Title
Carbon 13 exchanges between the atmosphere and biosphere

Permalink
https://escholarship.org/uc/item/8w15z1xx

Journal
Global Biogeochemical Cycles, 11(4)

ISSN
08866236

Authors
Fung, I.
Field, C. B
Berry, J. A
et al

Publication Date
1997-12-01

DOI
10.1029/97GB01751

License
CC BY 4.0

Peer reviewed
Carbon 13 exchanges between the atmosphere and biosphere

Abstract. We present a detailed investigation of the gross 12C and 13C exchanges between the atmosphere and biosphere and their influence on the δ13C variations in the atmosphere. The photosynthetic discrimination Δ against 13C is derived from a biophysical model coupled to a general circulation model [Sellers et al., 1996a], where stomatal conductance and carbon assimilation are determined simultaneously with the ambient climate. The δ13C of the respired carbon is calculated by a biogeochemical model [Potter et al., 1993; Randerson et al., 1996] as the sum of the contributions from compartments with varying ages. The global flux-weighted mean photosynthetic discrimination is 12–16%, which is lower than previous estimates. Factors that lower the discrimination are reduced stomatal conductance and C4 photosynthesis. The decreasing atmospheric δ13C causes an isotopic disequilibrium between the outgoing and incoming fluxes; the disequilibrium is ~0.33‰ for 1988. The disequilibrium is higher than previous estimates because it accounts for the lifetime of trees and for the ages rather than turnover times of the biospheric pools. The atmospheric δ13C signature resulting from the biospheric fluxes is investigated using a three-dimensional atmospheric tracer model. The isotopic disequilibrium alone produces a hemispheric difference of ~0.02‰ in atmospheric δ13C, comparable to the signal from a hypothetical carbon sink of 0.5 Gt C yr⁻¹ into the midlatitude northern hemisphere biosphere. However, the rectifier effect, due to the seasonal covariation of CO2 fluxes and height of the atmospheric boundary layer, yields a background δ13C gradient of the opposite sign. These effects nearly cancel thus favoring a stronger net biospheric uptake than without the background CO2 gradient. Our analysis of the globally averaged carbon budget for the decade of the 1980s indicates that the biospheric uptake of fossil fuel CO2 is likely to be greater than the oceanic uptake; the relative proportions of the sinks cannot be uniquely determined using 12C and 13C alone. The land-ocean sink partitioning requires, in addition, information about the land use source, isotopic disequilibrium associated with gross oceanic exchanges, as well as the fractions of C3 and C4 vegetation involved in the biospheric uptake.

1. Introduction

Since the beginning of the industrial era, the combustion of fossil fuels has released a total of ~250 Gt (1 Gt = 10¹² kg) of carbon into the atmosphere. Over the same period, land use modification in the middle latitudes, and more recently in the tropics, has released another ~100 Gt C. The ~150 Gt C increase in CO2 in the atmosphere, from ~280 parts per million by volume (ppmv) in 1800 to 351 ppmv in 1988, is equivalent to ~60% of the fossil fuel release or ~40% of the total anthropogenic CO2 source. Balancing the carbon budget requires both the oceans and terrestrial biosphere to have acted as repositories, or sinks, for the anthropogenic CO2. Direct measurements of CO2 reservoir sizes and of CO2 fluxes into and out of the oceans and terrestrial biosphere are sparse, and the methodologies for extrapolating laboratory or site measurements to the globe are under considerable debate. Hence estimates of the global strengths
of the terrestrial and oceanic sinks have not been established with certainty.

CO$_2$ is nearly but not completely mixed in the atmosphere. The mixing time of CO$_2$ and other inert trace gases in the atmosphere is about 3 months within a hemisphere and about 1 year between the hemispheres. Therefore information about broad patterns of CO$_2$ exchanges between the atmosphere and different carbon reservoirs can be extracted from the geographic and temporal variations of carbon dioxide in the atmosphere with the aid of atmospheric transport models [e.g., Keeling et al., 1989a; Tans et al., 1990; Enting et al., 1993, 1995; Ciais et al., 1995a,b]. Over 90% of the fossil fuel emission is from the northern hemisphere, and most of the emission from land use modification is from the tropics. If all the anthropogenic CO$_2$ remained airborne, this would yield a hemispheric gradient that is larger than that observed (Figure 1). Fossil fuel CO$_2$ has a δ^{13}C of -24 to $-28\%_o$ [Andres et al., 1996], typical of the plant material from which fossil fuels are derived. The anthropogenic emissions, if all airborne, would produce an atmospheric δ^{13}C gradient that mirrors the CO$_2$ gradient, with isotopic ratios $0.3\%_o$ lower in the northern than in the southern hemisphere (Figure 1b). This compares with the observed gradient of $-0.2\%_o$ [Keeling et al., 1989b; Ciais et al., 1995a; Trolier et al., 1996].

Retrieving information about carbon sources and sinks from the atmospheric CO$_2$ gradients requires ancillary data. Tans et al. [1990] did not have access to δ^{13}C information at the time and used a compilation of available marine pCO$_2$ measurements in their atmospheric tracer transport model calculation. They inferred that midlatitude northern hemisphere land surface may have acted as a significant sink for anthropogenic CO$_2$. Keeling et al. [1989a] used their own δ^{13}C measurements in their atmospheric tracer model and deduced for the early 1980s an oceanic sink that has approximately the same magnitude as the terrestrial sink. Ciais et al. [1995a,b] combined the atmospheric δ^{13}C data for 1992–1993 with the oceanic pCO$_2$ and δ^{13}C measurements in their two-dimensional atmospheric transport model and deduced that the northern middle-to-high-latitude terrestrial biosphere was a sink as large as 3.5 Gt C yr$^{-1}$ for those 2 years. Sinks of this magnitude may, however, be unusual, because these 2 years had significant climatic perturbation. When the atmospheric δ^{13}C variations are used to constrain the estimates of land-sea partitioning of the anthropogenic CO$_2$ sink, additional information or assumptions are required to specify fractionation coefficients associated with each CO$_2$ flux into and out of the atmosphere [Tans, 1980; Fung, 1993; Tans et al., 1993]. Our relative ignorance about the isotopic fractionation by the gross fluxes remains a major uncertainty in the application of the atmospheric δ^{13}C variations to the carbon budget.

An appreciation for how accurately one needs to know the isotopic coefficients can be obtained from examining Figure 1. After the signatures of fossil fuel burning and deforestation have been subtracted out, the atmospheric δ^{13}C north-south gradient to be explained by the combined effects of gross and net biospheric and oceanic exchanges is only $\sim 0.1\%_o$. A hypothetical sink of 1 Gt C yr$^{-1}$ into the northern middle- or high-latitude terrestrial biosphere would yield, in the tracer model used in this study (described below), an atmospheric CO$_2$ gradient of 0.5–1.0 ppmv and an atmospheric δ^{13}C gradient of $\sim 0.05\%_o$. This sets the "accuracy" criterion for estimating the gradient due to the background biosphere and ocean. The uncertainties in the residual δ^{13}C profiles (after the effects of gross biospheric and oceanic exchanges have been subtracted from the observed atmospheric gradients) must be less than 0.02$\%_o$ if we are to determine the net biospheric sink to ± 0.5 Gt C yr$^{-1}$.

In this paper, we present a detailed examination of the factors important for determining the atmospheric δ^{13}C signatures associated with gross biospheric exchanges and the
uncertainties contained therein. This is a necessary first step to quantify how much information about the biospheric sink is contained in the atmospheric 13C measurements. We do not carry out a deconvolution of the contemporary carbon budget since we are lacking a parallel examination of gross oceanic exchanges.

We estimate the 13C of the CO$_2$ absorbed and released during photosynthesis and respiration from the results of two biospheric process models. The models are simple biosphere scheme (SiBS2) incorporated in the Colorado State University (CSU) general circulation model (GCM) [Sellers et al., 1996a,b; Randall et al., 1996] and the Carnegie-Ames-Stanford Approach (CASA) [Potter et al., 1993; Randerson et al., 1996]. These 13C fluxes are used as inputs to the Goddard Institute for Space Studies (GISS) tracer transport model [Fung et al., 1983, 1987, 1991; Tans et al., 1990] to estimate the sensitivity of the atmospheric 13C signatures to different formulations of the gross biospheric 13C exchanges. The implications of our findings on the global carbon budget are discussed. We conclude with suggestions of measurements that may improve our use of 13C to characterize and quantify the anthropogenic CO$_2$ sink.

The commonly used symbols are indicated in the notation list. Fluxes are defined positive into the atmosphere, with F_{ij} denoting fluxes from reservoir i to reservoir j. We use two subscripts, A and a, to denote the atmosphere. The subscript A refers to the total atmospheric signature resulting from all sources and sinks, whereas the subscript a refers to the atmospheric signature resulting from exchanges with a particular reservoir. C_A is the total carbon inventory in the atmosphere, derived from the atmospheric observations. We also use two time variables to separate the important timescales: the long-term variations t and seasonal variations t_s.

2. Observed Atmospheric 13C Variations

Since 1991, high-precision measurements of δ_A have been made at the Institute of Arctic and Alpine Research (INSTAAR) on flask samples routinely collected at National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory's (NOAA CMDL) ~44 cooperative network sites and two regular ocean crossings [Trolier et al., 1996]. Prior to that time, δ_A was measured on limited aircraft samples [Nakazawa et al., 1993] and at only a limited number of sites by groups at the Scripps Institution of Oceanography (SIO) and Commonwealth Scientific and Industrial Research Organization (CSIRO) [Keeling et al., 1989b, 1995; Francey et al., 1995]. There are large differences between interannual variations in δ_A in the early portions of the SIO and CSIRO records [Francey et al., 1995]. Here we focus on the long-term trends common to all the available time series and on the seasonal variations found in the NOAA CMDL δ_A data.

Atmospheric δ_A was $-6.4^{\circ}/_{oo}$ around 1740 and $-6.8^{\circ}/_{oo}$ in 1940 [Friedli et al., 1986; Leuenberger et al., 1992] and decreased rapidly thereafter to $-7.8^{\circ}/_{oo}$ in 1988 [Keeling et al., 1989b; Francey et al., 1995]. The decrease is principally the result of the addition of fossil carbon with low isotopic ratios. Since 1988, the decrease in δ_A has slowed most likely as a result of response of the terrestrial biosphere to interannual climate perturbations [Francey et al., 1995; Keeling et al., 1995].

From the NOAA CMDL/INSTAAR observations [Trolier et al., 1996], $\delta_A(x, y, t_1, t_2)$ varies by 0.26$^{\circ}/_{oo}$ between the northern and southern hemispheres for the period 1992–1993. The seasonal peak-trough amplitude is 0.89$^{\circ}/_{oo}$ at Point Barrow, Alaska (71°N), and 0.36$^{\circ}/_{oo}$ at Mauna Loa, Hawaii (19°N). The phasing of the 13C cycles is opposite to that of the CO$_2$ cycles, with the lowest 13C values occurring at the beginning of the growing season and the highest occurring at the end of the growing season.

3. The Modeling Framework

In this study we focus on the atmospheric CO$_2$ and 13C signatures of the exchanges with the terrestrial biosphere and use the following equations as a framework for our analysis:

$$\frac{\partial}{\partial t} (C_a) + T(C_a) = F_{ap} + F_{ba}$$

(1a)

$$C_A \frac{\partial}{\partial t} (\delta_a) + C_A T(\delta_a) = -\Delta \times F_{ap} + (\delta_b - \delta_A) \times F_{ba}$$

(1b)

In equations (1a) and (1b), T is the atmospheric transport operator, which has zero contribution when integrated over the entire global atmosphere. The subscript p denotes the photosynthetic product, while b denotes the detrital and soil pools. We use F_{ap} rather than F_{ab} to denote the photosynthetic flux to emphasize that different carbon pools and different fractionation processes are involved in photosynthesis and respiration.

The δ_A on the right hand side of equation (1b) is the atmospheric 13C during photosynthesis. The 13C averaged over the growing season is close to the annual mean. We therefore approximate δ_A in equation (1b) by its hemispherically averaged annual-mean value.

In this study we assume that autotrophic respiration is proportional to the instantaneous gross primary production (GPP), with the proportionality constant spatially and temporally invariant. We further assume that CO$_2$ respired by autotrophs is of recent origin and carries the isotopic signature of the recently formed plant material. In this way, F_{ap} in equations (1a) and (1b) is given by the net primary production (NPP), the difference between GPP and autotrophic respiration, and F_{ba} is the CO$_2$ release due to heterotrophic respiration. While these assumptions about autotrophic respiration are mathematically convenient and commonly employed in studies of the global carbon cycle [e.g., Heimann and Keeling, 1989], there is little theory or data to support or contradict them.
To focus on the perturbation in the exchanges in the recent decades, we first assume an equilibrium in the preindustrial era with a balance in both gross ^{12}C and ^{13}C fluxes into and out of the biosphere. Let q be any variable. The symbol \tilde{q} will denote flux-weighted averaging over seasonal variations in q, while \overline{q} will denote the long-term flux-weighted average of q.

In the preindustrial equilibrium, it follows from equations (1a) and (1b) that at each location (x, y)

$$\int_{y} \int_{mos} F_{ap}(t, t)dt, dt = -\int_{y} \int_{mos} F_{ba}(t, t)dt, dt$$

There are two noteworthy points about equations (2) and (3). Even with an equilibrium, F_{ap} and F_{ba} do not balance every month, and it is not meaningful to rewrite equations (1a) and (1b) in terms of gross and net fluxes when seasonal effects are considered. The flux-weighted mean $\delta^{13}\text{C}$ of the plant material equals the flux-weighted mean δ of the respired carbon, which is not the same as the mass-weighted mean δ_b obtained from soil samples. As has been pointed out by Lloyd et al. [1996], care must therefore be exercised in applying soil $\delta^{13}\text{C}$ measurements to the atmospheric problem.

In the era with anthropogenic CO2 emissions, a ^{12}C flux equilibrium between the atmosphere and biosphere may no longer exist because of net uptake of CO2 by the biosphere. Even if equation (2) holds, the gross ^{13}C fluxes would no longer balance, since the atmospheric δ_A and hence δ_b are changing with time. Photosynthesis removes “light” carbon with the modern δ_A value, whereas respiration delivers “old” carbon, whose $\delta^{13}\text{C}$ value depends on how long the carbon has been away from the atmosphere. There is thus an isotopic disequilibrium between incoming and outgoing fluxes [Fung, 1993; Tans et al., 1993; Ciais et al., 1995a,b; Francey et al., 1995]. This is illustrated schematically in Figure 2. In the following sections, we describe the modeling of Δ and isotopic disequilibrium and evaluate their consequences on the atmospheric $\delta^{13}\text{C}$.

4. Photosynthesis

CO2 from the atmosphere is processed in several steps before it is incorporated into plant material (Figure 3). Briefly, the steps include gaseous diffusion across the laminar boundary layer to the surface of the leaf and across the stomatal opening into the intercellular air spaces of the leaf. CO2 then dissolves in the aqueous phase and diffuses across the cell wall and cellular membranes to the chloroplasts. In the chloroplasts, CO2 is chemically combined with an acceptor molecule in an enzyme catalyzed carboxylation reaction. Different carboxylation reactions occur in C3 and C4 species. Fractionation against $^{12}\text{CO}_2$ occurs in all steps that transfer CO2 from the atmosphere to the chloroplast and in the carboxylation reactions. These discrimination factors are known from experiments with model systems (for reviews see O'Leary [1981, 1989] and Farquhar et al. [1989]). The net discrimination associated with the sequence of steps that occurs in photosynthesis, Δ, is a “weighted sum” of the discrimination associated with the individual steps in the sequence. For example, Farquhar et al. [1982] showed that two steps, gaseous diffusion and carboxylation, combined as

$$\Delta = a + (b - a) p_t / p_a$$

where p_t and p_a are the partial pressures of CO2 in the intercellular air spaces of the leaf and in the ambient atmosphere, respectively, a is the intrinsic discrimination in gaseous diffusion (4.4‰), and b is that associated with the biochemical fixation of CO2 (27.5 and 3 to 6‰ for C3 and C4 plants, re-
CO2 partial pressure gradient across the stomata: express the CO2 assimilation rate \(A \), as proportional to the most of the variation in \(A \). Study follows from the work of Farquhar et al. [1980], who thesis and \(\Pi/P_\alpha \) are calculated at each time step (0.1 hour) circulation model. This has lower spatial resolution than the permits calculation of \(A \), and \(A \) in an atmospheric general model, the time resolution is appropriate to capture this study, we have opted to take an alternative approach that for studies of the annual cycle and interannual variation. In

Integration of discrimination through time and for the whole globe is a complex problem since both \(A_n \) and \(\Pi/P_\alpha \) may vary on a time scale of minutes. Lloyd and Farquhar [1994] approached this problem by estimating mean monthly values of \(\Pi/P_\alpha \) and NPP from global maps of vegetation cover, elevation, temperature, precipitation, and atmospheric humidity. To do this, they make some adjustments to the climatic variables to approximate the microclimate of a leaf during photosynthesis, and they assume that weighted average discrimination over a month is the same as discrimination under an environmental condition they select as representative of that month. The global maps of annual integrated discrimination produced by Lloyd and Farquhar [1994] are plausible, and their predicted discrimination predicts the \(\delta^{13}C \) of plant biomass in several calibration sites reasonably well. However, their approach has limited scope for studies of the annual cycle and interannual variation. In this study, we have opted to take an alternative approach that permits calculation of \(A_n \) and \(\Delta \) in an atmospheric general circulation model. This has lower spatial resolution than the approach taken by Lloyd and Farquhar, but since photosynthesis and \(\Pi/P_\alpha \) are calculated at each time step (0.1 hour) of the model, the time resolution is appropriate to capture most of the variation in \(\Delta \).

The approach we use to model photosynthesis in this study follows from the work of Farquhar et al. [1980], who express the CO2 assimilation rate \(A_n \) as proportional to the CO2 partial pressure gradient across the stomata:

\[
g_s = \frac{m}{g_0} \frac{A_n h_s P}{p_\alpha} + g_0 \tag{6}
\]

where \(h_s \) is the relative humidity at the leaf surface, \(P \) is the total atmospheric pressure, and \(m \) and \(g_0 \) are empirically determined parameters. The photosynthetic assimilation rate \(A_n \) is also limited by the availability of sunlight, substrate, and other abiotic conditions. The Collatz et al. [1991, 1992] models are imbedded in SiB2 within the CSU GCM [Sellers et al., 1996a,b; Randall et al., 1996], wherein \(A_n \) and \(g_s \) are determined simultaneously with the constraint that \(A_n \) is the "smoothed" minimum of the light-limited, rubisco/CO2-limited, and sink-limited (pep carboxylase limited in the case of C4) assimilation rates [Collatz et al., 1991, 1992]; and there is maximized water use efficiency for instantaneous atmospheric conditions. The vegetation and atmosphere are fully interactive in the CSU GCM, and \(\Pi/P_\alpha \) and \(\Pi/P_\alpha \) are calculated at every time step of the GCM integration.

The 6 min values of \(\Pi/P_\alpha \), as calculated by SiB2 in the CSU GCM, are weighted by the instantaneous \(A_n \) to yield the flux-weighted monthly \(\Pi/P_\alpha \) from which the monthly mean \(\Delta \) is derived, using equation (4).

If all vegetation were C3 plants, no additional information about vegetation distributions would be required. Obtaining the geographic distribution of \(\Delta \) requires the distribution of C4 plants. The vegetation distribution used in the CSU GCM is derived from ground-based observations [Dorman and Sellers, 1989; Sellers et al., 1996a]. As such, it does not distinguish between C3 and C4 vegetation. We assume mixtures of C3-C4 plants in the ratios of 25:75 for savannas and of 50:50 for shrubs with ground cover. Cultivation is assumed to be comprised of C3 vegetation. We consider this distribution to be representative of the current vegetation.

The annual mean flux-weighted \(\Delta (x, y) \) distribution (not shown) modeled as above is similar to that presented by Lloyd and Farquhar [1994]. The major geographic variations are due to discrimination by C3 (\(\Delta \sim 18^{\circ}/00 \)) versus C4 plants (\(\Delta = 4.4^{\circ}/00 \)) [e.g., Lloyd and Farquhar, 1994]. Among C3 plants, \(\Delta \) ranges between 15 and 24\(^{\circ}/00 \), reflecting variations in climate and in biophysics captured in SiB2-GCM. The systematics of \(\Delta \) variations compares with the measurements of Körner et al. [1991] which show a comparable pattern albeit smaller range, \(\sim 3.5^{\circ}/00 \), in leaves of lowland plants not limited by water or sunlight.

The flux- and area-weighted annual-mean \(\Delta \) is 15.7\(^{\circ}/00 \) for the current vegetation distribution, with mixtures of C3 and C4 plants in savanna and shrubs. If these vegetation types consisted only of C4 plants, the value would be 14.7\(^{\circ}/00 \). If there were no C4 vegetation, \(\Delta \) would be 20.0\(^{\circ}/00 \).

Our \(\Delta \) value of 20.0\(^{\circ}/00 \) for C3 vegetation is higher than the value of 17.8\(^{\circ}/00 \) reported by Lloyd and Farquhar [1994]. In both studies, the latitudinal variations in the annual mean \(\Delta \) of C3 plants is small (Figure 4). At high latitudes, the \(\Delta \) simulated by SiB2-GCM is higher by as much as \(\sim 4- \ldots \)
Lloyd and Farquhar [1994], tends to increase the impact of vegetation, we would obtain a Δ that is ~2-3% lower or ~12-13%o. This value is the lowest reported, compared to 14.8 of Lloyd and Farquhar [1994], 17.6 of Keeling et al. [1989b], 20.0 of Quay et al. [1992], and 18.0 of Tans et al. [1993]. Lloyd and Farquhar [1994] point out the neglect of C₄ plants in the other studies yields an unrealistically high discrimination and would have an impact on the carbon source/sink analysis. The implication for the global carbon budget is explored later in this study.

On the basis of the increase of Δ with A_n and g_a, one might expect that Δ would be maximum at the height of the growing season, generally in the summer, when relative humidity is high. However, Δ decreases with the ratio A_n/g_a (compare equations (4), (5), and (6)). Indeed, Lloyd et al. [1996] found comparable Δ values for Siberia in July and the Amazon forest in September, despite the differences in A_n and g_a. A similar result is found here. The value Δ is 20.5%o for the tropical rainforest in September and is 21.5%o for Siberian forests in July. Thus it is not straightforward to predict the phasing of the seasonal cycle of Δ at different locations.

The geographic distribution of the peak-trough range in Δ (Plate 1a) reflects the seasonality of carbon assimilation rates and humidity. For C₃ plants, the seasonal excursions of Δ are largest, > 15%o, in high latitude ecosystems and decrease equatorward to ~1.8%o in tropical rainforests. The latitudinal variations in Δ are shown in Plate 1b. The timing of Δ at several typical sites is shown in Figure 5. At the boreal forest site (105°W, 53°N), the seasonal variations in Δ mirrors the seasonal variations in photosynthesis, and Δ increases from 12.8%o in March to 20.5%o in July. The same pattern of a summer maximum Δ is found at the deciduous forest site (100°E, 70°N). At the tundra site (100°W, 62°N), the maximum Δ of 20.8%o is found in October at the end of the short growing season. By contrast, at the middle-latitude C₃ grassland site (95°W, 46°N), Δ decreases from a value of 19.0%o in February to a minimum of 14.3%o in April. These variations reflect the differing rates of increase of A_n and g_a into the growing season. At high latitudes, the low Δ values at the beginning of the growing season (Figure 5), while theoretically possible because of the low relative humidities at low temperatures, may be an artifact of inaccuracies in the GCM simulation. They have not been confirmed or contradicted because of the lack of direct measurements of Δ at that time of year. In any case, they are not likely to affect our inferences about the biospheric signature in atmospheric δ^{13}C.

5. Respiration

With photosynthesis, the stomata are the sole entry points for atmospheric CO₂. With respiration, CO₂ is released from all components of the ecosystem. To model respiration, it is often convenient to divide the biosphere into compartments (e.g., leaves, roots, trunk, and soil organic matter), each characterized by its function, chemical composition, lifetime, or...
Plate 1. Seasonality in discrimination as modeled by SiB2-GCM: (a) global distribution of the seasonal range and (b) monthly departures from the zonal mean.

other features. The newly assimilated carbon is allocated amongst the live compartments of the plant. Mortality transfers the carbon from the live compartments to the dead compartments. Heterotrophic activity processes the dead plant matter, releasing some of the carbon as CO₂ and transferring some to soil organic matter. CO₂ release thus occurs across all the live and dead compartments. The residence time of carbon in a plant or soil fraction varies from a few days for microbial biomass to centuries for soil organic matter that is physically protected by clay aggregates.

We use the CASA biospheric model [Potter et al., 1993] with updates described by Randerson et al. [1996] for investigating the CO₂ and ¹³C fluxes due to heterotrophic respiration (Figure 6). CASA includes nine litter and soil carbon compartments. The pools are dead metabolic biomass, structural biomass and live microbial biomass at the surface (leaf litter) and in the soil (root litter), as well as woody litter and slow and armored (passive) soil carbon (Tables 1a and b). The transfer of carbon from one pool to another and the CO₂ respired during the transfer are modulated by factors such as temperature, precipitation, lignin content, soil texture, and the carbon assimilation efficiencies of microbes.

Let \(f_k(x, y, t_s) \) denote the fraction of the total respired carbon emerging from pool \(k \) at the location \((x, y) \) for the month \(t_s \):

\[
f_k(x, y, t_s) = \frac{F_{ka}(x, y, t_s)}{\sum_{k=1}^{9} F_{ka}(x, y, t_s)}
\]

(7)

\[
\sum_{k=1}^{9} F_{ka}(x, y, t_s) = F_{ba}(x, y, t_s)
\]

(8)
Figure 5. Seasonal variations of the flux-weighted monthly mean discrimination at (a) tropical rainforest (90°W, 14°N), (b) short vegetation, C4 grassland (100°W, 30°N), (c) C3 grassland (95°W, 46°N), (d) tundra (100°W, 62°N), (e) deciduous forest (100°E, 70°N), and (f) boreas field site (105°W, 53°N).

Equation (8) merely states that the sum of the fluxes from the different pools is the total respiration flux in equation (1b). The annually averaged $f_k(x, y)$ are shown in Table 1a for the different pools of the different ecosystems, while the seasonally varying $f_k(x, y, t_s)$ are shown in Figure 7 for several locations. For the tropical forest, the "slow" pool dominates and accounts for ~30% of the total respired flux through the year. The total flux comprises ~8 and 15% from the surface and soil microbial pools, respectively; 10% each from the surface and soil metabolic pools; and 6.6 and 6.3% from the surface and soil structural pools, respectively. The remainder of the fluxes are mainly from the woody litter pool (13%) and the passive pool (0.25%). Even though the seasonal variations of the respiratory flux of CO$_2$ from tropical forests are small, there is a larger fraction of CO$_2$ from the
Table 1a. Percentage of Fluxes From Each Biospheric Pool, the Turnover Times of Each Pool, and Ages of Respired Carbon From Each Pool, as Determined by CASA

<table>
<thead>
<tr>
<th>Pool</th>
<th>Broad-Leaved Evergreen Forest</th>
<th>Broad-Leaved Deciduous Forest</th>
<th>Broad-Leaved and Needle-Leaved Forest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flux, % TOT Age</td>
<td>Flux, % TOT Age</td>
<td>Flux, % TOT Age</td>
</tr>
<tr>
<td>srfmet</td>
<td>10.3 0.2 2.0</td>
<td>3.6 0.3 1.6</td>
<td>3.3 0.4 1.8</td>
</tr>
<tr>
<td>soilmet</td>
<td>9.4 0.2 2.0</td>
<td>3.4 0.3 1.6</td>
<td>3.1 0.3 1.8</td>
</tr>
<tr>
<td>srfstr</td>
<td>6.6 3.4 5.2</td>
<td>14.1 2.6 3.9</td>
<td>14.3 2.8 4.2</td>
</tr>
<tr>
<td>soilstr</td>
<td>6.3 2.9 4.7</td>
<td>13.2 2.2 3.5</td>
<td>13.4 2.4 3.8</td>
</tr>
<tr>
<td>srfmic</td>
<td>8.1 0.4 14.8</td>
<td>7.9 0.7 19.2</td>
<td>7.9 0.7 21.8</td>
</tr>
<tr>
<td>soilmic</td>
<td>14.8 0.7 28.7</td>
<td>15.4 1.1 41.5</td>
<td>16.2 1.1 44.4</td>
</tr>
<tr>
<td>wood</td>
<td>13.1 3.7 41.7</td>
<td>12.9 6.4 54.3</td>
<td>12.9 7.0 62.0</td>
</tr>
<tr>
<td>slow</td>
<td>31.2 9.1 34.2</td>
<td>29.3 15.9 49.9</td>
<td>28.6 17.3 54.7</td>
</tr>
<tr>
<td>arm</td>
<td>0.3 400.7 429.5</td>
<td>0.3 701.9 743.2</td>
<td>0.3 760.5 804.7</td>
</tr>
<tr>
<td>All</td>
<td>100.0 5.1 24.1</td>
<td>100.0 8.4 32.7</td>
<td>100.0 8.7 35.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pool</th>
<th>Needle-Leaved Evergreen Forest</th>
<th>Needle-Leaved Deciduous Forest</th>
<th>Broad-Leaved Forest With Ground Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flux, % TOT Age</td>
<td>Flux, % TOT Age</td>
<td>Flux, % TOT Age</td>
</tr>
<tr>
<td>srfmet</td>
<td>3.0 0.4 5.7</td>
<td>3.1 0.5 2.5</td>
<td>10.7 0.2 1.9</td>
</tr>
<tr>
<td>soilmet</td>
<td>2.8 0.4 5.6</td>
<td>2.9 0.4 2.5</td>
<td>9.8 0.2 1.9</td>
</tr>
<tr>
<td>srfstr</td>
<td>14.6 3.1 8.4</td>
<td>14.6 3.9 5.8</td>
<td>6.9 2.4 4.1</td>
</tr>
<tr>
<td>soilstr</td>
<td>13.7 2.6 7.9</td>
<td>13.7 3.3 5.2</td>
<td>6.5 2.0 3.7</td>
</tr>
<tr>
<td>srfmic</td>
<td>7.9 0.8 19.8</td>
<td>7.9 1.0 18.3</td>
<td>8.6 0.4 8.3</td>
</tr>
<tr>
<td>soilmic</td>
<td>17.3 1.2 43.7</td>
<td>16.8 1.5 48.5</td>
<td>16.4 0.6 21.4</td>
</tr>
<tr>
<td>wood</td>
<td>12.9 8.0 45.2</td>
<td>12.9 9.8 45.8</td>
<td>13.1 3.9 21.6</td>
</tr>
<tr>
<td>slow</td>
<td>27.5 19.7 52.1</td>
<td>28.0 24.3 57.8</td>
<td>27.8 9.7 26.2</td>
</tr>
<tr>
<td>arm</td>
<td>0.2 368.9 911.3</td>
<td>0.2 1072.4 1111.8</td>
<td>0.3 426.3 447.7</td>
</tr>
<tr>
<td>All</td>
<td>100.0 9.4 33.8</td>
<td>100.0 11.8 35.8</td>
<td>100.0 4.8 16.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pool</th>
<th>Perennial Grassland</th>
<th>Broad-Leaved Shrub With Grass</th>
<th>Shrub With Bare Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flux, % TOT Age</td>
<td>Flux, % TOT Age</td>
<td>Flux, % TOT Age</td>
</tr>
<tr>
<td>srfmet</td>
<td>19.2 0.3 1.9</td>
<td>8.5 0.3 1.7</td>
<td>9.1 0.2 1.9</td>
</tr>
<tr>
<td>soilmet</td>
<td>17.7 0.2 1.8</td>
<td>7.9 0.2 1.7</td>
<td>8.4 0.2 1.8</td>
</tr>
<tr>
<td>srfstr</td>
<td>9.6 2.5 4.1</td>
<td>12.0 3.4 4.8</td>
<td>8.3 3.2 4.8</td>
</tr>
<tr>
<td>soilstr</td>
<td>7.7 2.1 3.7</td>
<td>7.4 2.9 4.3</td>
<td>7.6 2.7 4.3</td>
</tr>
<tr>
<td>srfmic</td>
<td>9.9 0.5 2.9</td>
<td>7.7 0.5 7.4</td>
<td>7.9 0.5 6.6</td>
</tr>
<tr>
<td>soilmic</td>
<td>17.1 0.8 14.6</td>
<td>15.8 0.8 23.3</td>
<td>17.1 0.7 21.1</td>
</tr>
<tr>
<td>wood</td>
<td>0.0 0.0 0.0</td>
<td>12.5 4.8 16.4</td>
<td>12.9 4.5 13.7</td>
</tr>
<tr>
<td>slow</td>
<td>18.5 12.5 21.5</td>
<td>28.1 11.8 26.7</td>
<td>28.4 11.2 24.3</td>
</tr>
<tr>
<td>arm</td>
<td>0.2 549.8 562.1</td>
<td>0.3 519.0 540.6</td>
<td>0.2 493.8 514.8</td>
</tr>
<tr>
<td>All</td>
<td>100.0 4.2 9.4</td>
<td>100.0 6.1 16.4</td>
<td>100.0 5.6 15.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pool</th>
<th>Tundra</th>
<th>Bare Soil and Desert</th>
<th>Cultivation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flux, % TOT Age</td>
<td>Flux, % TOT Age</td>
<td>Flux, % TOT Age</td>
</tr>
<tr>
<td>srfmet</td>
<td>20.3 0.5 3.1</td>
<td>12.5 0.3 2.0</td>
<td>23.8 0.2 2.0</td>
</tr>
<tr>
<td>soilmet</td>
<td>18.8 0.4 3.1</td>
<td>11.5 0.3 1.9</td>
<td>22.0 0.2 2.0</td>
</tr>
<tr>
<td>srfstr</td>
<td>9.0 4.6 7.1</td>
<td>7.9 2.7 4.4</td>
<td>5.2 2.0 3.6</td>
</tr>
<tr>
<td>soilstr</td>
<td>7.6 3.8 6.4</td>
<td>5.1 2.3 3.9</td>
<td>4.9 1.6 3.3</td>
</tr>
<tr>
<td>srfmic</td>
<td>9.8 0.9 5.0</td>
<td>8.9 0.6 5.8</td>
<td>10.8 0.5 2.7</td>
</tr>
<tr>
<td>soilmic</td>
<td>17.7 1.3 24.1</td>
<td>18.5 0.7 20.0</td>
<td>15.1 0.7 10.7</td>
</tr>
<tr>
<td>wood</td>
<td>0.0 0.0 0.0</td>
<td>12.7 5.3 13.1</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>slow</td>
<td>6.7 22.3 36.9</td>
<td>22.5 13.2 26.1</td>
<td>17.9 7.9 15.6</td>
</tr>
<tr>
<td>arm</td>
<td>0.2 983.7 999.6</td>
<td>0.2 579.6 593.3</td>
<td>0.3 346.0 356.6</td>
</tr>
<tr>
<td>All</td>
<td>100.0 6.8 15.2</td>
<td>100.0 5.2 13.8</td>
<td>100.0 2.8 6.9</td>
</tr>
</tbody>
</table>

Turnover times (TOT) and ages are in years.

The nine biospheric pools in CASA are the surface and soil metabolic pools (srfmet, soilmet), surface and soil structural pools (srfstr, soilstr), surface and soil microbial pools (srfmic, soilmic), the woody (wood), slow and armored (arm) pools.
The seasonal variation of flux fraction from these pools can be as large as ~20%.

The impact of the respiratory flux on atmospheric $\delta^{13}C$ is represented by $F_{ba} \times (\delta_b - \delta_A)$, the second term on the right-hand side of equation (1b). With equation (7), we can write

$$F_{ba}(x, y, t_s)\delta_b(x, y, t_s, t) = \sum_k F_{ka}(x, y, t_s)\delta_{b,k}(x, y, t_s, t)$$

or

$$\delta_b(x, y, t_s, t) = \sum_k f_k(x, y, t_s)\delta_{b,k}(x, y, t_s, t)$$

Equation (10) states that the mean $\delta_b(x, y, t_s, t)$ that needs to be determined is the flux-weighted mean δ_b of all the pools. A direct method for estimating the δ_b of the respired CO$_2$ is by an empirical relationship between nighttime $\delta^{13}C$ and CO$_2$ concentrations [Keeling, 1958, 1961; Lloyd et al., 1996]. This avoids integration over the different carbon pools but yields little insight into the dynamics of $\delta^{13}C$ of respiration.

Table 1b. Flux-Weighted Δ and δ_b (1988) for the Ecosystems

<table>
<thead>
<tr>
<th>Ecosystem</th>
<th>Δ</th>
<th>δ_b (1988)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad-leaved evergreen forest</td>
<td>20.1</td>
<td>0.44</td>
</tr>
<tr>
<td>Broad-leaved deciduous forest</td>
<td>19.6</td>
<td>0.49</td>
</tr>
<tr>
<td>Broad-leaved and needle-leaved forest</td>
<td>20.1</td>
<td>0.49</td>
</tr>
<tr>
<td>Needle-leaved evergreen forest</td>
<td>20.5</td>
<td>0.54</td>
</tr>
<tr>
<td>Needle-leaved deciduous forest</td>
<td>20.1</td>
<td>0.51</td>
</tr>
<tr>
<td>Broad-leaved forest with ground cover</td>
<td>12.1</td>
<td>0.38</td>
</tr>
<tr>
<td>Perennial grassland</td>
<td>4.4</td>
<td>0.20</td>
</tr>
<tr>
<td>Broad-leaved shrub with grass</td>
<td>8.2</td>
<td>0.25</td>
</tr>
<tr>
<td>Broad-leaved shrub with bare soil</td>
<td>19.1</td>
<td>0.28</td>
</tr>
<tr>
<td>Tundra</td>
<td>18.6</td>
<td>0.32</td>
</tr>
<tr>
<td>Bare soil and desert</td>
<td>4.3</td>
<td>0.21</td>
</tr>
<tr>
<td>Cultivation</td>
<td>20.0</td>
<td>0.18</td>
</tr>
</tbody>
</table>

In per mil.

Slow, microbial, and structural compartments in the summer than in the winter. With seasonal vegetation, such as deciduous or boreal forests, not only is the respired CO$_2$ flux highly seasonal, the “composition” of the flux is varying through the year. The seasonal variation of flux fraction from these pools can be as large as ~20%.

Plate 2. Global distribution of the annual-mean flux-weighted isotopic disequilibrium, averaged for the 1980s, between gross exchange of CO$_2$ between the atmosphere and biosphere.
Measurements of $\delta_{b,k}$ show significant variations among the different plant components. For example, roots have been measured to be isotopically heavier than leaves and stems [Lauteri et al., 1993] by $\sim 0.5\%$. Also, with tall vegetation, the variations of light intensity, temperature, humidity, and CO$_2$ concentration within the canopy give rise to different assimilation rates and carbon discrimination at different heights in the canopy [e.g., Francey and Farquhar, 1982; Broadmeadow and Griffiths, 1993]. The value δ_p may vary by as much as 6.5% across 30 m in the canopy, with the isotopically lighter material near the surface where the assimilated CO$_2$ comprises a larger fraction of respired CO$_2$ than at the top of the canopy [Broadmeadow and Griffiths, 1993]. These variations are larger than the 0.02% criterion sought in this study.

These local scale variations, though invaluable for understanding the dynamics of assimilation, allocation, and respiration, turn out to be unimportant for unraveling the changing signature of biospheric exchanges on atmospheric 13C, as long as the relative flux contributions, $f_k(x, y, t)$, are known and are not changing with time. This is because in a multiyear steady state, the total respired isotopic flux from all compartments must balance the incoming flux. A flux from a pool "heavier" than the all-pool average must be accompanied by a flux from a "lighter" pool. What is important here is the perturbation in the respired 13C due to the slowly decreasing atmospheric 13C. As long as the biosphere remains the same, that is, $f_k(x, y, t)$ has not changed with time, then what matters to the atmospheric 13C signature is how the atmospheric 13C perturbation is propagated through the biospheric pools. This is derived formally below.

At each location (x, y), let us split the 13C of a biospheric pool k into a seasonally varying equilibrium component $\delta_{b0}(t)$ and a perturbed component $\delta_k(t, t)$:

$$\delta_{b,k}(t, t) = \delta_{b0}(t) + \delta_k(t, t) \quad (11)$$

Let us further split the equilibrium component into $<\delta_{b0}(t)>$, the pool-integrated mean, and $\delta_k^*(t)$, the departure of each pool from the all-pool average:

$$\delta_{b0}(t) = <\delta_{b0}(t)> + \delta_k^*(t) \quad (12)$$

where $<\delta_{b0}(t)>$ is the flux-weighted mean 13C across the pools:

$$<\delta_{b0}(t)> = \sum_k f_k(t) \delta_{b0}(t) \quad (13)$$

It follows from equations (12) and (13) that

$$\sum_k f_k(t) \delta_{b0}(t) = 0 \quad (14)$$

so that equation (11) becomes

$$\delta_{b,k}(t, t) = <\delta_{b0}(t)> + \delta_k^*(t) + \delta_k(t, t) \quad (15)$$

Substituting equation (15) into equation (10) and applying the conditions $\sum_k f_k(t) = 1$, we obtain:

$$\delta_{b}(t, t) = \sum_k f_k(t) \delta_{b,k}(t, t) = <\delta_{b0}(t)> + \sum_k f_k(t) \delta_k^*(t) + \sum_k f_k(t) \delta_k(t, t)$$

In other words, from the atmospheric perspective, the 13C contributions from initial or steady variations in 13C amongst all the pools cancel, and the critical parameter is the temporal evolution of the 13C of each pool.

The above conclusion hinges on the assumption that $f_k(t)$, the relative contribution from each pool, has not changed in time. It is difficult to evaluate this assumption. Changes in $f_k(t)$ may result from changes in the sizes of the different pools due to carbon sequestration, as well as from changes in climate-sensitive transfer rates. The error is small as long as $f_k(t) - f_k(t, 0$ is small.

5.1. Age Versus Turnover Time

To estimate $\delta_k'(x, y, t, t)$, the departure from the initial equilibrium, one needs to know, on average, when the plant material was formed and $\delta_A(t)_{\text{formation}}$, the atmospheric 13C at the time of formation. The history of δ_A is known from atmospheric measurements. If we assume that $\Delta(x, y, t)$ has not changed over time, this reduces to the determination of τ_k, the mean age of the carbon in biospheric compartment k when it is returned to the atmosphere.

Here we distinguish between turnover time and the mean age in the estimation of τ_k [Bolin and Rodhe, 1973; Rodhe, 1992]. For each litter or soil pool, the transfer of carbon amongst the pools is not sequential. Carbon from one pool may be transferred, at different rates, to several pools (compare Figure 6). Similarly, carbon entering a pool may come from multiple sources, namely, the microbial compartment. Turnover time is the quotient of the pool size divided by the sum of the outgoing fluxes. The turnover time expresses how long a carbon molecule spends in the reservoir before it leaves. It contains no information about how long the carbon molecule entering the pool has been in the biosphere, that is, since it left the atmosphere. Age, however, takes into account the carbon entering and leaving the pool. Take the microbial pool as an example. The pool size is small, and the turnover time is short. The use of a turnover time to determine $\delta_k(t - \tau)$ would have implied 13C of recent origin. However, the microbial pool receives carbon from several pools including the slow and old soil organic pools. Thus, although the old carbon does not stay long in the microbial pool, the respired carbon reflects the long residence time in the entire biosphere.
We start the age calculation with the turnover times of live biomass derived from the Frankfurt Biosphere Model [Lüdeke et al., 1994]. Turnover times of live leaves and roots range between 1 (in deciduous regions) and 8 years (in boreal forest), while those of live wood range between 0 (in grasslands) and 60 years (in temperate deciduous and evergreen forests). The turnover times of the live leaves and roots are treated as the initial ages of the surface metabolic and structural pools, and those of live wood are treated as the initial ages of the woody litter pools. We then followed, in CASA, the carbon from the litter pools to the other soil pools and computed the resultant age of each compartment as a uniform mixture after accounting for the incoming and outgoing fluxes.

Table 1a shows the annual mean flux fractions, turnover times, and ages for the different compartments of the ecosystems. Within each ecosystem, the shortest turnover times are ≤0.5 years for the surface and soil metabolic pools, which contribute ~6% of the total respired CO$_2$ for broad-leaved and needle-leaved forests to ~46% for cultivation. Turnover times are ≤1.5 years for the surface and soil microbial pools, which contribute ~25% of the total respired CO$_2$ for all ecosystems. Similarly, turnover times are ~5 years for the woody litter pool, which contributes ~13% of the respired fluxes for all forest ecosystems. The slow pools, which contribute ~25 and 18% for forests and grasslands, respectively, have turnover times that range from ~10 years in the tropics to ~25 years for needle-leaved deciduous forests. The passive, or armored, pool has the longest turnover time, >400 years, but contributes <0.5% of the total respired flux for all ecosystems. The flux-weighted turnover times, dominated by the 25% from the slow pools, are 3–12 years. The flux fractions and turnover times modeled here by CASA are comparable to those obtained by Schimel et al. [1994] using the model CENTURY, though our estimates of the microbial contributions are lower by ~5–10%.

The difference between age and turnover times for each pool is clear in Table 1a. Large differences, ~40 years, are found for the woody litter pools of forest ecosystems and reflect the longevity of trees. Differences >20 years are also found downstream of the woody litter compartment in the surface and soil microbial, slow and passive compartments. The woody litter and microbial pools contribute over 60% of the respired flux from forest ecosystems. The resultant flux-weighted ages of the respired CO$_2$ range from 25 to 35 years for forest ecosystems and from 7 to 15 years for herbaceous vegetation. These are larger than the corresponding turnover times by factors of >4 and >2 for forest and herbaceous ecosystems, respectively.

Because δ_{t} changed very little prior to the preindustrial era, ~200 years ago, there is no variation in the δ_{t} of respired carbon older than 200 years. Hence the "effective δ^{13}C age" of any pool, that is, the age important for estimating the δ_{t} of the respired carbon, cannot exceed 200 years. We found that the "effective δ^{13}C age" equals the chronologic age for all pools except for the passive (armored) pool and the soil microbial and slow pools which receive carbon from the passive pool. The "effective δ^{13}C ages" are ~10 and 5% lower than the chronologic ages for the latter two pools, which contribute ~15 and 25% of the total respired fluxes, respectively. These differences have a small impact on the δ^{13}C of the respired CO$_2$, and we therefore consider the two ages equivalent.

Claus et al. [1995a,b] obtained the turnover times and relative flux contributions of the various pools from Schimel et al. [1994] and added an average turnover time of 16 years for the above ground biota to estimate the δ_{t} of the respired carbon. Their δ_{t} estimate used ~5 years for the tropical rainforest and ~200 years for the tundra. Their low estimate compared to ours reflects the use of turnover times rather than ages in their calculation.

With the recent atmospheric δ^{13}C trend of $-0.02_{/00}$ yr$^{-1}$, an error of 10 years in the age of the total respired CO$_2$ would translate into an error of $-0.2_{/00}$ in the estimated δ_{t}. This is the case with the microbial pools which contribute ~30% to the total respired flux. Our use of an age of ~25 years instead of a turnover time of <1 year makes this pool a significant contributor to δ and increases the value of δ by ~0.15_{/00} = (0.02_{/00} yr$^{-1}$ x 25 yr) x 30%.

5.2. Seasonality of the Respired δ^{13}C

Once the ages τ_k are known, $\delta_{t,k}(x,y,t)$ can be estimated from the history of the atmospheric δ^{13}C, and the δ_{t} of the respired carbon can be estimated as the flux-weighted sum of the contributions from the nine biospheric pools.

The seasonality of respiration is determined by temperature, moisture, and the timing of litter inputs [Randerson et al., 1996]. The relative contribution of respiration flux from each pool $f_k(x,y,t_k)$ also varies seasonally, reflecting differences in the controls on decomposition from different pools as well as variations in litterfall and pool sizes. Therefore the $\tau(x,y,t)$ and δ_{t} of the total respired flux vary seasonally as well.

The seasonal range of the respired δ^{13}C, as modeled by CASA, is ≤0.3_{/00} everywhere (not shown) and is smaller by factors of 10 to >50 than the seasonal range in Δ. This is because the seasonal range of the respired δ^{13}C is bounded by the maximum age of the respired CO$_2$ and the recent trend in atmospheric δ^{13}C. For most vegetation, the surface and soil metabolic pools and microbial pools together contribute ~75% of the total respired CO$_2$ (compare Table 1a). Consider the following typical values. Let the contributions by the metabolic litter and microbial pools be 60 and 15%, respectively, in the winter and 25 and 50%, respectively, in the summer. The remaining pools would thus contribute a constant 25% of the total respiration throughout the year. If we take the ages of the metabolic and microbial pools to be 1 year and 30 years, respectively, then the seasonal part of the respired CO$_2$ has an age of 5.1 years ($= 0.60 \times 1 + 0.15 \times 30$) in the winter and 15.25 years ($= 0.25 \times 1 + 0.50 \times 30$) in the
summer. With an observed δ_A trend of $-0.02^\circ/o$ yr$^{-1}$, a seasonal age difference of 10 years translates into a δ^{13}C range of $0.2^\circ/o$.

5.3. Variations in the Isotopic Disequilibrium

The decreasing trend in atmospheric δ_A implies an isotopic disequilibrium between the photosynthetic and respiratory fluxes even though the total CO$_2$ fluxes are balanced in the annual mean. It is convenient to rewrite equation (1b) to include the isotopic disequilibrium D_b:

$$C_a \frac{\partial}{\partial t} (\delta_a) + C_a T (\delta_a) = -\Delta \times F_{ap} + (\delta_b - \delta_A) \times F_{ba}$$

$$= -\Delta \times F_{ap} + (D_b - \Delta) \times F_{ba}$$

(17)

where

$$D_b(x, y, t_s, t) = \delta_b(x, y, t_s, t) - \delta_A(t_s, t) + \Delta(x, y, t_s)$$

$$= D_b - \Delta(x, y, t_s) + \left[\delta_A(t_s, t - \tau_{age}(x, y, t_s)) - \delta_A(t_s, t)\right]$$

(18)

and in the annual mean

$$\tilde{D}_b(x, y, t) = \tilde{\delta}_A(t - \tau_{age}(x, y, t)) - \tilde{\delta}_A(t)$$

(19)

We calculated the D_b for 1988 when the atmospheric $\delta_A = -7.8^\circ/o$ (Plate 2). The flux-weighted annual mean \tilde{D}_b

Figure 7. Relative contributions, as estimated by CASA, by the different biospheric pools to the monthly mean respired CO$_2$ flux at (a) tropical rainforest (90$^\circ$W, 14$^\circ$N), (b) short vegetation, C$_4$ grassland (100$^\circ$W, 30$^\circ$N), (c) C$_3$ grassland (95$^\circ$W, 46$^\circ$N), (d) tundra (100$^\circ$W, 62$^\circ$N), (e) deciduous forest (100$^\circ$E, 70$^\circ$N), and (f) boreas field site (105$^\circ$W, 53$^\circ$N).
The distribution of Db modeled in this study is different from those used in other studies where either Db is assumed total respired flux from the tundra. The Db profile for the vegetation, and the long-lived pools contribute little to the winter fluxes are small.

6. Atmosphere Signature

To investigate the atmospheric δ¹³C variations resulting from the background biosphere with ¹³C-flux equilibrium, we employ the global three-dimensional tracer transport model developed at GISS [e.g., Russell and Lerner, 1981; Fung et al., 1983, 1987, 1991; Tans et al. 1990] to redistribute the carbon in the atmosphere (equation (1b)). In equations (1a) and (1b), T is the atmospheric transport operator and includes large-scale advection by winds as well as subgrid mixing by moist and dry convection. In the version of the tracer model employed here, they are derived from winds every four hours and circulation statistics from the GISS atmospheric general circulation model [Hansen et al., 1983].

In the tracer model, geographically and temporally varying sources and sinks of CO₂ and δ¹³C are prescribed at the surface. For each source/sink, the three-dimensional (3-D) model was integrated separately for its ¹²C and ¹³C signature in the atmosphere. The individual responses are then combined to yield the total response. Here, to focus on the effects of isotopic exchange on δ¹³C variations in the atmosphere, we take $F_{P_{\text{aq}}}$ and $F_{R_{\text{aq}}}$, the photosynthetic and respiratory CO₂ fluxes, respectively, from Fung et al. [1987], where the fluxes have been tuned to produce in the same 3-D tracer transport model, atmospheric CO₂ seasonalities that resemble those observed in the northern hemisphere. The seasonal ¹²C fluxes produce an annual-mean north-south CO₂ gradient of ~0.5 ppmv in the atmosphere, even in the absence of net sources or sinks in the annual mean.

We carried out seven experiments to investigate the sensitivity of the atmospheric δ¹³C signature to different assumptions about Δ and $\overline{D_b}$. Experiment 1 is the control; experiments 2-4 investigate the sensitivity of the atmospheric δ₈ signature to geographic variations in Δ and $\overline{D_b}$. Experiment 5 explores the variations in δ_a due to assumptions about the age of live woody biomass. Experiments 6 and 7 explore changes in δ_a (Table 2).

Experiment 1 uses the full spatial and seasonal variations of $\Delta(x, y, t_s)$ and $\overline{D_b}(x, y, t_s, t = 1988)$ as calculated by...
SiB2-GCM and CASA for the actual vegetation distribution. Experiment 2 assumes globally uniform Δ and D_b. A value of $\Delta = 18.6\%_\text{o}$ provides 13C equilibrium between an initial atmospheric δ_A of $-6.4\%_\text{o}$, and a biospheric δ_b of $-25\%_\text{o}$. The value of $D_b = 0.2\%_\text{o}$ is commonly used in carbon budget calculations [Quay et al., 1992; Tans et al., 1993]. In experiment 3, Δ is geographically uniform, with a value of $18.6\%_\text{o}$; D_b, calculated by CASA, is spatial, and to a small degree, seasonally varying as in experiment 1. Experiment 4 employs the varying Δ calculated by SiB2-GCM but a uniform $D_b = 0.2\%_\text{o}$. Comparison of experiments 1 and 3 will quantify the importance of Δ variations while comparison of experiments 1 and 4 will quantify the importance of D_b variations. Experiment 5 is like experiment 1 but uses the $D_b(x, y, t_s, t = 1988)$ distribution for the no-tree rather than the actual vegetation distribution. Thus D_b reflects mainly the turnover times rather than ages of the carbon in the soils. Experiments 6 and 7 are like experiment 1 but are for $\delta_A = -7.0\%_\text{o}$ in 1960 and for $\delta_A = -6.4\%_\text{o}$ in 1740 rather than $\delta_A = -7.8\%_\text{o}$ in 1988. To isolate the effects of biospheric isotopic variations on atmospheric δ^{13}C, we have used the same F_{ap} and F_{ba} for experiments 1–7, even though it is likely that photosynthesis and respiration rates for 1988 would be different from those in the earlier period.

For each experiment, we integrate equations (1a) and (1b) for 3 years. Results presented below are from the third year of the integrations. Equation (1b) requires information about C_A. Here, to isolate the relative contributions of biospheric exchanges to the total atmospheric δ_A variations, we use, where possible, observed values of C_A on the left-hand side in equation (1b). For the global analysis, we add the global distribution of C_A simulated for scenario 7 of Tans et al. [1990] to a uniform background CO2 concentration, as this distribution includes all the CO2 sources and sinks and obtains reasonable agreement with the available atmospheric and oceanic observations. Like Fung et al. [1991], we compare the observations with the simulation at the grid boxes containing the observation sites, except at Point Barrow where the grid box north of Point Barrow is used to be compatible with the measurements from the "clean-air" sector.

6.1. Seasonal Cycles

Three examples illustrate how D_b and seasonal Δ can affect the seasonal fluxes. Consider two locations with the seasonal fluxes shown in Figure 9. The seasonal fluxes, F_{ap} and F_{ba} are totally out of phase at site 1 and in phase at site 2 (Figures 9a,b). In example 1 (Figures 9c,d), Δ is constant in time, and both sites are in 13C equilibrium. The seasonal amplitudes in δ^{13}C would be $A_1 = |\Delta \times F_{ba}|$ for site 1 and $A_2 = 0$ for site 2. In example 2 (Figures 9e,f), 13C and 12C equilibria still obtain, but we let Δ be seasonal, with a summer maximum. Both A_1 and A_2 are increased compared to example 1. Example 3 (Figures 9g,h) considers a biosphere with 12C but not 13C equilibrium. Let Δ be seasonally invariant. The addition of the isotopic disequilibrium D_b reduces the contrast between the 13C fluxes into and out of the biosphere at site 1, reducing A_1. It also removes the cancellation between the fluxes at site 2, increasing A_2. The examples illustrate that seasonality of δ^{13}C at a particular site is affected not only by the phasing of Δ but also by the magnitude of D_b.

In experiment 1, the simulated amplitude in δ_a is $\sim 0.9\%_\text{o}$ at Point Barrow, Alaska, and is $\sim 0.35\%_\text{o}$ at Mauna Loa, Hawaii (Plate 3). The maximum δ_a simulated is in August at Point Barrow and in September at Mauna Loa, close to those observed. The southward decrease of the δ_a seasonal cycle mirrors the decrease in CO2 amplitudes. This is clear in experiment 2, where both Δ and D_b are constants. The largest effects on the δ_a amplitude are the magnitudes and relative phasing of the photosynthetic and respiratory fluxes. Amplitudes are as large as $1.2\%_\text{o}$ in inland regions, where not only the CO2 but also the Δ seasonalities are strong (Plate 4). The simulated seasonal cycles at the northern hemisphere sites are reduced in experiments 2 and 3 but relatively unchanged in experiment 4, compared to experiment 1, demonstrating the influence of the Δ seasonality. Seasonality in δ_b is small and contributes little to the atmospheric seasonal variations. This is illustrated by the comparison of the seasonal amplitudes in experiments 1 and 4. For the same F_{ap}, the summer maximum in Δ at high latitudes results in reduced 13C removal and hence a "heavier" atmosphere, compared to experiment 3 with an asseasonal Δ. Because $\Delta(t_s)$ and $F_{ap}(t_s)$...
Plate 3. Seasonal cycle of atmospheric $\delta^{13}C$ simulated in the vicinity of (a) Point Barrow, Alaska, (b) Mauna Loa, Hawaii, and (c) the south pole for experiments 1-7. The $\delta^{13}C$ in the model grid box north of Point Barrow is used to represent the clean-air sector of the stations, (d)-(f) the departure of the $\delta^{13}C$ in each experiment from those in experiment 1 are shown.

are not exactly in phase, the $\delta^{13}C$ seasonal cycle at middle-to high-latitudes lags behind the corresponding CO$_2$ cycle seasonal cycles. The lag is small, < 1 month, and may not be detectable. The value Δ has a summer minimum around 40°N (Plate 1), which would reduce the summer contrast in atmospheric $\delta^{13}C$ between photosynthesis and respiration. While the Δ seasonality is clearly enhancing the atmospheric $\delta^{13}C$ cycle at Point Barrow, its effects are diminished at Mauna Loa, owing both to dilution and to competition from the opposing Δ seasonality at other latitudes.

The seasonal cycles in experiment 5 (no-tree vegetation) are in phase with those in experiment 1 but are greater in amplitude by ~10% at the observing sites.

Experiments 1, 6, and 7 differ only in the value of the atmospheric δ_A and hence D_b. The seasonal cycles simulated in experiment 6 (1960 δ_A) are smaller than those in experiment 1 (1988) by ~0.02%/oo or ~1.7% of the amplitude in experiment 1. These experiments suggest that we should expect a positive trend of 0.06% yr$^{-1}$ in the $\delta^{13}C$ amplitudes owing only to the recent atmospheric δ_A trend of ~0.02%/oo yr$^{-1}$. However, the CO$_2$ amplitude at Point Barrow has been observed to have a positive trend of ~1.3% yr$^{-1}$ in the past 35 years [Keeling et al., 1995], about 20 times larger than that due to D_b. Our experiments thus show that, for the recent decrease rate of δ_A in the atmosphere, changes in biospheric dynamics dominate the signal in δ_A amplitude trends.

6.2. Annual Mean Distributions

In general, the simulated δ_a gradient for the NOAA sampling sites is very small and within ±0.03%/oo of zero (Plates 5a and b). In these experiments, which include only exchanges with the background biosphere, the jaggedness of the simulated latitudinal profiles at the monitoring stations mirrors the jaggedness of the CO$_2$ profiles and registers the degree of continental influence at each station. This is seen clearly in Plate 6a, where annual mean $\delta^{13}C$ can be as large as ±0.06%/oo relative to the south pole.

The geographic variations of photosynthetic discrimination Δ have minimal influence on the annual-mean latitudinal gradient of atmospheric $\delta^{13}C$, unlike the case for the atmospheric $\delta^{13}C$ seasonal cycles. This can be seen in the comparison of the results of experiments 1 and 3 (Plate 5b), where the northern hemisphere difference in δ_a is <0.005%/oo. This is not surprising, as Δ multiplies both F_{ap} and F_{ba} in equation (17), and its effects are approximately canceled in the annual mean for a biosphere whose ^{12}C fluxes balance.

The hemispheric difference in the annual-mean δ_a in the atmosphere is dependent on the latitudinal gradient in D_b, the isotopic disequilibrium between the photosynthetic and respiratory fluxes. The differences in the hemispheric gradients are very small, ~−0.003%/oo, between experiments 1 and 3 which use the D_b simulated by CASA (Plate 5b) Ex-
Plate 4. Global distribution of the seasonal range (in per mil) of atmospheric $\delta^{13}C$ simulated for experiment 1.

Experiments 2 and 4, which employ a constant $D_b = 0.2\%$, obtain latitudinal gradients which are slightly steeper, by $\sim 0.0015\%$, than in experiment 1. Similarly, the gradients in experiment 5 for the no-tree vegetation with smaller D_b are even steeper, by $\sim 0.01\%$, than in experiment 1. The steepest gradient is simulated for experiment 7 for 1740, when $D_b = 0$. Plate 2 shows that a greater D_b means the addition of "heavier" carbon to the northern atmosphere. This result, that the δ_a hemispheric difference steepens with decreasing D_b, appears counterintuitive.

For gross CO$_2$ exchange between the atmosphere and biosphere, another factor that contributes to an annual mean atmospheric δ_a gradient is the rectifier effect [Denning et al., 1995]: an annual mean atmospheric CO$_2$ gradient results because the withdraw of photosynthetic carbon is from a deeper (summer) atmospheric boundary layer than the addition of respiratory carbon. This net positive CO$_2$ concentration at a fixed height in the lower troposphere yields a negative $\delta^{13}C$ signature, since biosphere carbon is "lighter" than atmospheric carbon. Plate 6b shows the surface distribution of the annual mean atmospheric $\delta^{13}C$ simulated for the year 1740, when the system was assumed to be in 13C balance or $D_b = 0$. The variations in δ_a mirror the variations in the annual mean CO$_2$ distribution in this model. The annual mean δ_a is negative (positive) where the CO$_2$ mean is positive (negative). As the mean CO$_2$ gradient is positive (higher in the northern hemisphere) in this model, the $\delta^{13}C$ gradient is negative, the hemispheric difference being $\sim -0.04\%$. Locally, $\delta^{13}C$ can be as large as -0.1% at high latitudes where the annual mean CO$_2$ exceeds the south pole value by 1.5 ppmv. Plate 6c shows the difference between the $\delta^{13}C$ annual mean simulated in experiment 1 and that in experiment 7 (1740), that is, the difference due to D_b alone. If no atmospheric CO$_2$ gradient resulted from the gross CO$_2$ exchanges, we would expect the companion $\delta^{13}C$ gradient to be positive and to reflect the age difference be-
Figure 9. Examples illustrating the effects of Δ seasonality and Δ₀ on the seasonality of the ¹³C fluxes. Seasonal CO₂ fluxes are shown in the first row for two sites: where Fₚ and F₀ are equal in magnitude and out of phase (left column) and equal in magnitude but in phase (right column). The impact on ¹³C fluxes at each site when the CO₂ fluxes in the first row are combined with constant Δ and zero Δ₀ (second row), seasonality in Δ and zero Δ₀ (third row), and constant Δ and Δ₀ ≠ 0 (fourth row) are shown in the corresponding column. Vertical bars (horizontal lines) indicate fluxes that increase (decrease) atmospheric CO₂ or δ¹³C. Shaded regions indicate the imbalance between the incoming and outgoing fluxes. The dashed lines in Figures 9c-9h reproduce the fluxes in Figures 9c and 9d, the reference cases.

between the photosynthetic and respired carbon. Experiment 1 would produce a positive δₐ gradient of ~0.025%/₀ between the hemispheres in the absence of a CO₂ gradient (Plate 6c). The corresponding difference would be ~0.015 and ~0%₀ for 1960 and 1740 (experiments 6 and 7), respectively.

A positive mean CO₂ gradient implies an excess of respired carbon with δ¹³C ~−24.5%/₀ over some fixed depth in the boundary layer in the northern hemisphere. The excess of biospheric ("light") carbon depresses the northern hemisphere δₐ relative to the south. This is also seen clearly in the δₐ profile (the "background" δ¹³C gradient) simulated in experiment 7 (Plate 5a), which has no isotopic disequilibrium. The "background" δ¹³C hemispheric difference in this model is ~−0.03%/₀. The δₐ gradient due to Δ₀ is then added to the negative δ¹³C background gradient. We speculate that the atmospheric model of [Denning et al., 1995], which produces a larger CO₂ north-south gradient, ~2 ppmv, for the same biospheric fluxes, would produce a negative δ¹³C gradient in the atmosphere.

The latitudinal profiles of δₐ for experiments 1 and 5 (for current and no tree vegetation distributions) show little difference even though the globally averaged Δ₀ for the two experiments are different by a factor of 1.5. This is because the largest difference in Δ₀ between the two experiments is in the tropics, and tropical sources and sinks in general have negligible expression in atmospheric concentration dif-
ferences between the hemispheres. The global difference in D_b between the two experiments (0.33 and 0.2%\text{oo} for experiments 1 and 5, respectively) is significant for the global carbon budget.

7. Implications for the Contemporary Carbon Budget

In this paper, two dynamic carbon models, SiB2-GCM and CASA, were employed to determine the geographic and seasonal variations of Δ, photosynthetic discrimination, and D_b, the isotopic disequilibrium between the fixed and respired carbon. The global flux-weighted Δ is between 12 to 13 and 15.7%\text{oo}, and the global, flux-weighted D_b is 0.33%\text{oo} for 1988. The D_b for no-tree vegetation is 0.2%\text{oo} for 1988.

The upper limit of Δ includes a middle-of-the-road assumption about the areal extent of C4 vegetation. The lower limit includes fractionation during the final diffusion step to the carboxylation sites. Our lower limit is significantly lower than the value of $\Delta = 18\%\text{oo}$ commonly used in carbon budget studies [Quay et al., 1992; Tans et al., 1993].

The no-tree D_b value of 0.2%\text{oo} is the same as those used in other investigations [Keeling et al., 1989a; Quay et al., 1992; Tans et al., 1993; Ciais et al., 1995a,b]. However, we do not consider this D_b realistic, as it neglects the time a 13C molecule spends in live woody biomass.

To investigate the sensitivity of the global carbon budget to our new estimates of Δ and D_b, we employ the 12C and 13C mass balance equations, following Tans [1980], Tans et al. [1993], and Francey et al. [1995]:

\[
\frac{d}{dt}(C_A)_{\text{total}} = S_{FF} + S_{DEF} + F_{ao} + F_{oa} + F_{ap} + F_{ba}.
\]

(20)

\[
\frac{d}{dt}(\delta_A)_{\text{total}} = (\delta_{FF} - \delta_A) \times S_{FF} + (\delta_{DEF} - \delta_A) \times S_{DEF} + D_b \times G_b - \Delta \times N_b + D_o \times G_o + \epsilon_{ao} \times N_o.
\]

(21)

The change in the abundance of carbon and its isotopes in the atmosphere is equal to the sum of the changes due to releases from fossil fuel combustion (S_{FF}), land use modification (S_{DEF}), atmosphere-ocean exchanges (F_{ao} and F_{oa}), and atmosphere-biosphere exchanges. In equation (21), $G_o(= F_{oa})$ and $G_b(= F_{ba})$ are the gross exchanges with the ocean and biosphere, respectively, and $N_o(= F_{ao} + F_{oa})$ and $N_b(= F_{ap} + F_{ba})$ are the net fluxes or the sinks for anthropogenic CO$_2$ sought. D_o is the isotopic disequilibrium associated with atmosphere-ocean exchange, and ϵ_{ao} is the fractionation coefficient associated with CO$_2$ invasion to the ocean.

Rough estimates of the terms are summarized in Table 3. The utility of 13C as a discriminator between biospheric and oceanic exchanges stems from the larger fractionation during terrestrial photosynthesis than during air-to-sea transfer of carbon: the term Δ multiplying the net biospheric sink, N_b, is ~ 10 times larger than the term ϵ_{ao} multiplying the missing oceanic sink, N_o, in equation (21). However, the use of equation (21) to constrain the carbon budget requires that the isotopic disequilibrium associated with the gross fluxes are known as well. For a given $D_o \times G_o$, the product $D_b \times G_b$ associated with gross biospheric fluxes is comparable in magnitude to the product $\Delta \times N_b$ associated with net biospheric fluxes (Table 3). Assuming that the oceanic D_o can be determined by direct measurements [Quay et al., 1992], an underestimate of 0.1%\text{oo} in D_b would translate into an overestimate of 0.3 Gt C yr$^{-1}$ in N_b if $\Delta = 18\%\text{oo}$ and an N_b overestimate of 0.5 Gt C yr$^{-1}$ if $\Delta = 12\%\text{oo}$.

The sensitivity of N_b, the net terrestrial carbon flux, to Δ and D_b can be investigated using the global budget (equation 21). As has been pointed out by Lloyd and Farquharson [1994], Δ multiplies the net flux, while D_b multiplies the globally averaged gross flux. Thus the appropriate Δ is that associated with the sought-after vegetation types involved in the net carbon uptake and can therefore range between ~ 4 and $\sim 27\%\text{oo}$. We also note that $\delta_{DEF} - \delta_A$ associated with land use modification is not likely to equal Δ associated with the net biospheric uptake, as different vegetation groups may contribute to the net carbon flux in different ways.

Table 3. Typical Values of the Terms in Equation (22) for the 1980s

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameters</th>
<th>Schimel et al. [1996], Gt %oo yr$^{-1}$</th>
<th>Tans et al. [1993], Gt %oo yr$^{-1}$</th>
<th>Francey et al. [1995], Gt %oo yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric change</td>
<td>$C_a \delta_A$</td>
<td>750 x [-0.02] = -15.0</td>
<td></td>
<td>22.2</td>
</tr>
<tr>
<td>Fossil fuels</td>
<td>$S_{FF} \times (\delta_{FF} - \delta_A)$</td>
<td>5.5 x [-27.2 (-7.8)] = -149.2</td>
<td></td>
<td>-152.5</td>
</tr>
<tr>
<td>Deforestation</td>
<td>$S_{DEF} \times (\delta_{DEF} - \delta_A)$</td>
<td>1.6 x [-25 (-7.8)] = -27.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biosphere, gross</td>
<td>$G_b \times D_b$</td>
<td>60 x 2.2 = 12</td>
<td></td>
<td>26.5</td>
</tr>
<tr>
<td>Biosphere, net</td>
<td>$-N_b \times \Delta$</td>
<td>(-1.8) x 18 = 25.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceans, gross</td>
<td>$+G_o \times D_o$</td>
<td>90 x [0.43] = 38.7</td>
<td></td>
<td>43.8</td>
</tr>
<tr>
<td>Oceans, net</td>
<td>$N_o \times \epsilon_{ao}$</td>
<td>(-2.0) x [-2] = 4.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the third column, values for 13C parameters are taken from Schimel et al. [1996] and are representative of 1980-1989 when the atmospheric increase averaged 3.3 Gt C yr$^{-1}$. The 12C parameters are from Tans et al. [1993]. Because the parameters are taken from different sources, the first term does not equal the sum of the remaining terms in this example. Values used by Francey et al. [1995] are in the fourth column.

This study focuses on a reevaluation of Δ and D_b.
Plate 5. The latitudinal profile in the annually averaged \(\delta^{13}C \) simulated for the NOAA monitoring sites in the seven experiments as summarized in Table 3. (a) The modeled profiles for experiments 1, 6, and 7, which employ the full variations in \(\Delta \) and \(D_b \). (b) The departure of the modeled \(\delta^{13}C \) profiles in experiments 2–6 from that in experiment 1. (c) Like Plate 5a but normalized to a background CO\(_2\) gradient of zero.
Plate 6. Global distribution of the annually averaged δ^{13}C for (a) experiment 1, (b) experiment 7 (due to annual mean CO$_2$ concentrations alone), and (c) experiment 1 minus experiment 7 (due to D_8 alone).
be involved. It is thus inappropriate to combine S_{DEF} and N_b into a single unknown, as is commonly done.

Suppose the values for all variables except for δ_{FF}, N_b, N_o, Δ, D_b and D_o are specified as in Table 3. We have assumed a fossil fuel source of 5.5 Gt C yr$^{-1}$, with an updated $\delta_{FF} = -28.2^\circ$ [Andres et al., 1996] and a deforestation source of 1.6 Gt C yr$^{-1}$, with $\delta_{DEF} = -25^\circ$, typical of tropical rainforests (Table 1b). For the period 1980–1989, the CO$_2$ growth was ~3.3 Gt C yr$^{-1}$, and the average sink for anthropogenic (fossil fuel plus land use) CO$_2$ was $N_b + N_o = -3.8$ Gt C yr$^{-1}$ [Schimel et al., 1996]. We can express the biospheric fraction of the sink $r_b = N_b/(N_b + N_o)$ in terms of Δ and D_b (Figure 10). For a given degree of isotopic disequilibrium between the oceanic fluxes (D_o), the value of r_b decreases, or the ocean sink increases, with increasing Δ and increasing D_b.

The terrestrial portion of the anthropogenic sink dominates for "reasonable" values of Δ, D_o and D_b. Using $\Delta = 18^\circ$ and $D_b = 0.2^\circ$ Tans et al. [1993] argued that the oceanic isotopic disequilibrium $D_o = 0.43^\circ$, they estimated from the shipboard measurements analyzed by Quay et al. [1992] is unlikely, since the oceanic sink would be <0.5 Gt C yr$^{-1}$ (Figure 10a). With the larger value of D_b obtained here, the oceanic sink may be ~20% of the total sink or ~0.7 Gt C yr$^{-1}$ if only C$_3$ vegetation were involved in the uptake. If net biospheric uptake occurs globally or is confined to C$_4$ vegetation and $D_o = 0.43^\circ$, then the relative biospheric sink would (unrealistically) exceed 100%.

Francey et al. [1995] used a value of D_b equivalent to 0.44$^\circ$ and D_o equivalent to 0.48$^\circ$ for the same gross fluxes as in Table 3. For a consistent carbon budget scenario, Heimann and Maier-Reimer [1996] have deduced a G_bD_o of 23.4 Gt C $^\circ$ yr$^{-1}$ and a D_o of 0.53$^\circ$. The G_bD_o value translates into a D_o of 0.39$^\circ$ for $G_b = 60$ Gt C yr$^{-1}$. The values for their parameters also favor a higher oceanic uptake than Tans et al. [1993] do. In any case, the oceanic sink remains less than or comparable with the biospheric uptake of anthropogenic (fossil fuel plus deforestation) CO$_2$.

A high value of D_o reported is 0.63$^\circ$ [Inoue and Sugimura, 1985; Tans et al., 1993]. Figure 10c shows the range of r_b as a function of D_b and Δ for this value of D_o. If biospheric uptake is proportional to the global NPP distribution (Δ ~15$^\circ$), a biospheric sink fraction >80% results. The maximum oceanic sink fraction would be ~50%, if the biospheric uptake is by C$_3$ vegetation only.

The magnitude of the biospheric and oceanic sinks cannot be determined without information about the C$_3$;C$_4$ proportions involved in the biospheric uptake and information about D_b. It is very unlikely, however, that the oceanic fraction of the anthropogenic sink could exceed 50%.

In using the north-south gradient to infer the location and magnitudes of the terrestrial sink, our study underlines the importance of the background biosphere, whose gross fluxes contribute non zero background 13C and 13C gradients in the atmosphere. The background gradients need to be subtracted from the total observed atmospheric gradient before we can consider contributions by the net sinks. The positive background CO$_2$ gradient (higher in the northern than in the southern hemisphere) demands a larger combined biospheric and oceanic sink in the northern hemisphere to match the observed CO$_2$ gradient (compare Figure 1). Furthermore, the
positive CO$_2$ gradient is accompanied by a negative δ_a gradient, once again demanding a larger net sink than the situation with no gradient from the background biosphere. From the δ^{13}C perspective, the net sink is primarily biospheric since net oceanic exchange has an atmospheric signature that is 10 times less than net biospheric exchange. In other words, the combined CO$_2$ and δ_a gradients due to the background biosphere favor a predominantly terrestrial sink.

An analysis of the carbon budget for 1991–1994 has been carried out by Keeling et al. [1996] using the variations in atmospheric oxygen. Compared to 1980–1989, this period has a stronger fossil fuel source, ~ 5.8 Gt C yr$^{-1}$, slower growth of atmospheric CO$_2$, ~ 2.1 Gt C yr$^{-1}$, and a slowdown in δ^{13}C decrease rate to $\sim -0.01%_o$ yr$^{-1}$ [Francey et al., 1995]. Keeling et al. [1996] found that the land and oceans removed 2.0 ± 0.9 and 1.7 ± 0.9 Gt C yr$^{-1}$, respectively, of the fossil fuel CO$_2$. Adding the deforestation flux of 1.6 Gt C yr$^{-1}$ to their land sink increases their terrestrial uptake to -3.6 Gt C yr$^{-1}$. This would yield a biospheric uptake fraction $r_b = 3.6/(3.6 + 1.7) = 68\%$. There is no unique way to match their oxygen-based budget with a δ^{13}C-based budget without additional information. For example, an $r_b = 68\%$ can be obtained by the combination $D_o = 0.63%_o$ and $\Delta = 18%_o$ or the combination $D_o = 0.52%_o$ and $\Delta = 20%_o$. About $\sim 85\%$ in the former and 100% in the latter example of terrestrial uptake would be in C3 regions. A large background D_b and/or D_o leaves a large atmospheric signature and needs to be accompanied by C4 uptake with less photosynthetic discrimination than C3 uptake. It is premature to estimate the geographic distribution of the net biospheric sinks without a parallel treatment of the geographically varying δ_a signal due to gross oceanic fluxes.

8. Implication for Measurement Strategy and Data Acquisition

In this paper, we combined detailed models of the δ^{13}C/δ^{12}C fractionation associated with photosynthesis and respiration to investigate the geographic and temporal variations of δ^{13}C in the terrestrial biosphere and the atmosphere. Our findings from the atmospheric transport experiments are summarized in Table 4. Because of the long memory of soil carbon, unravelling the information contained in present-day atmospheric δ^{13}C variations requires understanding of the dynamics of the biosphere on decadal to centennial time scales.

The simulated δ^{13}C distributions and the application to the contemporary carbon budget are sensitive to the many assumptions necessitated by the lack of detailed atmospheric and biospheric observations that could constrain the calculations. In the following, we suggest measurements that can help cross-check the results and/or improve the treatment of important processes in the models.

1. Inferences about the location and magnitude of the anthropogenic carbon sinks rely on geographic and temporal variations of atmospheric CO$_2$ and δ^{13}C in the planetary boundary layer. Resolution of the magnitude of the rectifier effect is thus a prerequisite to using the latitudinal information. This can be addressed with vertical profiles of CO$_2$ and δ^{13}C in the continental planetary boundary layer [Bakwin et al., 1995] in conjunction with flux measurements [Wofsy et al., 1993].

2. The present-day value of Δ necessary for deconvolving the global carbon budget is determined by the relative contributions of C$_3$ and C$_4$ plants to the biospheric uptake. Concentrating the biospheric sink in C$_3$ areas would favor a larger uptake by the oceans. This finding argues for CO$_2$ fertilization and other direct biospheric manipulation experiments across vegetation gradients that include both C$_3$ and C$_4$ types.

3. Our lack of quantitative estimate of photosynthetic discrimination worldwide is reflected in the large range in flux-weighted annual-mean $\overline{\Delta}$. We show that, where CO$_2$ fluxes are seasonal, $\overline{\Delta}$ may be different by several per mils from the annual-mean Δ without flux weighting and from a one-time measurement of Δ. A $3%_o$ overestimate of $\overline{\Delta}$ can translate into 0.7 Gt C yr$^{-1}$ or 20% underestimate in the magnitude of the biospheric sink. Here we have employed the SiB2-GCM Δ, whose formulation is rooted in extensive theoretical and field studies, but whose magnitudes are dependent on the simulated GCM climate. The use of a different climatology or a different set of fluxes in the weighting may yield a different value of $\overline{\Delta}$. This argues for the simultaneous measurements of $F_{ap}(t, t)$ and $\Delta(t, t)$, such as the eddy-flux correlation measurements of Lloyd et al. [1996] and Kruijt et al. [1996]. Since long time series are critical, we suggest extending the measurements of Lloyd et al.

Table 4. Summary of Biospheric Fractionation Factors Important for Explaining Different Aspects of the Atmospheric δ^{13}C Variation

<table>
<thead>
<tr>
<th>Atmospheric Signal</th>
<th>Important Biospheric Fractionation Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_a seasonal cycle at individual sites</td>
<td>Δ seasonality, D_b</td>
</tr>
<tr>
<td>Trend in δ_a amplitudes</td>
<td>trend in D_b</td>
</tr>
<tr>
<td>Latitudinal profiles in annual mean δ_a</td>
<td>latitudinal profile of D_b</td>
</tr>
<tr>
<td>Trend in annual mean δ_a (y)</td>
<td>trend in C$_3$-C$_4$ composition</td>
</tr>
<tr>
<td>Global carbon budget</td>
<td>flux-weighted annual mean Δ of vegetation associated with net sink;</td>
</tr>
<tr>
<td></td>
<td>flux-weighted global annual mean D_b</td>
</tr>
</tbody>
</table>
measurements have shown, for example, that root-shoot ratio and carbon assimilation. Recent field and laboratory ratios change in response to CO2 fertilization. Whether these carbon budget remains to be investigated.

changes are significant enough to impact the contemporary value A, in principle, should change with changes in climate have remained the same in the past 200 years. The CO2 since the preindustrial era. In particular, we have as-
sorted use additional constraints on f. A factor ignored in the varations in the 4C:C ratio of the respired CO2 will pro-
arian results, when combined with measurements of foliar δ13C, can be used to monitor seasonal variations in C3:C4 composition in a cerrado. Snap shot measurements of δt, such as those made in intensive field campaigns, provide the inter-pool variations δt,k, which we show to cancel out to first order when summed over all the pools. Measurements and analysis of the 14C:12C ratio in different soil pools [e.g., Trumbore, 1993] do not provide information about the fluxes from the different soil pools. However, they constrain the modeled mass distributions of soil carbon and their turnover times.

5. The respired δt integrated over all the biospheric pools is dependent on f,k, the fraction of the respired flux from each pool. Our study shows the importance of the microbial and woody pools. It is very difficult to separate the contributions from the different pools in the total CO2 measurement. However, the small seasonal variations in the respired δ13C will provide a cross-check, albeit not a very stringent one, on the product f,k δt,k. Also, measurements of seasonal variations in the 14C:12C ratio of the respired CO2 will provide additional constraints on f,k. A factor ignored in the calculations in this study is root respiration, which may be constrained by simultaneous measurements of the fluxes of 12C, 13C and 14C from the soils [Trumbore et al., 1995].

6. We have assumed that the functioning of the biosphere has not changed with a 25% increase in atmospheric CO2 since the preindustrial era. In particular, we have assumed that Δ(x, y, t, t), f,k(x, y, t, t), and therefore allocation have remained the same in the past 200 years. The value Δ, in principle, should change with changes in climate and carbon assimilation. Recent field and laboratory measurements have shown, for example, that root-shoot ratios change in response to CO2 fertilization. Whether these changes are significant enough to impact the contemporary carbon budget remains to be investigated.

Notation

Independent Variables and Operators

- \(x, y \) east-west, north-south coordinate.
- \(t_s \) time, seasonal (<1 year) variations.

Variables

- \(A_n \) gross CO2 assimilation rate.
- \(A \) seasonal amplitude of δ13C in the atmosphere.
- \(C_A \) total distribution of carbon in the atmosphere, equal to 715 Gt C globally.
- \(C_a \) atmospheric carbon distribution in response to a source/sink.
- \(F_{ij} \) 12C fluxes from pool i to pool j. Positive into the atmosphere.
- \(f_k \) fraction of respired CO2 from biospheric pool k.
- \(g_s \) stomatal resistance.
- \(G_{b} \) gross CO2 exchanges between the atmosphere and biosphere, equal to \(F_{b} \).
- \(G_o \) gross CO2 exchanges between the atmosphere and ocean.
- \(h_s \) relative humidity of the ambient air.
- \(N_b \) net fluxes of CO2 exchange between the atmosphere and biosphere, equal to \(F_{ap} + F_{ba} \).
- \(N_o \) net fluxes of CO2 exchange between the atmosphere and ocean. \(N_b + N_o = \text{total sink for anthropogenic CO2} \).
- \(p_i, p_s, p_a \) intercellular, leaf surface and ambient CO2 partial pressures, respectively.
- \(P \) total atmospheric pressure.
- \(r_b \) biospheric fraction of total anthropogenic sink, equal to \(N_b / (N_b + N_o) \).
- \(S_{FF} \) strength of CO2 emission from fossil fuel combustion, equals 5.5 Gt C yr\(^{-1}\).
- \(S_{DEF} \) strength of CO2 emission from land-use modification, equals 1.6 Gt C yr\(^{-1}\).
- \(\delta_A \) δ13C of atmospheric CO2, equal to \(-7.8\%\) in 1988.
- \(\delta_o \) atmospheric δ13C response to exchanges with a single reservoir.
- \(\delta_b \) δ13C of the respired CO2.
- \(\delta_{b,k} \) δ13C of biospheric pool k.
- \(\delta_{b,t} \) departure of \(\delta_{t}(t) \) from the preindustrial steady state value for pool k.
- \(\overline{\delta_b} \) departure of the preindustrial steady state \(\overline{\delta_b} \) for pool k from the all-pool flux-weighted mean \(\overline{\delta_b} \).
- \(\Delta \) photosynthetic discrimination, 4–27 \(^{\circ}\).
\(D_b \) isotopic disequilibrium between gross photosynthetic and respiratory fluxes of carbon.

\(D_o \) isotopic disequilibrium between gross fluxes of CO\(_2\) into and out of the ocean.

\(\tau_k \) age of biogeochemical pool \(k \).

\(\epsilon_{ao} \) fractionation coefficient for air-to-sea flux of CO\(_2\).

Acknowledgments. We thank Chris Potter for providing output from the 1992 version of CASA. Principal support for this work is provided by the NASA Office of the Mission to Planet Earth to the Sellers-Mooney EOS-IDS team. Other support includes the NSF/DOE/NASA/USDA TECO Program and Canadian Atmospheric Environment Service grants to I.Y.F. and a grant from the DOE NIGEC/WESTGEC program to C.B. and J.A.B.C.M.M. Other support includes the NSF/DOE/NASA/USDA TECO Program and Canadian Atmospheric Environment Service grants to I.Y.F. and a grant from the NASA Office of the Mission to Planet Earth.

References

F. Badeck, Laboratoire d’Ecologie Vegetale, Universite de Paris Sud XI, 91405 Orsay, France (email: Franz.Badeck@eco.u-psud.fr)

J. Berry, C. Field, C. Malmström, J. Randerson, and M. Thompson, Carnegie Institution of Washington, Department of Plant Biology, Stanford, CA 94305. (email: joeberry@biosphere.stanford.edu, chris@jasper.stanford.edu, carolyn@jasper.stanford.edu, orcinus@rosebud.stanford.edu, matt@arbutus.Stanford.edu)

G. J. Collatz, NASA Goddard Space Flight Center, Code 923, Greenbelt, MD 20771. (email: jcollatz@biome.gsfc.nasa.gov)

A. S. Denning and D. Randall, Department of Atmospheric Sciences, Colorado State University, Ft. Collins, CO 80521. (email: denning@esm.ucsb.edu, randall@redfish.atmos.colostate.edu)

I. Fung, School of Earth and Ocean Sciences, University of Victoria. P.O. Box 3055, Canada V8W 3P6. (email: inez@garryoak.seos.uvic.ca)

J. John, Department of Applied Physics, Columbia University, New York, NY 10025. (email: jasmin@garryoak.seos.uvic.ca)

P. J. Sellers, NASA Johnson Space Flight Center, Code CB, Houston, TX 77058. (email: PSellers@ems.jsc.nasa.gov)

P. M. Vitousek, Department of Biological Sciences, Stanford University, Stanford, CA 94305. (email: vitousek@leland.stanford.edu)

(Received September 30, 1996; revised April 10, 1997; accepted June 9, 1997.)