(\alpha)} ,
$$

$$
\hat{R}_{M,i}^{(\alpha)} = \sum_{k} u_{k}^{(\alpha)} \hat{R}_{ik,n}^{(\alpha)} .
$$

F_{n}^{α} and F_{M}^{α} are defined by $(A; II.12)$ and $(A; II.13)$.

The expressions for the amplitudes $\tilde{\rho}_{ki,B}$ and $\tilde{\rho}_{ik,B}$ (Bound states $|M\rangle$ are denoted by $|B\rangle$) are given by ($\nu\mu$ is here restricted to k,i or i,k):

$$
\tilde{\rho}_{\nu\mu,B} = \frac{1}{E_{B} + \varepsilon_{\mu} - \varepsilon_{\nu} - \ln(n_{\nu}-n_{\mu})} \{ F_{\nu}^{\dagger} \hat{M}_{\nu\mu}(E_{B})
$$

$$
+ \sum_{i} [A_{\nu\mu}^{i}(E_{B}) \hat{R}_{B,i}^{(\mu)} + E_{\nu\mu}^{i}(E_{B}) R_{B,i}^{(\mu)}] \} ,
$$

$$
(II.6)
$$
with:

\[M_{\nu\mu}(E) : = (\eta_{\nu}\eta_{\mu}) \lambda \nu_{\nu} \left[1 - \lambda \sum_{n} \left| \frac{F_{n}^{\nu \mu}}{E_{n}^{2}} \right|^{2} \frac{2E_{n}}{E_{n}^{2} - E^{2}} \right] \]

\[+ \lambda \gamma u_{\xi} \sum_{n} \left(\frac{F_{n}^{\nu \mu} D_{n}^{\nu \mu}}{E_{n} - E} - \frac{F_{n}^{\nu \mu} D_{n}^{\nu \mu*}}{E_{n} + E} \right) \] \hspace{1cm} (II.7)

\[A_{\nu\mu}^{i}(E) : = \gamma \{ -u_{\nu} \delta_{i\nu} \nu_{\nu} (1-\eta_{\mu}) \]

\[- u_{\xi} \sum_{n} \left(\frac{\tilde{\rho}_{\xi,n}}{E_{n} - E_{n}} \left[(\eta_{\mu} - \eta_{\nu}) \lambda \nu_{\nu} F_{n}^{\nu \mu} + \gamma u_{\xi} D_{n}^{\nu \mu*} \right] \right) \]

\[+ \frac{\rho_{\xi,n}^{*}}{E_{n} - E_{n}} \left[(\eta_{\mu} - \eta_{\nu}) \lambda \nu_{\nu} F_{n}^{\nu \mu} - \gamma u_{\xi} D_{n}^{\nu \mu} \right] \} \] \hspace{1cm} (II.8)

\[B_{\nu\mu}^{i}(E) : = \gamma \{ u_{\nu} \delta_{i\mu} \nu_{\nu} (1-\eta_{\nu}) \]

\[- u_{\xi} \sum_{n} \left(\frac{\tilde{\rho}_{\xi,n}}{E_{n} - E_{n}} \left[(\eta_{\nu} - \eta_{\nu}) \lambda \nu_{\nu} F_{n}^{\nu \mu} + \gamma u_{\xi} D_{n}^{\nu \mu*} \right] \right) \]

\[+ \frac{\rho_{\xi,n}^{*}}{E_{n} - E_{n}} \left[(\eta_{\nu} - \eta_{\nu}) \lambda \nu_{\nu} F_{n}^{\nu \mu} - \gamma u_{\xi} D_{n}^{\nu \mu} \right] \} \] \hspace{1cm} (II.9)

\[\gamma_{n}^{\nu \mu} : = u_{\mu} (1-\eta_{\mu}) n_{\nu} \tilde{\rho}_{\xi,n} - u_{\nu} (1-\eta_{\nu}) n_{\mu} \tilde{\rho}_{\xi,n} \] \hspace{1cm} (II.10)
Eq. (II.6) is obtainable in the same manner as the expressions (A; II.14; II.15). In the derivation we expressed \(\bar{\psi}_{iB} \) and \(\hat{\psi}_{iB} \) in terms of \(\langle 0|c_n^+|B \rangle \) and \(\langle 0|c_n|B \rangle \) with the help of Eq. (A; II.1). Use of (II.4), (II.5) and (II.6) gives the following system of equations for \(R_{B,i} \) and \(\hat{R}_{B,i} \):

\[
R_{B,i} = F_B M_i (E_B) + \sum_j (A_{ij}, (E_B) \hat{R}_{B,j} + B_{ij}, (E_B) R_{B,j}) , \tag{II.11}
\]

\[
\hat{R}_{B,i} = F_B \hat{M}_i (E_B) + \sum_j (\hat{A}_{ij}, (E_B) \hat{R}_{B,j} + \hat{B}_{ij}, (E_B) R_{B,j}) , \tag{II.12}
\]

with

\[
M_i(E) = \sum_k ^{\infty} \frac{u_k}{E + \varepsilon_i - \varepsilon_k + i\eta} M_{ki}(E) , \tag{II.13}
\]

\[
A_{ij}(E) = \sum_k ^{\infty} \frac{u_k}{E + \varepsilon_i - \varepsilon_k + i\eta} A_{ki}^{ij}(E) etc. \tag{II.14}
\]

Since the system (II.11) and (II.12) represents a linear system of equations of the order \(2N \) (\(N \) is the number of hole states) the explicit solution for \(R_{B,i} \) and \(\hat{R}_{B,i} \) is obtainable in terms of the solutions of the bound-state problem and the potential parameters alone. According to the structure of the equation-system the solutions have the following form:

\[
R_{B,i}(E) = F_B R_{B,i}(E) , \tag{II.15}
\]

\[
\hat{R}_{B,i}(E) = F_B \hat{R}_{B,i}(E) , \tag{II.16}
\]
where \(r_{B_i} \) and \(\hat{r}_{B_i} \) are known functions, after one has performed the integrations in (II.13) etc. Hence, (II.6) has the following solution:

\[
\rho_{\nu \mu, B} = \frac{F_B}{E_B + \varepsilon_\mu - \varepsilon_\nu} K_{\nu \mu}^B (E_B),
\]

(II.17)

with:

\[
K_{\nu \mu}^B (E) = M_{\nu \mu} (E) + \sum_i \{ A_{\nu \mu}^i (E) \hat{r}_{B_i} (E) B_{\nu \mu}^i (E) r_{B_i} (E) \}.
\]

(II.18)

The (complex) energy-eigenvalues \(E_B \) are given by the solutions of the dispersion relation, which we get by inserting (II.17) in the definition (A; II.13) of \(F_B \).

We obtain the following equation:

\[
1 = \sum_k \sum_i \nu k_i \left\{ \frac{K_{\mu}^B (E_B)}{E_B + \varepsilon_\mu - \varepsilon_k - i\eta} + \frac{K_{in}^B (E_B)}{E_B + \varepsilon_k - \varepsilon_i} \right\}.
\]

(II.19)

Finally, the constant \(F_B \) can be determined by the normalization of the states (see Ref. 1).

The amplitudes \(\tilde{\rho}_{ki, S} \) and \(\tilde{\rho}_{ik, S} \) for the scattering states can be derived in the same manner (Scattering states \(|M\)) are denoted by \(|S\)). Instead of (II.6), (II.11) and (II.12) we obtain:

\[
\tilde{\rho}_{\nu \mu, S} = \delta_{\nu p} \delta_\mu j + \frac{1}{E_S + \varepsilon_\mu - \varepsilon_\nu - i\eta (n_\nu - n_\mu)} \{ F_S M_{\nu \mu} (E_S) \}
\]

\[
+ \sum_i \{ A_{\nu \mu}^i (E_S) \hat{r}_{S,i} + B_{\nu \mu}^i (E_S) r_{S,i} \},
\]

(II.20)
\[R_{S,i} = u_p \delta_{ij} + F_S m_i(E_S) + \sum_{j'} (A_{ij'}(E_S) \hat{R}_{S,j'} + B_{ij'}(E_S) R_{S,j'}) \quad \text{(II.21)} \]

\[\hat{R}_{S,i} = F_S \hat{m}_i(E_S) + \sum_{j'} (A_{ij'}(E_S) \hat{R}_{S,j'} + B_{ij'}(E_S) R_{S,j'}) \quad \text{(II.22)} \]

The structure of (II.21) and (II.22) changes the solutions (II.15), (II.16) to the following form:

\[R_{S,i}(E) = F_S r_{S,i}(E) + u_p r_{S,i}(E) \quad \text{(II.23)} \]

\[\hat{R}_{S,i}(E) = F_S \hat{r}_{S,i}(E) + u_p \hat{r}_{S,i}(E) \quad \text{(II.24)} \]

Inserting this result in (II.20) gives the wanted amplitude \(\tilde{p}_{ki,S} \):

\[\tilde{p}_{ki,S} = \delta_{kj} \delta_{ij} + \frac{1}{E_S + \epsilon_i - \epsilon_k + \imath \eta} \left[F_S K^S_{ki}(E_S) + u_p K^j_{ki}(E_S) \right] \quad \text{(II.25)} \]

with:

\[K^j_{\nu \mu}(E): = \sum_{k} (r_{S,i}^j(E) A^i_{\nu \mu}(E) + r_{S,i}^j(E) B^i_{\nu \mu}(E)) \quad \text{(II.26)} \]

We get \(F_S \) by inserting (II.25) into the definition (A; II.13) of \(F_S \):

\[F_S = \left\{ 1 - \sum_{k_i} w_{ki} \left[\frac{K^S_{ki}(E_S)}{E_S + \epsilon_i - \epsilon_k + \imath \eta} + \frac{K^S_{ki}(E_S)}{E_S + \epsilon_k - \epsilon_i} \right] \right\}^{-1} \]

\[\left\{ w_{pj} + u_p \sum_{k_i} w_{ki} \left[\frac{K^j_{ki}(E_S)}{E_S + \epsilon_i - \epsilon_k + \imath \eta} + \frac{K^j_{ki}(E_S)}{E_S + \epsilon_k - \epsilon_i} \right] \right\} \quad \text{(II.27)} \]
From the expressions for $\hat{R}_{M,i}$ and $R_{M,i}$ we can now also obtain the explicit form for the "deviation" matrix elements:

$$\langle 0|c^+_n|M \rangle = \frac{1}{E_n + E_M} \{ F_M[-\lambda P^0_n - \gamma u_{\xi} \sum_i (\tilde{\rho}_{\xi_1,n} \hat{r}_{M,i}(E_M) + \tilde{\rho}_{\xi_1,n} R_{M,i}(E_M))]

- \delta_{M,S} \gamma u_{\xi} u_p \sum_i (\tilde{\rho}_{\xi_1,n} \hat{r}^J_{S,i}(E_S) + \tilde{\rho}_{\xi_1,n} R^J_{S,i}(E_S)) \} \quad (II.28)$$

$$\langle 0|c^+_n|M \rangle = \frac{1}{E_n - E_M} \{ F_M[-\lambda P^0_n - \gamma u_{\xi} \sum_i (\rho^{*}_{\xi_1,n} \hat{r}_{M,i}(E_M) + \rho^{*}_{\xi_1,n} R_{M,i}(E_M))]

- \delta_{M,S} \gamma u_{\xi} u_p \sum_i (\rho^{*}_{\xi_1,n} \hat{r}^J_{S,i}(E_S) + \rho^{*}_{\xi_1,n} R^J_{S,i}(E_S)) \} \quad (II.29)$$

Finally, we can read off from the amplitude $\tilde{\rho}_{ki,S}$ the wanted extra-scattering amplitude, reinserting the single-particle phase factors taken out in Eq. (A; 1.8):

$$T_{ki,pj}(E) = e^{i(\delta_p + \delta_k)} \{ u_p K^J_{ki}(E_S) + F_S K^S_{ki}(E_S) \} \quad (II.30)$$

Our formulas reduce to the corresponding ones of Ref. 1 for $\gamma \to 0$; if we neglect any particle-hole force we obtain the single-particle resonance scattering.

III. MANY-CHANNEL-CASE:

If one has a single resonance in different channels, respectively, one can treat the problem replacing (I.4) by

$$\Delta_{\mu \nu} = \sum_{\xi} \Delta_{\mu \nu} = \sum_{\xi} \gamma^{*}_{\mu} u_{\mu} e_{\nu} = \gamma^{*}_{\mu} u_{\mu} e_{\nu} \quad (III.1)$$
We make the assumption that in every relevant channel we have only one resonance and no bound states. This assumption is sufficient for light and medium nuclei. Then we can label the channels by \(\xi \) which is a subset of the quantum-number set \(\xi \). For instance \(\tilde{\xi} \) may be the \(d_{3/2} \)-channel whereas \(\xi \) includes also the principal quantum number and the magnetic quantum number of the \(d_{3/2} \)-bound state. Since \(\gamma^{\xi} \) and \(u^{\mu}_{\xi} \) are assumed to be non-zero only in the channel \(\tilde{\xi} \) one can fit the resonance in each channel separately.

The changes against the one-channel case are obvious since one has only to replace the contribution of one channel in the formulas of Sec. II by the sum of the channel contributions. For the "deviation" matrix element (II.3)—for instance—we obtain now:

\[
\langle 0 | C_n | M \rangle = \frac{1}{E_n - E_M} \left\{ \lambda F_{n}^{*} F_{M} - \sum_{\xi} \gamma^{\xi} u^{\xi}_{\xi} \sum_{i} \{ \tilde{\rho}_{i,\xi,n}^{*} \tilde{\rho}_{i,\xi,n}^{\xi} + \tilde{\rho}_{i,\xi,n}^{\xi} \tilde{\rho}_{i,\xi,n}^{*} \} \right\} , \quad \text{(III.2)}
\]

with:

\[
\tilde{R}_{i,\xi,n}^{\xi} = \sum_{k} u^{\xi}_{k} \tilde{\rho}_{ki,n}^{\xi} \quad \text{etc.} \quad \text{(III.3)}
\]

For (II.6) we get:

\[
\tilde{\rho}_{\nu\mu,B} = \frac{1}{E_B + \epsilon_{\mu} - \epsilon_{\nu} - i\eta(n_{\nu} - n_{\mu})} \left\{ F_{B} M_{\nu\mu}(E_B) \right\} + \sum_{\xi} \sum_{i} \{ A_{\nu\mu}^{i,\xi} \tilde{R}_{B,i}^{\xi} + B_{\nu\mu}^{i,\xi} \tilde{R}_{n,i}^{\xi} \} , \quad \text{(III.4)}
\]
with:

\[
M_{\nu\mu}(E) = (n_{\mu} - n_{\nu}) \lambda w_{\nu\mu} \left[1 - \lambda \sum_{n} \left| \frac{F_n^0}{E_n - E} \right|^2 \right] \\
+ \lambda \sum_{\xi} \gamma^{\xi} u^{\xi} \sum_{n} \left(\frac{F_n^0 D_{\nu\mu,\xi} n}{E_n - E} - \frac{F_n^0 D_{\nu\mu,\xi} n}{E_n + E} \right) \quad (III.5)
\]

The definitions of \(A_{\nu\mu}^{i,\xi}, B_{\nu\mu}^{i,\xi} \) and \(D_{\nu\mu,\xi}^{\nu,\mu} \) can be taken over from Sec. II by replacing \(u \rightarrow u^{\xi} \) and \(\gamma \rightarrow \gamma^{\xi} \). Instead of (II.12) and (II.13) we obtain now; respectively:

\[
R_{B,i}^{\xi} = F_{B} M_{i}^{\xi}(E_{B}) + \sum_{\xi'} \sum_{j'} \left(A_{ij'}^{\xi,\xi'}(E_{B}) R_{B,j}^{\xi} + B_{ij'}^{\xi,\xi'}(E_{B}) \bar{R}_{B,j}^{\xi} \right), \quad (III.6)
\]

\[
R_{B,i}^{\xi'} = F_{B} M_{i}^{\xi'}(E_{B}) + \sum_{\xi} \sum_{j} \left(A_{ij}^{\xi,\xi'}(E_{B}) R_{B,j}^{\xi} + B_{ij}^{\xi,\xi'}(E_{B}) \bar{R}_{B,j}^{\xi'} \right). \quad (III.7)
\]

with:

\[
M_{i}^{\xi}(E) = \sum_{k} \frac{u_{k}^{\xi}}{E + \epsilon_{i} - \epsilon_{k} + i\eta} M_{ki}(E) \quad (III.8)
\]

\[
A_{ij}^{\xi,\xi'}(E) = \sum_{k} \frac{u_{k}^{\xi}}{E + \epsilon_{i} - \epsilon_{k} + i\eta} A_{ki}^{i',\xi'}(E) \text{ etc.} \quad (III.9)
\]

The only difference from the one-channel case is that we have to deal with a linear system of larger order. The order is now \(2(N \times M) \) if we have \(M \) resonances.
But the structure of the system remains the same, therefore, the form of the solution does not change. We obtain as in (II.15) and (II.16):

\[R_{B,i}^x (E) = F_B R_{B,i}^x (E) \] \hspace{1cm} (III.10)

\[r_{B,i}^x (E) = F_B r_{B,i}^x (E) \] \hspace{1cm} (III.11)

For the scattering states one can follow the same road. According to the procedure we have now only to add in the formulas of Sec. II to each summation over the hole-states a summation over the channels. Hence, we obtain instead of (II.18) and (II.26); respectively:

\[K_{\nu\mu}^M (E) = M_{\nu\mu} (E) + \sum_{\xi} \sum_{i} \{ A_{\nu\mu}^{i} \xi^x (E) r_{M,i}^x (E) + B_{\nu\mu}^{i} \xi^x (E) r_{M,i}^x (E) \} \] \hspace{1cm} (III.12)

\[K_{\nu\mu}^{j_{\nu}p} (E) = \sum_{\xi} \sum_{i} \{ r_{S,i}^x j_{\nu}^{\nu} (E) A_{\nu\mu}^{i} \xi^x (E) + r_{S,i}^x j_{\nu}^{\nu} (E) B_{\nu\mu}^{i} \xi^x (E) \} \] \hspace{1cm} (III.13)

For \(F_S \) we get:

\[F_S = \left\{ 1 - \sum_{k,i} w_{ki} \left(\frac{K_S^{k} (E)}{E_S + \epsilon_i - \epsilon_k + i\eta} + \frac{K_S^{k} (E)}{E_S + \epsilon_k - \epsilon_i} \right) \right\}^{-1} \]

* \(\left\{ \sum_{k,i} w_{ki} \left(\frac{K_S^{j_{\nu}^{\nu} (E)}}{E_S + \epsilon_i - \epsilon_k + i\eta} + \frac{K_S^{j_{\nu}^{\nu} (E)}}{E_S + \epsilon_k - \epsilon_i} \right) \right\} \) \hspace{1cm} (III.14)
In (III.13) and (III.14) \(\tilde{p} \) denotes the channel of the incoming particle in the state \(p \). If there is no resonance—necessary in the bound-state problem—in this channel one has to set \(\tilde{w}_p^p \) equal to zero. Now we can easily obtain the final expressions for the "deviation" matrix elements, the particle-hole amplitude \(\tilde{\rho}_{ki, S} \) and the scattering amplitude in the multi-channel case:

\[
\langle 0|c_n^+|M \rangle = \frac{1}{E_n - E_M}\{F^*_M[-\lambda \rho^o_n - \sum_{\xi} \gamma^\xi u^\xi_p \sum_i (\tilde{\rho}_{xi,n} \tilde{r}_M^\xi_i(E_M) + \tilde{\rho}_{xi,n} \tilde{r}_M^\xi_i(E_M))]

- \delta_{M,S} \sum_{\xi} \gamma^\xi u^\xi_p \sum_i (\tilde{\rho}_{xi,n} \tilde{r}_M^\xi_i(E_S) + \tilde{\rho}_{xi,n} \tilde{r}_M^\xi_i(E_S)) \}, \quad (III.15)
\]

\[
\langle 0|c_n|M \rangle = \frac{1}{E_n - E_M}\{F^*_M[-\lambda \rho^o_n - \sum_{\xi} \gamma^\xi u^\xi_p \sum_i (\tilde{\rho}_{xi,n} \tilde{r}_M^\xi_i(E_S) + \tilde{\rho}_{xi,n} \tilde{r}_M^\xi_i(E_S))]

- \delta_{M,S} \sum_{\xi} \gamma^\xi u^\xi_p \sum_i (\tilde{\rho}_{xi,n} \tilde{r}_M^\xi_i(E_S) + \tilde{\rho}_{xi,n} \tilde{r}_M^\xi_i(E_S)) \}, \quad (III.16)
\]

\[
\tilde{\rho}_{ki, S} = \delta_{kp} \delta_{ij} + \frac{1}{E_S - \epsilon_i - \epsilon_k + i\eta} [F^*_S K_{ki}(E_S) + \tilde{u}_p^p K_{ki}(E_S)] , \quad (III.17)
\]

\[
T_{ki,pj}(E) = e^{i(\delta_p + \delta_k)} \{F^*_S K_{ki}(E_S) + \tilde{u}_p^p K_{ki}(E_S) \} . \quad (III.18)
\]
IV. SUMMARY

A model for calculating nucleon scattering by one-hole nuclei using linear response theory has been set down. We used a separable particle-hole force for the treatment of the single-particle continuum starting from the solutions of the nuclear-structure problem with the full renormalized particle-hole interaction. The necessary inclusion of certain single-particle resonant states in the treatment of the nuclear structure problem has been achieved by the method of Garside and MacDonald. The additional single-particle potential was chosen in a separable form, too. We have been able to give the final results in terms of the solutions of the nuclear-structure problem and the potentials in a transparent manner. In order to obtain a full explicit result one has only to perform integrations and to solve linear systems of equations of finite dimension. Due to our used ansatizes for the treatment of the continuum we have avoided the original much more complicated Fredholm-problem.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to the members of the LRL theoretical nuclear physics group for their hospitality. The Deutsche Forschungsgemeinschaft, Germany, supported this work by a grant for M. W.
REFERENCES

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.