Title
Circadian Metabolic Oscillations in the Epidermis Stem Cells by Fluorescence Lifetime Microscopy of NADH in Vivo

Permalink
https://escholarship.org/uc/item/8w99k3sf

Journal
BIOPHYSICAL JOURNAL, 106(2)

ISSN
0006-3495

Authors
Stringari, C
Geyfman, M
Wang, H
et al.

Publication Date
2014-01-28

License
CC BY 4.0

Peer reviewed
Circadian Metabolic Oscillations in the Epidermis Stem Cells by Fluorescence Lifetime Microscopy of NADH in Vivo

Chiara Stringari1,2, Mikhail Geyfman1, Hong Wang1,3, Viera Crosignani1, Vivek Kumar4, Joseph S. Takahashi4, Bogi Andersen1, Enrico Gratton1.
1University California Irvine, Irvine, CA, USA, 2Laboratory for Optics and Biosciences, École Polytechnique, Paris, France, 3China Agricultural University, Beijing, China, 4University of Texas Southwestern Medical Center, Dallas, TX, USA.

There is a lack of non-invasive methods to monitor circadian metabolic oscillations of single cells in their native environment. Here we implement a label-free method using NADH as an intrinsic biomarker and the Phasor approach to Fluorescence Lifetime microscopy to measure the metabolic optical fingerprint of single cells during the day-night cycle. For the first time we detect in vivo metabolic circadian oscillations within the stem cells of the epidermis layer. We observe higher ratios of free/bound NADH, i.e. NADH/NAD+, in the night with respect to the day. This difference indicates a glycolytic phenotype associated with high proliferation during the night and an oxidative phosphorylation phenotype associated with low proliferation during the day. We demonstrate that cell-to-cell metabolic heterogeneity correlates with circadian phase as measured within the basal epidermal layer by Per1-Venus reporter assay. Finally, we show that NADH metabolic oscillations are Bmal1 dependent.

Work supported with NIH grants P50 GM076516 and P41 GM103540.