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In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of
this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table
depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-
scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated
discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products;
the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset.
Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data
from five of the largest river systems in the world. Our results demonstrate that the default parameter-
ization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against
monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that
works well for all of the five river basins considered herein and shows consistent performance during
both the calibration and evaluation period. Still there may be possibilities for regionalization based on
catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor
part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale
hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of
PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the
characterization of global rainfall amounts at spatial resolutions of 0.5� and smaller.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Hydrological models synthesize our knowledge of the rainfall–
storage–runoff transformation. These models are used widely for
flood forecasting, and investigation of water resources systems
and climate change, and use relatively simple mathematical equa-
tions to conceptualize and aggregate the complex myriad of spa-
tially distributed and highly interrelated water, energy and
vegetation processes in a watershed. As a result, most of the model
parameters in hydrologic models do not represent direct measur-
able quantities but can only be derived indirectly by calibration
against a historical record of input–output data (Beven and
Binley, 1992; Vrugt et al., 2005; Gosling and Arnell, 2011). In this
process the parameters are adjusted in such a way that the differ-
ence between the simulated model output and observations is
minimized (Gupta et al., 1998; Vrugt et al., 2003).

In the past decades much progress has been made toward the
development of efficient calibration strategies for hydrological
models and the treatment and quantification of uncertainty. Most
of this work has used relatively simple lumped and semi-
distributed hydrological models that represent watersheds with
area ranging between 100 and 10,000 km2 (Sorooshian and
Dracup, 1980; Gupta et al., 1998; Andréassian et al., 2001; Vrugt
et al., 2003; Muleta and Nicklow, 2005; Balin et al., 2010;
McMillan et al., 2010; Vaze et al., 2010, amongst many others).
Less attention has been paid to calibration of global hydrological
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models (GHMs) that attempt to simulate (predict) terrestrial-scale
soil moisture, recharge, surface runoff, groundwater table, and dis-
charge dynamics. Some notable exceptions include the recent work
of Troy et al. (2008), Gosling and Arnell (2011), Nasonova et al.
(2011) and Pappenberger et al. (2011). Not only do GHMs pose sig-
nificant computational challenges, they also require a wealth of
input data to accurately characterize global scale variations in
land-use, soil type, elevation, climate conditions, and groundwater
table depths (amongst others). Yet, all these data exhibit a large
spatial variability and high degree of uncertainty which compro-
mises, sometimes severely, the predictive capability of GHMs
(Beven and Cloke, 2012; Duan et al., 2006; Teuling et al., 2009).

The lack of high-quality and high-resolution input and forcing
data, and considerable CPU-requirements of GHMs, necessitates
the use of a very coarse grid resolution to resolve global scale
hydrologic fluxes and state variables (Haddeland et al., 2011). This
introduces a very high level of process aggregation, which
unavoidably introduces significant structural errors and requires
appropriate sub-grid parameterization (Beven and Cloke, 2012).
Moreover, the (discharge) datasets available for model evaluation
are limited and their accuracy and reliability varies considerably
over the world (Renard et al., 2010). Consequently appropriate
parameterizations will not be spatially uniform and can only be
tested and optimized locally (Beven and Cloke, 2012; McMillan
et al., 2010).

Several contributions can be found in the hydrological literature
that have investigated the role of parameter and forcing data uncer-
tainty in GHMs. For instance, Fekete et al. (2004) analyzed the influ-
ence of precipitation data uncertainty on simulated global runoff
with the UHN global water balance model. The uncertainty in
simulated runoff was of similar size as the uncertainty in the pre-
cipitation and especially large in semi-arid regions. A similar study
by Biemans et al. (2009) used the global vegetation and hydrology
model LPJmL to evaluate seven precipitation datasets for discharge
simulation of 294 basins. The uncertainty in simulated discharge
was found to be about three times higher than the uncertainty in
basin average precipitation. These findings make a strong case
for hydrological model calibration using the meteorological dataset
selected for the final model application. Pappenberger et al. (2011)
concluded that the quality of meteorological data has improved
considerably in the past decade, which hence should improve our
ability to simulate the hydrology of large river basins.

Recent studies by Gosling and coworkers have investigated the
sensitivity of the Mac-PDM.09 GHM to parameter and forcing (pre-
cipitation) data. The study of Gosling et al. (2010) used fourteen
different model simulations to determine the sensitivity of the
model output to variations in the field capacity and variability of
the soil moisture capacity. The second study, published in
Gosling and Arnell (2011) used an ensemble of 9 different scenar-
ios from 21 different GCMs to analyze the impact of forcing data
uncertainty. More recently, Nasonova et al. (2011) investigated
the effect of different forcing datasets on the SWAT simulated
water balance. Results demonstrate that the simulated surface run-
off strongly depends on the precipitation dataset being used. This
finding is perhaps not surprising, but highlights the need for accu-
rate forcing data and information on river regulation in global
hydrologic modeling.

Several other recent studies have focused attention on the effect
of model selection in global hydrologic modeling. For instance,
Haddeland et al. (2011) combined several Land Surface Models
(LSMs) and GHMs in the WATCH project to generate a multi-
model ensemble of the global water cycle. The ensemble of simu-
lations exhibited a large spread, even though the constituent mod-
els resolved similar processes, but with differing parameter values.
Gudmundsson et al. (2011) also conducted a multi-model compar-
ison in the context of the WATCH project and demonstrated that
the ensemble spread was particularly large during low flow events,
but the ensemble mean reliably estimated mean and extreme
flows.

Thus far, we have focused our attention on contributions whose
main goal was to illustrate the effect of parameter, model, or forc-
ing data uncertainty in global hydrologic modeling, without
recourse to parameter estimation. Several authors have focused
on global scale parameter estimation. For instance, Fekete et al.
(2002) used a correction factor in the WBMplus model to match
discharge data from neighboring stations. Troy et al. (2008)
calibrated their global scale hydrological model at only 2% of the
grid cells, and used the remaining cells to explore the potential
for regionalization of the parameters and to assess sub-basin vari-
ability. Another study by Döll et al. (2003) considered the calibra-
tion of the GHM WaterGAP model. This work demonstrated that
careful tuning of the runoff coefficient significantly improved the
agreement between the observed and simulated discharge data.
Widén-Nilson et al. (2007) calibrated the global water balance
model WASMOD-M using measurements of average areal
discharge, thereby avoiding problems of flow regulation. Basin
specific values of the WASMOD-M model parameters were
selected from a sample of 1680 different parameter combinations.
Wood et al. (1992) calibrated the global VIC model using the well-
known Shuffled Complex Evolution (SCE) algorithm (Duan et al.,
1992; Nijssen et al., 2001). Calibration reduced the annual average
bias and the relative Root Mean Square Error (RMSE) of the
monthly discharge values from 62 to 37% and 29 to 10%,
respectively.

Altogether, published studies demonstrate that calibration of
GHMs is difficult, and hampered by (1) a lack of quality and
high-resolution input data to accurately characterize surface and
subsurface properties, (2) significant uncertainty in the forcing
data, (3) high computational demands, and (4) limited availability
of reliable discharge observations. The present study will show
that rainfall uncertainty constitutes the largest source of error
in global scale hydrologic modeling, while parameter uncertainty
explains only a minor source of streamflow simulation uncer-
tainty. Our analysis is based on a single model, and unlike previ-
ous studies jointly considers the effect of parameter and rainfall
data uncertainty in modeling discharge dynamics of some of the
largest rivers in the world. We also investigate the merits of cal-
ibration of PCR-GLOBWB for each meteorological forcing dataset
individually.

This paper is organized as follows. Section 2 presents an over-
view of the different meteorological datasets and river basins used
herein. This is followed by a short description of PCR-GLOBWB and
its most important calibration parameters, and a brief explanation
of Latin Hypercube Sampling (LHS) used to quantify parameter
uncertainty. In Section 3 we report some of the main findings of
our study and present the simulated hydrograph uncertainty
ranges for each different river basin and forcing dataset. Here, we
are especially concerned with a comparison of the simulated dis-
charge dynamics with their observed counterparts, and investigate
whether the simulation (prediction) uncertainty of PCR-GLOBWB
decreases by down sampling of the original behavioral parameter
sets. Section 4 summarizes our main conclusions and provides an
outlook for future work.
2. Data and methods

2.1. Meteorological forcing

Three different meteorological forcing datasets are used in this
paper. This includes: (1) a combination of the dataset of the
Climate Research Unit of the University of East Anglia
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(CRU – Mitchell and Jones, 2005) and the European Centre for
Medium-Range Weather Forecasts (ECMWF) re-analysis dataset
ERA-40 (Uppala et al., 2005), (2) the ECMWF re-analysis dataset
ERA-Interim (Dee and Uppala, 2009) and (3) the Climate Forecast
System Reanalysis of the National Center for Environmental Pre-
diction (NCEP CFSR – Saha et al., 2010). For practical purposes,
we restrict our attention to the period from 1991 to 2000 for which
we have available a continuous record of all three forcing time ser-
ies and corresponding discharge observations. A traditional split
sampling test was used to divide the dataset in a calibration
(1991–1995) and evaluation period (1996–2000).

2.1.1. CRU monthly observations downscaled to daily values with ERA-
40 reanalysis

The first forcing dataset is made up of monthly data from CRU
TS2.1 (Mitchell and Jones, 2005; New et al., 2000). This dataset
has a spatial resolution of 0.5�, and interpolates observed meteoro-
logical variables from constituent meteorological stations. The
PCR-GLOWWBmodel requires daily values of temperature, rainfall,
and potential evaporation, which necessitates temporal downscal-
ing. To this end we used the ERA-40 reanalysis dataset (Van Beek,
2008; Sperna Weiland et al., 2010), a product of the ECMWF with a
horizontal resolution of approximately 125 km and temporal reso-
lution of 6 h (Uppala et al., 2005). Reference potential evaporation
was calculated using the Penman–Monteith equation (Monteith,
1965). To supplement the CRU TS 2.1 time series, net incoming
shortwave radiation was computed according to the UN Food
and Agriculture Organization (FAO) guidelines (Allen et al., 1996)
using cloud cover data from CRU TS 2.1 and the climatology of
potential shortwave radiation with wind speed data from the long
term average monthly climatology, CRU CLM 1.0 (New et al., 1999).
The resulting daily forcing dataset follows the diurnal variability of
the ERA-40 reanalysis product and complies with the monthly CRU
TS2.1 statistics from 1958 to 2001. We purposely combined the
CRU datasets with the ERA-40 reanalysis to remove, as much as
possible, common biases in precipitation amounts in reanalysis
products (Troccoli and Kållberg, 2004; Bosilovich et al., 2007).
The resulting dataset has been used in previous applications of
PCR-GLOBWB (Sperna Weiland et al., 2010; Wada et al., 2010;
Candogan Yossef et al., 2011; Van Beek et al., 2011).

2.1.2. ERA-Interim reanalysis
The second forcing dataset used herein constitutes the ERA-

Interim reanalysis (Dee and Uppala, 2009). This dataset supersedes
the ERA-40 reanalysis, and includes several improvements to the
numerical weather prediction system. The horizontal resolution
has been increased from T159 to T255, the model physics have
been improved, radiance information is used for bias-correction
and better data sources are utilized for wave height, radiance,
and ozone profiles. Nevertheless, a strong correlation exists
between the ERA-40 and ERA-Interim reanalysis datasets. Not only
is the ERA-Interim system an evolution of the existing ERA-40 sys-
tem, up to 2001 the boundary forcing of the ERA-Interim system
has been taken from the ERA-40 system.

For the present analysis the ERA-Interim time-series of precip-
itation, temperature and data for the Penman–Monteith equation
have been extracted from the ERA-Interim runs at 12:00 AM. The
meteorological fields have been re-gridded to a regular 0.5� to sat-
isfy the resolution of PCR-GLOBWB used herein. The ERA-Interim
reanalysis product is considered a continuation of the CRU/ERA-
40 dataset for upcoming retrospective studies with PCR-GLOBWB.

2.1.3. CFSR reanalysis
The third and last forcing dataset is the CFSR reanalysis product

which is developed as part of the Climate Forecast System (Saha
et al., 2010). The CFSR dataset has only become available in 2010
and supersedes the previous NCEP reanalysis datasets which have
been used widely in many studies. At this stage the CFSR dataset
spans the period of 1979 to present. The data has a spatial resolu-
tion of approximately 0.25� around the equator to 0.5� beyond the
tropics (Higgins et al., 2010). In this study, 6-hourly estimates of
precipitation, temperature, radiation, air pressure and windspeed
were averaged to a daily time-step for the period 1991–2000.
These daily values were subsequently interpolated to a regular
0.5� grid and used in PCR-GLOBWB. Although previous studies
have shown that Penman–Monteith potential evaporation esti-
mates from CFSR diverge somewhat from their CRU derived coun-
terparts (Sperna Weiland et al., 2011a), we nevertheless use this
equation for consistency with the other forcing datasets.

2.2. Observed discharge data

This study focuses on five of the largest river basins of the
world, including the Amazon, Mackenzie, Murray, Mekong and
Rhine watersheds. These basins cover different continents and a
wide range of climatic conditions, and differ in total catchment
area and degree of regulation. We purposely selected these basins
because of the availability of an extensive record of discharge
observations at the catchment outlet for the period of 1991–2000
encapsulated by the three forcing datasets. The monthly stream-
flow observations were derived from the Global Runoff Data Center
(GRDC, 2007) and the Mekong River Commission. These stream-
flow time-series were directly used without corrections for river
regulations which may have affected the model parameterization.
Fig. 1 provides a geographical overview of the different river
systems along with their most important basin characteristics
and the PCR-GLOBWB run times. The degree of regulation is taken
from Nilsson et al. (2005) and is quantified by the river’s storage
capacity as percentage of total discharge.

2.3. PCR-GLOBWB: the global hydrological model

The PCR-GLOBWB model used herein is a distributed hydrolog-
ical model that is designed to solve the global water balance at a
spatial resolution of 0.5� (see Fig. 2; Van Beek and Bierkens,
2009). We now provide a short summary of the most important
components of the model. A detailed description of PCR-GLOBWB
can be found in Van Beek et al. (2011) and Sperna Weiland et al.
(2010), and is beyond the scope of the present paper.

Each model cell of PCR-GLOBWB consists of two vertical soil
layers and one underlying groundwater reservoir. The two soil lay-
ers are used to simulate soil water flow and moisture dynamics of
the vadose zone. Precipitation (forcing condition) in each grid cell
is divided into rain or snow depending on the actual air tempera-
ture. Throughfall is computed from the sub-grid parameterization
of the fraction of short and tall vegetation. The remaining water is
intercepted by the vegetation, and eventually released back to the
atmosphere. Rain water that falls on the soil surface either infil-
trates or runs-off immediately. Evapotranspiration is calculated
from potential evaporation (forcing condition) and soil moisture
status of the upper part of the vadose zone. Soil moisture that is
not lost to evaporation or taken up by plant roots for transpiration
is either immediately transported to the river system by interflow
or percolates to the groundwater store, possibly ending up as base
flow. Upward flow of water in the vadose zone is physically possi-
ble, but numerical results demonstrate that these fluxes are often
negligibly small. PCR-GLOBWB computes total runoff for each indi-
vidual grid cell as the sum of non-infiltrating melt water, through-
fall, saturation excess surface runoff, interflow and base flow. The
resulting runoff is accumulated and routed as river discharge along
the drainage network using the kinematic wave approximation of
the Saint–Venant equations. Attenuation of discharge by lakes



Catchment Area  

(km2) 

Qavg (m3/s) Gauge Degree of 

regulation 

(%)

Run time –

1 year 

(seconds) 

Average run 

time - 

(minutes) 

Amazon 7.050.000 190.000 Obidos 3 17 13

Mackenzie 1.805.000 10.700 Norman Wells 12 15 11

Mekong 2.981.100 12.743 Mukdahan 3 10 9

Murray 1.061.500 767 Wakool 

Junction 

67 9 7

Rhine 170.000 2.200 Rees 5 8 6

Fig. 1. World map (Miller cylindrical projection) with (top) locations of the different catchments used in this study, along with information (bottom) about catchment area,
annual average discharge, location of gauge, degree of river regulation (Nilsson et al., 2005) and run time of PCR-GLOBWB for a yearly simulation and the full simulation with
one parameter combination derived from Latin Hypercube sampling.
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and reservoirs was accounted for by means of the weir formula
which relates storage to outflow (Van Beek and Bierkens, 2009).
No reservoir management was considered.

Thus far, we have not considered the effects of water use. We
therefore post-process the PCR-GLOBWB simulated streamflow val-
ues by subtracting monthly water demands derived from each indi-
vidual parameter combination using the model ofWada et al. (2010,
2011). This model calculates global water demands at a spatial res-
olution of 0.5� using information about industrial, domestic and
agricultural water use. The amount of irrigation subtracted from
the surface water depends on PCR-GLOBWB simulated soil moisture
which influences the ratio between actual and potential evapora-
tion. Irrigationwater is used tomaintain optimal growing conditions
for crops and to minimize the difference between actual and poten-
tial evaporation. The final amount of irrigation water subtracted
from the surface water is limited by surface water availability.
2.4. Parameter uncertainty

2.4.1. PCR-GLOBWB: calibration parameters
The PCR-GLOBWBmodel contains a large number of parameters

whose values are difficult to observe directly in the field, or at the
scale of interest (see Table 1). Although the model was designed to
be parameterized from existing global datasets, it remains difficult
to estimate all parameters a priori. Indeed, it is to be expected that
the predictive capability of PCR-GLOBWB will be enhanced if at
least some of the parameters are estimated by calibration against
discharge observations.
2.4.1.1. Model parameters. Table 1 lists all parameters of PCR-
GLOBWB. The table contains a total of 29 free model parameters.
For some parameters we explicitly distinguish between shallow,
(1) and deep, (2) soil compartments, and short, ‘‘(s)” and tall,
‘‘(t)” vegetation types. The table does not include parameters or
variables used for the dimensioning of the model compartments
and river network. These values can be directly obtained from
topographical datasets, as for example the global drainage network
DDM-30 (Döll and Lehner, 2002) and the Global Lake and Wetland
dataset (GLWD – Lehner and Döll, 2004).

Based on expert judgment a total of fifteen parameters were
selected for the sensitivity analysis. This selection was made, in
large part, based on the degree of conceptualization of each indi-
vidual parameter, and/or their importance in the simulated water
balance with PCR-GLOBWB. The following parameter groups have
been excluded from the sensitivity analysis: (1) vegetation and
root fraction values, (2) the snowfall correction factor and the vary-
ing water holding capacity of the snow cover, and (3) the fractional
area where percolation to groundwater store is impeded. With
respect to (1) values were directly obtained from global vegetation
datasets (GLCC 2 – Olson, 1994) and linked to the dimensions of
the soil layers (model compartments); (2) omission restricts the
degrees of freedom in snow modeling, and (3) values were derived
from the observed occurrence of permafrost and soils with
impeded percolation (Brown et al., 2000). What follows is a
detailed description of the fifteen selected parameters.

The first two model parameters, e.g. the global distributed val-
ues of the groundwater reservoir coefficient and storativity directly



Fig. 2. Model concept of PCR-GLOBWB (van Beek and Bierkens, 2009). The left-hand
side represents the vertical structure for the soil hydrology representing the canopy,
soil column (stores 1 and 2), and the groundwater reservoir (store 3). Precipitation
(PREC) falls as rain if air temperature (T) is above 0 �C and as snow otherwise. Snow
accumulates on the surface, and melt is temperature controlled. Potential evapo-
transpiration (Epot) is broken down into canopy transpiration and bare soil
evaporation, which are reduced to an actual rate (Eact) on the basis of the moisture
content of the soil. Vertical transport in the soil column arises from percolation or
capillary rise (P). Drainage from the soil column to the river network occurs via
direct runoff, interflow or subsurface stormflow, and base flow (QDR, QSf, and QBf,
respectively). Drainage accumulates as discharge (QChannel) along the drainage
network and is subject to a direct gain or loss depending on the precipitation and
potential evaporation acting on the freshwater surface.
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determine the outflow from the linear groundwater reservoir. This
outflow, Qbf [L3 T�1] is defined by a linear relation between the
actual modeled storage, S3 [L3] and the reservoir coefficient, J [T�1]:

Qbf ¼ S3J: ð1Þ
The reservoir coefficient is calculated using the Kraijenhoff van

de Leur equation (Kraijenhoff van de Leur, 1958; Sutanudjaja et al.,
2011)

J ¼ p2kd
4SP2 ; ð2Þ

where kd denotes the aquifer transmissivity [L2 T�1], S [–] is the
aquifer porosity or storativity [L�L�1], and P represents the length
of the average drainage path [L].

Aquifer transmissivity (or soil permeability) varies spatially and
cell specific values are derived from the global lithological maps of
Dürr et al. (2005; illustrated in Fig. 3a) and transmissivity estimates
of Gleeson et al. (2011; illustrated in Fig. 3b). Aquifer porosity lar-
gely originates from secondary porosity and is linked to lithology
as well. Note that larger porosity values have been assigned to sili-
cic igneous rocks in tropical regions to account for deep weathering
(Gleeson et al., 2014). The average length of the drainage path is
defined as half the inverse of the drainage density (Dürr et al.,
2005). Drainage density was extracted from the VEMAP and
Hydro1k datasets (Verdin and Greenlee, 1996) and computed for
each sub-catchment from the stream length and catchment area.
Scale effects were accounted for using the climate-dependent infor-
mation of Gregory (1976) before aggregating to 0.5�. The Holridge
life zones of Leemans (1990) were used as proxy for climatic varia-
tion, which influences drainage density and thus specific yield.

To update the reservoir coefficient, we used spatial lithology
information and assumed the drainage density to be constant
and varied the values of aquifer transmissivity and porosity
by parameter estimation using multiplication factors for each indi-
vidual lithology class (e.g. 7 lithology classes with one multiplier
for the storage coefficient (SC_M) and one for the permeability
(PB_M)). The use of multiplication factors ensures that the differ-
ent lithology classes are treated independently, so that the original
spatial distribution is honored (McMillan et al., 2010).

The loss of soil moisture though evapotranspiration is depen-
dent on the matric suction at which transpiration is reduced with
50% (FC_50) and the matric suction at field capacity (FC), which
also controls drainage. Snow and glacier melt are determined by
the degree-day factors (DDF) (Kuchment, 2004; Martinec, 1975;
Seibert, 1999), which are specified for areas with short vegetation
(DDFsv), tall vegetation (DDFtv), and glaciers (DDFg). Preliminary
sensitivity analysis for the selected basins has demonstrated that
the simulation results of PRC-GLOBWB are mainly sensitive to
changes in DDFsv.

The parameter MAXFRAC is a measure of the sub-grid distribu-
tion of the soil water storage capacity as described by the improved
Arno Scheme (Hagemann and Gates, 2003). The value of MAXFRAC
varies spatially as a function of soil properties and vegetation. We
vary MAXFRAC using a single multiplier, which affects the dimen-
sionless shape factor b [–] that relates the sub-grid distribution to
the average soil water storage capacity, which is assumed constant
throughout. Adjusting b in turn changes the partitioning of net pre-
cipitation in direct runoff and infiltration, and the fraction of the
saturated area given the actual soil water storage. The infiltrated
water delays runoff and is susceptible to evapotranspiration. Con-
sequently, adjusting the amount of infiltrated water influences
both the magnitude and shape of the hydrograph (Gosling and
Arnell, 2011; Sperna Weiland et al., 2011b). Cell-specific values
of MAXFRAC are calculated based on the distribution of the maxi-
mum rooting depth (Canadell et al., 1996).

Soil water content and moisture flow are strongly controlled by
the saturated hydraulic conductivity (Ksat), the air-entry value
(PSI_A) and the pore-size distribution (BCH), which jointly deter-
mine soil evaporation, transpiration, percolation, and capillary rise.
The equation of Clapp and Hornberger (1978) is used to describe
the relationship between the volumetric moisture content and suc-
tion, whereas Campbell (1974) is used to describe the hydraulic
conductivity as function of soil moisture content.

The unsaturated hydraulic conductivity is calculated according
to Eq. (3) which applies to both soil layers, 1 and 2:

KunsatðSeÞ ¼ KsatS
2bþ3
e ; ð3Þ

where b [–] is defined per soil type, Ksat [LT�1] signifies the satu-
rated hydraulic conductivity, and Se denotes the degree of satura-
tion [L3 L�3]:

Se ¼ ðh� hrÞ
ðhs � hrÞ ; ð4Þ

in which h (theta) denotes the average soil water content of layer 1
or 2 and hs and hr signify the saturated and residual soil moisture
content, respectively.

River discharge is calculated with the kinematic wave approxi-
mation of the Saint–Venant Equations, in which channel flow
depends on the bed roughness defined by Manning’s roughness
coefficient, and the cross-section, slope and hydraulic radius of



Table 1
PCR-GLOBWB model parameters.

Parameter Definition Original value Unit Multiplier
ranges

Absolute
value ranges

Reference

Deep groundwater: lithological units simplified from Dürr et al. (2005), aggregated to 0.5�
SC_M1 Storage coefficient multiplier 0.23 – 0.47–1.53 0.11–0.36 Morris and Johnson (1967)

and Rasmussen (1963)SC_M2 ,, 0.05 – 0.20–2.0 0.01–0.1
SC_M3 ,, 0.03 – 0.33–2.0 0.01–0.06
SC_M4 ,, 0.05 – 0.20–2.0 0.01–0.1
SC_M5 ,, 0.04 – 0.50–3.0 0.02–0.12
SC_M6 ,, 0.005 – 0.20–10.0 0.001–0.05
SC_M7 ,, 0.04 – 0.25–2.25 0.01–0.09
PB_M1 Permeability multiplier 2.50 m/day 0.1–10 0.25–25 Domenico and Schwartz

(1990), Lambe and
Whitman (1969) and
Rasmussen (1963)

PB_M2 ,, 1.00 m/day 0.1–10 0.1–10.00
PB_M3 ,, 0.10 m/day 0.1–10 0.01–1
PB_M4 ,, 1.00 m/day 0.1–10 0.1–10
PB_M5 ,, 0.10 m/day 0.1–10 0.01–1
PB_M6 ,, 0.01 m/day 0.1–10 0.001–0.1
PB_M7 ,, 0.10 m/day 0.1–10 0.01–1

Soil layers: Digitized Soil Map of the World (FAO, 2003), aggregated at 0.5�
psi_FC Matric suction at field capacity 1 m Uniform 1.0–3.0 Seneviratne et al. (2010)

and Dingman (1994)psi_FC50 Matric suction at which transpiration is halved 3.33 m Uniform 3.0–15.0
THETASAT1a Saturated moisture content 0.371–0.837 m3/m3

THETASAT2a Saturated moisture content 0.364–0.836 m3/m3

KS1 Saturated hydraulic conductivity 0.038–6.781 m/day Clapp and Hornberger
(1978)KS2 Saturated hydraulic conductivity 0.054–5.830 m/day 0.2–5.0 �0.001–29.15

psi_A1 Air entry value 0.015–0.841 m 0.2–2 �0.003–1.7
psi_A2 Air entry value 0.016–0.512 m 0.2–2 �0.003–1.0
BCH1 Pore size distribution 0.255–11.039 – 0.2–2 �0.05–22
BCH2 Pore size distribution 0.687–11.302 – 0.2–2 �0.14–22
P2_IMP Fractional area with impeded drainage to the

groundwater
0.0–1.0 – FAO (2003) and Brown

et al. (1997)

Land cover: GLCC2 (USGS EROS Data Center) aggregated at 0.5�
SMAX_S Interception storage 0–0.0009 m GLCC2 – Olson (1994) and

Hagemann et al. (1999)SMAX_T Interception storage 0–0.0020 m
KC_S Crop factors short vegetation 0.20–1.2 –
KC_T Crop factors tall vegetation 0.26–1.4 –
KC_WATSTACK Composite crop factor for channels and wetlands or lakes Cell specific –
KC_MIN Minimum bare soil crop factor 0.2 –
VEGFRAC Vegetation cover 0.0–1.0 –
RFRAC Root fraction per soil layer 0.0–1.0 –
MAXFRAC Dimensionless shape factor (–) defining distribution of

soil water storage within the cell (Improved Arno
Scheme) based on the ratio of short and tall vegetation
types (max and min rooting depths)

Spatially varying
at subgrid level

– 0.2–5.0 Cell specific Canadell et al. (1996) and
Hagemann and Gates
(2003)

Snow
DDF_Sb Degree-day factor snow melt for areas with short

vegetation
0.00239 m/�C/day Uniform 0.001–0.006 Martinec (1975) and

Kuchment (2004)
DDF_Tb Degree-day factor snow melt for areas with tall vegetation 0.0007 m/�C/day Uniform
DDFg Degree-day factor glacier melt 0.006 m/�C/day Uniform
TTc Threshold temperature for freezing/thawing 0.0 �C Uniform Dingman (1994) and

Bergström (1976)CFR Refreezing coefficient 0.05 – Uniform
LAMBDA_T Lapse rate �0.0065 �C/m Uniform
SFCF Snowfall correction factor 1 – Uniform
CWH Water holding capacity snow cover 0.1 – Uniform Bergström (1976)

River routing
MN_M Multiplier of Manning coefficient 1

(manning = 0.04)
– 0.2–5.0 0.1–0.04 Chow et al. (1988)

QBETA Kinematic wave parameter 0.6 –

N.B. All parameters included in sensitivity analysis are formatted in Italics and all parameters included in uncertainty analysis are formatted bold.
a Within the model the soil is divided over a deep (2) and undeep (1) layer. The numbers 1 and 2 in the parameter names refer to the two soil layers.
b Within the model differentiation in parameterization is made in area with short (s) and tall (t) vegetation.
c As the default values of the threshold temperature for freezing/thawing is 0 �C, the ±20% range was fixed to �0.2 to 0.2 �C.

1100 F.C. Sperna Weiland et al. / Journal of Hydrology 529 (2015) 1095–1115
the river bed. In all our PCR-GLOBWB calculations reported herein,
the default value of the floodplain manning coefficient is set to 0.1
and the channel coefficient to 0.04 (Chow et al., 1988), resulting in
a map with spatially varying coefficients. This map is uniformly
multiplied with the parameter MN_M.

2.4.1.2. Sensitivity analysis. To identify the most sensitive parame-
ters, a one-at-a-time (OAT) local sensitivity analysis was per-
formed in which each parameter was perturbed individually
using a two-sided interval of 20% from its default value, while
keeping the other parameters at their original values. We pur-
posely used two-sided intervals to derive stable parameter sensi-
tivity values. This resulted in a total of 30 different PCR-GLOBWB
model runs.

For the two different discharge simulations (+20% and �20%),
the long-term annual average, Q�20% and Qþ20%, were calculated.
The sensitivity was now calculated as follows:



Fig. 3. World maps depicting spatial variations in (A) lithology (after Dürr et al., 2005), and (B) Holridge life zones (after Leemans, 1990).
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DQ ¼ 100
jQ�20% � Qþ20%j

Qorig
; ð5Þ

where Qorig denotes the mean of the original (unperturbed) dis-
charge simulation using default values of the parameters. If a
parameter is highly sensitivity, then a small perturbation from its
default value would result in a relatively large change in the PCR-
GLOBWB simulated discharge time series.
2.4.2. Parameters included in uncertainty analysis
Based on the results of the OAT sensitivity analysis, only those

parameters were selected for the full uncertainty analysis with
PCR-GLOBWB that demonstrated at least a 1% change in mean
annual discharge simulation (averaged over all five basins). These
twelve sensitive parameters are listed in bold in Table 1. We also
included their upper and lower bounds, which were determined
from an extensive literature research. Note that the results of the
sensitivity analysis depend somewhat on the chosen parameter
sampling ranges.
2.4.3. Latin hypercube sampling
In the absence of detailed prior information, the individual

parameters were assumed to be uniformly distributed within the
ranges summarized in Table 1. A uniform distribution has shown
to work well for exploratory sensitivity and uncertainty analysis
(Haan et al., 1998). In a first step, 1000 different parameter combi-
nations were randomly drawn from their uniform prior ranges
using LHS (Muleta and Nicklow, 2005). This ensemble was assumed
adequate for an initial assessment of parameter uncertainty. A lar-
ger sample will probably provide more robust results, yet further
increases the already significant computational costs of the analy-
sis. After sampling the parameter space, PCR-GLOBWB is executed
for each different parameter combination, resulting in 1000 differ-
ent time series of simulated discharge dynamics for each of the five
different basins and three different forcing datasets. Steady state
initial conditions were enforced by running PCR-GLOBWBmultiple
times for each different parameter combination using the climatol-
ogy of each specific forcing dataset until differences in basin aver-
age discharge and basin average groundwater recharge between
two consecutive runs were less than one percent.
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2.5. Experiment design

2.5.1. Uncertainty analysis for calibration period (1991–1995)
The first analysis was conducted for the period 1991–1995,

which we hereafter will conveniently refer to as the calibration
period. To benchmark our results, and assess the influence of the
forcing data uncertainty on simulated discharge dynamics, PCR-
GLOBWB was also run individually for all three forcing datasets
with default values for the parameters.

The results of the model simulations are evaluated by compar-
ison against observed monthly discharge data. Three simple sum-
mary metrics are used to quantify the similarity of the simulated,
Qmod and measured, Qobs discharge time series. This includes the
RMSE (Eq. (6a)), the normalized RMSE (NRMSE; Eq. (6b)) and
Nash–Sutcliffe (NS; Eq. (7)) coefficient:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðQmod;i � Qobs;iÞ2

r
; ð6aÞ

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðQmod;i � Qobs;iÞ2

q
Qobs

; ð6bÞ

NS ¼ 1�
Pn

i¼1ðQobs;i � Qmod;iÞ2Pn
i¼1ðQobs;i � QobsÞ2

; ð7Þ

where n denotes the number of months (n = 60), and Qobs signifies
the monthly average observed discharge value.

The LHS approach used herein exhaustively samples the param-
eter space, and should induce a significant simulation spread if
appropriate prior ranges are used. This type of random sampling
will likely create many parameter combinations that rather poorly
simulate the observed hydrology of the basins. To eliminate these
non-behavioral solutions from the ensemble of 1000 samples, we
draw inspiration from the Generalized Likelihood Uncertainty Esti-
Table 2
Normalized Root Mean Square Errors (NRMSE, see Eq. (6b)) of monthly modeled discharge
headings summarize the performance of the default model parameterization (default), optim
all forcings (global optimal), mean simulation of the behavioral solutions (behavioral), an
evaluation period (1996–2000) respectively. The statistic ‘‘Overall” lists the average perfor

NRMSE Calibration

default optimal global optimal behavioral m

Rhine
CFSR 0.56 0.40 0.62 0.45 0
ERACRU 0.21 0.16 0.23 0.21 0
ERAint 0.21 0.19 0.25 0.21 0
Overall 0

Mackenzie
CFSR 1.54 1.09 1.17 1.15 1
ERACRU 0.59 0.37 0.87 0.42 0
ERAint 0.43 0.34 0.54 0.36 0
Overall 0

Murray
CFSR 2.32 0.91 2.72 1.11 2
ERACRU 1.53 0.80 1.20 0.88 1
ERAint 0.93 0.80 1.06 0.86 0
Overall 1

Amazon
CFSR 0.42 0.35 0.49 0.39 0
ERACRU 0.37 0.26 0.41 0.29 0
ERAint 0.33 0.23 0.37 0.25 0
Overall 0

Mekong
CFSR 1.16 0.91 1.09 1.05 1
ERACRU 0.58 0.33 0.60 0.41 0
ERAint 0.83 0.61 0.75 0.71 0
Overall 0
mation (GLUE) method of Beven and coworkers (Beven and Binley,
1992; Beven, 2006), and introduce a subjective threshold to refocus
the thrust of the analysis on behavioral samples that at least rea-
sonably mimic the observed discharge dynamics. We therefore
eliminate the worst 95% of the 1000 samples and focus our atten-
tion on the 50 best parameter combinations with lowest NRMSE.
We evaluate the performance of this behavioral ensemble using a
monthly average normalized uncertainty range, conveniently also
referred to as UR [–]:

UR ¼ 1
n

Xn
i¼1

ðQmax;i � Qmin;iÞ
Qobs;i

; ð8Þ

where Qmin,i and Qmax,i denote the minimum and maximum dis-
charge of the ith month, respectively. We purposely divide in Eq.
(8) with the observed average monthly discharge to enable a com-
parison of the calibration and evaluation results of the different
river systems.

To illustrate the advantages of down sampling, we compare UR
of the behavioral solutions against its value derived for the original
ensemble of 1000 streamflow simulations. This approach was
repeated for each forcing dataset and catchment.

2.5.2. Uncertainty analysis for evaluation period (1996–2000)
We evaluate the performance of PCR-GLOBWB for the ensemble

of the 50 behavioral parameter solutions for an independent eval-
uation period (1996–2000). The results of this analysis are summa-
rized in Tables 2–4 and Figs. 6–10. The discharge simulations of the
behavioral and best parameter values of the evaluation period are
quantified using the NRMSE and NS metrics, and width of the
uncertainty ranges and hydrographs.

2.5.3. Uncertainty analysis for other hydrological model outputs
The results of this study show that the performance of PCR-

GLOBWB to accurately describe the observed monthly discharge
time series for all forcing datasets and river systems considered herein. The various
al parameter combination (optimal), parameter sets with lowest RMSE averaged over
d full LHS ensemble (mean LHS) respectively, for the calibration (1991–1995) and
mance for all three different forcing datasets combined.

Evaluation

ean LHS default optimal ‘‘global” optimal behavioral

.56 0.60 0.34 0.46 0.32

.26 0.23 0.18 0.19 0.26

.22 0.26 0.22 0.17 0.31

.26

.45 1.10 0.54 0.63 0.59

.63 0.52 0.22 0.65 0.29

.39 0.27 0.19 0.41 0.23

.38

.13 3.28 1.50 3.47 1.71

.57 2.36 0.69 1.45 0.71

.92 0.99 0.73 1.22 0.67

.40

.41 0.34 0.16 0.25 0.18

.34 0.29 0.13 0.20 0.16

.30 0.24 0.12 0.18 0.13

.32

.30 0.86 0.63 0.78 0.71

.56 0.47 0.22 0.50 0.56

.94 0.46 0.37 0.41 0.55

.60



Table 3
Nash–Sutcliffe (NS) coefficients of PCR-GLOBWB simulated discharge time series for all different forcing datasets and river catchments. The various headings summarize the
performance of the default model parameterization (default), optimal parameter combination (optimal), lowest NRMSE average over all forcings (global optimal), mean simulation
of the behavioral solutions (behavioral), and original LHS ensemble (mean LHS) for the calibration (1991–1995) and evaluation period (1996–2000) respectively. The statistic
‘‘Overall” lists the average performance for all three different forcing datasets combined.

NS Calibration Evaluation

default optimal global optimal behavioral mean LHS default optimal ‘‘global” optimal behavioral

Rhine
CFSR �0.80 0.11 �1.09 0.00 �0.79 �1.59 0.19 �0.53 0.25
ERACRU 0.76 0.86 0.69 0.83 0.62 0.62 0.77 0.73 0.53
ERAint 0.75 0.80 0.66 0.83 0.73 0.51 0.66 0.78 0.32
Overall 0.61

Mackenzie
CFSR �4.61 �1.84 �2.28 �2.03 �3.99 �7.88 �2.60 �3.90 �3.30
ERACRU 0.17 0.67 �0.79 0.60 0.05 �0.99 0.41 �4.18 �0.01
ERAint 0.56 0.72 0.29 0.71 0.64 0.46 0.55 �1.12 0.32
Overall 0.66

Murray
CFSR �2.80 0.41 �4.23 0.26 �2.2 �6.60 �0.58 �7.50 �1.01
ERACRU �0.66 0.55 �0.02 0.53 �0.74 �2.92 0.66 �0.49 0.65
ERAint 0.39 0.55 0.21 0.52 0.41 0.31 0.62 �0.06 0.68
Overall 0.40

Amazon
CFSR �0.98 �0.38 �1.67 �0.54 �0.88 �0.06 0.29 �0.88 0.00
ERACRU �0.48 0.26 �0.86 0.13 �0.28 0.20 0.52 �0.15 0.29
ERAint �0.18 0.23 �0.54 0.34 0.01 0.48 0.58 0.07 0.52
Overall �0.22

Mekong
CFSR �0.41 0.13 �0.25 �0.13 �0.79 0.28 0.56 0.32 0.43
ERACRU 0.64 0.88 0.62 0.83 0.69 0.75 0.94 0.72 0.65
ERAint 0.28 0.61 0.41 0.49 0.07 0.76 0.85 0.81 0.66
Overall 0.62

Table 4
Average spread of the PCR-GLOBWB simulated hydrograph uncertainty ranges for the original LHS ensemble (LHS ensemble), behavioral solutions (Behavioral) for all three forcing
datasets individually, combined using the default parameterization (forcing) and joint LHS parameter and forcing data uncertainty (pars + forcing).

Range Cal Eval Cal Eval

Rhine LHS ensemble Behavioral Behavioral Amazon LHS ensemble Behavioral Behavioral

CFSR 1.29 0.67 1.12 CFSR 0.65 0.34 0.44
ERACRU 1.11 0.48 0.76 ERACRU 0.53 0.23 0.49
ERAint 1.23 0.50 0.77 ERAint 0.52 0.19 0.37
pars + forcing 1.74 0.98 1.12 pars + forcing 0.84 0.58 0.78
forcing 0.56 Forcing 0.26

Mackenzie LHS ensemble Behavioral Behavioral Mekong LHS ensemble Behavioral Behavioral

CFSR 1.58 0.61 0.43 CFSR 1.22 0.74 1.65
ERACRU 1.03 0.40 0.37 ERACRU 0.69 0.32 0.86
ERAint 1.32 0.33 0.36 ERAint 1.22 0.78 1.13
pars + forcing 3.03 1.51 1.11 pars + forcing 2.24 1.60 1.65
forcing 1.72 forcing 1.27

Murray LHS ensemble Behavioral Behavioral

CFSR 4.96 1.56 1.91
ERACRU 4.32 1.12 1.77
ERAint 3.72 0.86 1.58
pars + forcing 5.74 1.87 2.87
forcing 1.46
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emanating from the basin outlet can be improved, yet it remains to
be seen whether this is caused by an overall water balance
improvement, i.e. storage in snow, soil, groundwater and losses
due to evaporation and human influences. From the full set of
1000 realizations the 50 behavioral members have been selected
based upon their agreement with discharge observations (5% low-
est NRMSE values). Ideally, the behavioral solutions identified in
this way, capture all relevant hydrological processes. They should
not only fit discharge data well, but simultaneously show a similar
increase in performance on simulating the temporal dynamics of
the soil moisture dynamics, snow accumulation/melt, local runoff
generation and actual evapotranspiration. We quantify this with
the reduction, d, in simulation uncertainty of the behavioral solu-
tions relative to the uncertainty in the full LHS:

d ¼ 100
URb

URLHS
; ð9Þ

where URb [–] denotes the simulation uncertainty pertaining to the
50 behavioral solutions and URLHS quantifies the spread of the orig-
inal ensemble of 1000 samples see Eq. (8).
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2.5.4. Exploring possibilities for regionalization
For all watersheds and forcing datasets, PCR-GLOBWB was exe-

cuted with the same 1000 different parameter combinations. By
comparing their individual NRMSE values (Eq. (6b)), we explore
whether the improvements in simulation performance are depen-
dent on catchment and climate characteristics. If these improve-
ments are catchment and/or forcing dataset independent, this
would possibly indicate the presence of one global parameter set
that works well for the different basins and rainfall scenarios
(Widén-Nilson et al., 2007). To assess this independency, we calcu-
late average (linear) correlation coefficients, rX,Y between the 1000
different NRMSE values for different forcing datasets and
catchments:

rX;Y ¼
PM

j¼1ðNRMSEX;j � NRMSEXÞðNRMSEY;j � NRMSEYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j¼1ðNRMSEX;j � NRMSEXÞ2

Pm
j¼1ðNRMSEY ;j � NRMSEY Þ2

q ;

ð10Þ

where the subscript X and Y denote different basin and forcing com-
binations, j is the actual parameter combination, and M represents
the size of the parameter ensemble. Correlation coefficients close
to 1 are preferred and imply that model performance is indepen-
dent of catchment and climate characteristics.
Fig. 4. Long-term monthly basin average precipitation amounts (mm/month) for the sel
the combination of ERA-40 and CRU (black).
3. Results and discussion

3.1. Comparison of meteorological forcing datasets

To compare the three forcing datasets, monthly climatologies
(long-term basin average monthly precipitation amounts) have
been derived for the period 1991–2000. The climatologies are dis-
played in Fig. 4. In general the climatologies are comparable for the
three different forcing datasets, with monthly differences ranging
between 5% and 35% where the highest values are found for the
CFSR dataset. Patterns are particularly similar for those basins with
a strong seasonal variation such as the Amazon and Mekong. The
CFSR reanalysis clearly assigns the highest precipitation amounts
to the Amazon, Mekong and Mackenzie river basins, particularly
during the wet seasons. This over-estimation, also found by
Wang et al. (2010), may result from a bias in the updated reanaly-
sis states (Zhang et al., 2012). The differences between the three
meteorological datasets appear smallest for the Rhine (with a max-
imum difference of 30 mm/month) and Murray watersheds (max-
imum difference of 18 mm/month). This finding is perhaps not
surprising, and an immediate effect of the relatively high data
quality and measurement density in these basins. Forcing uncer-
tainty decreases with increasing number of sampling points avail-
able for optimization and data-assimilation. Relatively low
ected river basins and three forcing datasets: ERA-Interim (gray), CFSR (white) and



Fig. 5. Change in mean simulated discharge value (%) as function of a 20% (two-sided intervals) change in the individual parameters.
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precipitation amounts are found in the ERA-CRU dataset for the
Mackenzie and Mekong river systems. For the Mackenzie this can
in part be explained by undercatch in snow measurements
(Fiedler and Döll, 2007).

3.2. Results parameter sensitivity analysis

The results of the parameter sensitivity analysis are shown in
Fig. 5. Quite interestingly, parameter sensitivity of PCR-GLOBWB is
comparable for the different basins. High sensitivities are found
for the pore size distribution, air entry value and the distribution
of soil water storage. Changes in soil parameterization induce the
largest changes in the Murray basin (up to 20%), the most arid basin
with relatively thin soil layers and parameters that determine the
freezing process only affect discharge dynamics of the Mackenzie,
Rhine and Mekong where snow accumulation constitutes a major
component of the hydrological cycle. Based on the sensitivity analy-
sis with fifteen parameters, only those parameters were selected for
the full uncertainty analysis with PCR-GLOBWB that demonstrated
at least a 1% variation in the annual mean discharge (averaged over
all basins). These twelve parameters are marked in bold in Table 1.

3.3. Calibration period – full parameter and forcing uncertainty

Figs. 6–10 present the simulated hydrograph uncertainty ranges
for the five different catchments considered in this study. Six dif-
ferent panels are used to summarize our findings. The light-blue
region depicts the streamflow uncertainty ranges of the original
LHS ensemble, whereas the dark-blue region denotes the results
for the behavioral solutions. Each different forcing dataset is color
coded. To benchmark the results of the LHS sample, the top panel
displays the results of PCR-GLOBWB using default values for the
parameters. In the second panel the discharge time-series obtained
with the optimal parameter set are displayed (thick lines), the thin
lines represent the overall best discharge simulation with lowest
average NRMSE of all three forcing datasets (also referred to as
the meteorological ‘‘global” optimal parameter combination). The
third, fourth and fifth panel illustrate the results for the three indi-
vidual forcing datasets, and finally the bottom panel displays the
simulations of a superimposed ensemble that summarizes the joint
results for all forcing datasets combined. We now discuss the
results of Figs. 6–10.

For most rivers, the CFSR reanalysis forcing dataset consistently
overestimates the observed monthly discharge data, irrespective of
whether the default parameterization of PCR-GLOBWB is used or
the parameters are varied using LHS. The simulated hydrograph
uncertainty ranges of the full LHS for the CFSR dataset are signifi-
cantly larger (for all basins at a significance level of 0.01) than
those derived for the other two forcing datasets. This difference
is due to the larger precipitation amounts of the CFSR dataset
(Wang et al., 2010; Zhang et al., 2012), which is apparent for all
basins, except the Amazon (Fig. 4). This overestimation is particu-
larly large for the Mackenzie and Mekong.

For all catchments, except the Amazon (where all forcing data-
sets underestimate the observed flow; consistent with the analysis
of Döll et al. (2003) and Widén-Nilson et al. (2007)), the discharge
simulation uncertainty ranges envelop the measured discharge
data (see Figs. 6–10a). This is an encouraging result, and demon-
strates the ability of PCR-GLOBWB to accurately describe large
scale monthly discharge dynamics. The model is able to fit the
monthly streamflow data reasonably well, irrespective of the
actual forcing data that is being used.

For the Mackenzie, Murray and Mekong (Figs. 7–9) river sys-
tems considerable variation exists in the simulated streamflow val-
ues among the different forcing datasets. A number of reasons
explain this apparent dichotomy. For instance, for the Mackenzie
problems with precipitation under-catch due to snowfall (Fiedler
and Döll, 2007) are perhaps most important and known to affect
the ERA-CRU dataset. On the other hand, the timing and quantity
of low flow events is simulated relatively well for the Mackenzie.
This coincides with below zero temperatures and temporal storage
of precipitation as snow or ice. For the Murray catchment, PCR-
GLOBWB severely overestimates the actual monthly discharge
when driven with the CFSR forcing dataset (upto four times too
high). This overestimation has been reported in earlier GHM stud-
ies (Gosling and Arnell, 2011).

Thus far it is clear that forcing data error constitutes the main
source of uncertainty in simulated monthly discharges. Appar-
ently, parameter uncertainty represents only a subordinate part
of the simulated hydrograph uncertainty. This is an important find-
ing and demonstrates that the apparent mismatch between model
simulations and data cannot be resolved by increasing model com-
plexity and resolving sub-grid processes. Instead, it would be most
productive to improve the characterization of global rainfall
amounts at spatial resolutions of 0.5� and smaller.

For the Rhine (Fig. 10) river system the different forcing data-
sets are in excellent agreement, especially the ERA-Interim and
ERA-CRU time series for which the best performing parameter



Fig. 6. Hydrographs with monthly average discharge for the Amazon river basin modeled with PCR-GLOBWB. In each individual panel, measured discharge data (GRDC) are
shown as black dots, the light-blue area denotes the simulation uncertainty (difference between minimum and maximum discharge) obtained from the original LHS
ensemble, and the dark-blue area represents the simulated uncertainty ranges derived from the behavioral parameter combinations. The top panel displays the results of the
default PCR-GLOBWB parameterization forced with CFSR reanalysis data (red), the ERACRU dataset (dark blue) and ERA-Interim reanalysis data (green) and plots the LHS
ensemble spread for all these different forcing datasets combined for the calibration period (1991–1995). Panels 2–6 contain both the calibration and validation period
(1991–2000) as indicated on the x-axis of the last panel. In the second panel the discharge time-series obtained with the optimal parameter set are displayed (thick lines), the
thin lines represent the discharge simulations obtained with the parameters giving the lowest overall NRMSE for all three forcing datasets for each individual basin (the
meteorological ‘‘global” optimal parameter combination). The next three panels depict model realizations for the CFSR, ERACRU and ERA-Interim datasets. The bottom panel
displays the results for the original LHS ensemble and combined behavioral solutions of all three forcing datasets. This signifies the combined effect of parameter and forcing
uncertainty. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sets result in NS values of 0.80 and 0.86. Consequently, the
simulated discharge dynamics closely correspond with each other
and exhibit relatively narrow uncertainty ranges (Fig. 10c and d)
which generally encompass the observed streamflow data. The
excellent availability of soil data and detailed information about
the river network as well as the dense system of meteorological
stations used to derive the forcing datasets enables the model
to accurately mimic the observed discharge dynamics. Indeed,
Fig. 4 displays a strong agreement between the ERA-40 and
ERA-Interim datasets for the Rhine (differences range between 1
and 20 mm/month).
To illuminate the dependency of the optimized parameter val-
ues on the forcing dataset used, the second panels in Figs. 6–10
compare the discharge simulations derived from the optimal
parameter sets for each of the individual forcing time series (thick
lines) with the global best simulation (lowest averaged NRMSE) for
all three different forcing datasets (thin lines). The best simulations
of each individual forcing data match the observed data much bet-
ter than the global best simulation. This is further demonstrated in
Tables 2 and 3 that list the NRMSE and NS values for the global
optimal parameterization. The performance of the forcing specific
parameter values is, at least during the calibration period, always



Fig. 7. Measured (GRDC, black dots) and PCR-GLOBWB simulated streamflow hydrographs for the Mackenzie basin. Please refer to the caption of Fig. 6 for further
explanation.
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notably higher than the global best parameter set (see also Tables 2
and 3).

3.4. The effect of down sampling

3.4.1. Calibration period
The mean discharge simulation of the LHS ensemble generally

outperforms the default parameterization of PCR-GLOBWB during
the calibration period (see Tables 2 and 3). This is most evident
for those forcing – river basin combinations in which the default
parameterization demonstrates significant bias. Yet, for several
catchments and forcing datasets the default parameterization of
PCR-GLOBWB gives lower NRMSE values than the LHS mean. This
is most obvious for (a) the Rhine river forced with the ERA-CRU
and ERA-Interim data, (b) the Mackenzie with ERA-CRU data, (c)
the Murray with ERA-CRU data, and (d) the Mekong with CFSR
and ERA-CRU datasets.

The fifty behavioral solutions with lowest NRMSE also result in
higher NS values than the default parameterization of PCR-
GLOBWB. In general, the performance improvement is largest for
the forcing data with the largest bias. Yet, this likely results in
biased parameter estimates that compensate for systematic errors
in the precipitation measurements (Beven, 1996; Widén-Nilson,
2007). Despite the noticeable improvement in simulation perfor-
mance of PCR-GLOBWB due to parameter tuning, the model bias
remains large, especially for the CFSR dataset. This again reiterates
the importance of accurate rainfall estimates.

3.4.2. Evaluation period
To evaluate the consistency of the calibration results, we use a

5-year evaluation period from 1996 to 2000 to investigate the sim-
ulation accuracy of PCR-GLOBWB outside the parameter estima-
tion period. For simplicity, we limit our attention to the
behavioral solutions of the calibration data period. From the NS
and RMSE values it appears that for most river systems, the mean
ensemble discharge simulation of the behavioral solutions and that
of the optimal parameter combinations better fit the observed dis-
charge dynamics than the default parameterization, with the



Fig. 8. Measured (GRDC, black line) and PCR-GLOBWB simulated hydrographs for the Mekong river basin. Please refer to the caption of Fig. 6 for further explanation.
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exception of the Rhine watershed. For this catchment, the default
parameterization of PCR-GLOBWB performs quite well when
forced with the ERA-CRU dataset (Van Beek et al., 2011). Note that
the optimal parameter combinations derived from the calibration
period also receive higher NS values than the mean discharge sim-
ulation of the behavioral parameter solutions. Exceptions include
(1) the Rhine forced with the CFSR dataset and (2) the Murray
catchment forced with the ERA-Interim reanalysis. For both the
Mackenzie and Amazon river basins the PCR-GLOBWB simulated
discharge time series show large deviations from the observed data
(with at worst an NS value of �2.6 for the optimal parameter set
for the CFSR dataset in the Mackenzie for the evaluation period).
For the Amazon there is a consistent offset in the timing of the
annual discharge cycle, which we attribute to an overestimation
of the actual flow velocities in the floodplains, most likely caused
by an underestimation of the roughness coefficient. This model-
data mismatch cannot be resolved by simply increasing the prior
sampling range of the Manning coefficient. Instead it would be
more productive to further refine the dynamics of water storage
and outflow in the floodplains.
Table 4 lists the average spread of the uncertainty ranges
derived from the simulations of the LHS ensemble (the shaded blue
regions in Figs. 6–10). This range is calculated by averaging the dif-
ference between the maximum and minimum simulated discharge
values at a monthly time step. We present both the ranges of the
original ensemble of 1000 samples and those of the behavioral
solutions. One would expect the discharge simulation uncertainty
of the behavioral solutions to be smaller than that of the original
ensemble. This is because the behavioral solutions are constrained
by the observed discharge data. Indeed, the PCR-GLOBWB simula-
tion uncertainty of the behavioral solutions is smaller than that of
the original ensemble of 1000 parameter samples. This is true for
all catchments and the reduction is significant at a significance
level of 0.01 for all basins for all forcing datasets. The uncertainty
ranges of the behavioral models during the evaluation period
are comparable in size (Mackenzie, Amazon, Murray) or slightly
larger than those obtained for the calibration period. These results
are consistent with findings from other studies (Krishnamurti
et al., 1999; Ajami et al., 2006; Vrugt and Robinson, 2007;
Gudmundsson et al., 2011; Haddeland et al., 2011) and favor the



Fig. 9. Measured (GRDC, black line) and PCR-GLOBWB simulated streamflow hydrographs for the Murray river basin. Please refer to the caption of Fig. 6 for further
explanation.
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use of an ensemble of solutions rather than a single deterministic
simulation for uncertainty quantification and prediction.

Table 4 also lists the discharge simulation uncertainty ranges
derived from the combined behavioral models for all three forcing
datasets (Behavioral; pars + forcing). For most catchments the sim-
ulation uncertainty is at least twice as large as the simulated
hydrograph spread corresponding to the behavioral model realiza-
tions for the individual forcing datasets. This indicates that bias
and differences among the forcing datasets highly impact the over-
all uncertainty and that differences between discharge simulations
obtained from the different forcing datasets remain large, even
when the focus is on the behavioral solutions.

An expected, but rather discouraging result is that the optimal
parameter combination found for the calibration period of each
river system and forcing dataset does not possess the best perfor-
mance during the evaluation period. This again illuminates the dif-
ficulty of finding a single default parameterization that exhibits
consistent performance across the different watersheds and forc-
ing datasets. The NRMSE (NS) values of the optimal discharge sim-
ulation for the evaluation period is substantially higher (lower)
than the respective statistics for the calibration period for the
Rhine, Murray and Mackenzie (see Tables 2 and 3). A more consis-
tent performance during both periods might be found if the length
of the calibration period is increased (if possible) to better account
for long-term climate variability or if a more advanced calibration
strategy is used. This is beyond the scope of the current paper and
will be explored in future work.

3.5. Reduction of uncertainty in other hydrological model outputs

Unfortunately, at large spatial scales, limited data is available to
benchmark the performance of GHMs. Although some advances
have been made in our ability to monitor and measure large-
scale hydrological fluxes and state variables, such data is not yet
readily and widely available. We therefore assume that the reduc-
tion of the spread of the ensemble, while moving from the full
1000 member ensemble to the 50 behavioral members, is an indi-
cator of improved performance for other hydrological variables



Fig. 10. Measured (GRDC, black line) and PCR-GLOBWB simulated hydrographs for the Rhine river basin. Please refer to the caption of Fig. 6 for further explanation.
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under consideration (e.g. soil moisture, local runoff, actual evapo-
transpiration and snow). A reduction in uncertainty for all vari-
ables would be a desirable finding and demonstrate model
robustness and reliability.

Fig. 11 plots the reduction in simulation uncertainty for the
behavioral solutions considered herein. Each hydrological variable
is coded with a different symbol. The behavioral solutions substan-
tially reduce the simulation uncertainty of the other hydrological
variables. The larger the reduction in the width of the simulated
discharge dynamics, the smaller the simulation spread of the other
hydrological variables. This reduction in simulation uncertainty is
most pronounced for the basin average local runoff which determi-
nes the river discharge at the basin outlet (x-axis), and hence this
variable exhibits a high correlation with river discharge. The reduc-
tion in simulation uncertainty is most notable for the modeled
snow dynamics of the Mackenzie watershed and the evapotranspi-
ration amounts of the Murray river basin. These results are some-
what to be expected. The timing of the annual discharge cycle of
the Mackenzie strongly depends on the simulated snow dynamics,
whereas the discharge regime of the Murray basin is strongly influ-
enced by evapotranspiration.

The spread in simulated evapotranspiration amounts has been
notably reduced for the Rhine river system, which heavily impacts
discharge dynamics during the summer season. For this watershed
we also expected a notable reduction in the uncertainty of the
modeled snow dynamics, as snow fall and melt in the Alps strongly
influence the discharge regime. But this reduction is not found.
This may be the consequence of the runoff regime of the Rhine that
is strongly controlled by antecedent rainfall as well. Although the
NS values are relatively high for the Rhine (0.77 for ERACRU and
0.66 for ERAint for the optimal parameter set in the evaluation per-
iod), the onset of the spring discharge is wrongly estimated, point-
ing to structural deficiencies in PCR-GLOBWB.

Although the behavioral solutions reduce the uncertainty of the
simulated discharge dynamics of the different river systems, the
modeled soil moisture dynamics appears relatively unaffected.
The simulation uncertainty remains rather large. This is most obvi-
ous for the arid Murray basin where soil moisture constitutes only



Fig. 11. Reduction in simulation uncertainty (see Eq. (9)) for the Amazon, Mackenzie, Mekong, Murray, and Rhine river basin derived from down sampling the original LHS
ensemble. The ‘‘+”, ‘‘o”, ‘‘⁄”, ‘‘x” and ‘‘�” symbols are used to denote reduction in uncertainty for discharge, local runoff, actual evapotranspiration, soil moisture and snow,
respectively. Color coding is used to indicate different forcing datasets. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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a relatively minor part of the water balance, irrespective of the
forcing dataset being used. Note that the performance of PCR-
GLOBWB for the Murray basin is poor, particularly for the CFSR
and ERA-CRU forcing dataset. Similar findings have been reported
in other GHM studies (Gosling and Arnell, 2011). Moreover, reser-
voir management and river regulation strongly impact the dis-
charge dynamics of the Murray. These human factors were
excluded in the version of PCR-GLOBWB used in this study (Van
Beek et al., 2011). The behavioral solutions for this basin are com-
pensating for these structural deficiencies, a subject of much inter-
est in the hydrological literature.

Quite interestingly, the behavioral solutions of the Mackenzie
and Murray river basins provide a relatively large spread of the
simulated discharge dynamics, but much smaller variation of the
other basin average hydrological variables. Apparently, the cell
specific hydrologic fluxes and states of the behavioral ensemble
are in much better agreement than the modeled river discharge
time series.

The study of Anderton et al. (2002) illustrated that optima can
be found in different parts of the parameter space, depending on
the hydrological variable of interest (e.g. soil moisture, phreatic
surface level or discharge). This makes it rather difficult to find a
single parameterization that adequately fits river discharge, soil
moisture dynamics, and groundwater tables (Winsemius et al.,
2006). Finger et al. (2011) showed that the performance of a dis-
tributed hydrological model can be enhanced by including spatial
datasets during calibration, for example snow depth or coverage.
Unfortunately, data availability severely limits the possibilities of
a multi-response calibration for global hydrological models. Fortu-
nately, continued advances in measurement technologies should



Table 5a
Upper diagonal values of average correlation coefficients between the 1000 different NRMSE values of PCR-GLOBWB simulated monthly discharge values of the five different
basins and three forcing datasets. Bold values are used to indicate positive correlations that are significant at a significance level of 0.01. High values are indicative for consistent
performance across different catchments and forcing datasets; and favor the selection of a single parameter combination that exhibits good performance for the different
catchments, and hence can replace the current default PCR-GLOBWB parameterization.

Amazon Mackenzie Mekong Murray Rhine

CFSR ERA
CRU

ERA
int

CFSR ERA
CRU

ERA
int

CFSR ERA
CRU

ERA
int

CFSR ERA
CRU

ERA
int

CFSR ERA
CRU

ERA
int

Amazon CFSR – 0.88 0.86 �0.51 0.55 0.09 �0.53 0.58 �0.56 �0.52 �0.51 �0.38 �0.50 �0.09 �0.40
ERACRU – 0.92 �0.36 0.38 0.10 �0.57 0.38 �0.54 �0.34 �0.35 �0.28 �0.36 �0.15 �0.31
ERAint – �0.17 0.22 0.03 �0.60 0.25 �0.54 �0.18 �0.20 �0.20 �0.22 �0.19 �0.21

Mackenzie CFSR – �0.96 �0.03 0.43 �0.81 0.56 0.86 0.81 0.58 0.91 0.01 0.70
ERACRU – 0.25 �0.48 0.85 �0.60 �0.84 �0.79 �0.47 �0.84 0.09 �0.59
ERAint – �0.03 0.17 �0.02 0.03 0.07 0.45 0.15 0.59 0.44

Mekong CFSR – �0.58 0.97 0.49 0.54 0.46 0.53 0.31 0.49
ERACRU – �0.73 �0.93 �0.92 �0.58 �0.81 �0.01 �0.59
ERAint – 0.66 0.70 0.57 0.65 0.30 0.59

Murray CFSR – 0.99 0.75 0.89 0.19 0.76
ERACRU – 0.80 0.86 0.27 0.78
ERAint – 0.70 0.66 0.86

Rhine CFSR – 0.16 0.83
ERACRU – 0.64
ERAint –

Table 5b and c
Equal to Table 5a, but now for catchments with similar characteristics: Rhine and
Danube (b) and Mackenzie and Yukon (c).

Danube

CFSR ERACRU ERAint

Rhine CFSR 0.92 0.72 0.80
ERACRU 0.20 0.69 0.80
ERAint 0.79 0.92 0.94

Yukon

CFSR ERACRU ERAint

Mackenzie CFSR 0.62 �0.94 0.40
ERACRU �0.57 0.92 �0.33
ERAint 0.13 �0.01 0.31
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open new avenues for calibration and evaluation of large-scale
hydrological models.

3.6. Possibilities for global parameter estimates or regionalization

In this section we investigate, the dependency of the optimal
parameter estimates on forcing data and catchment characteris-
tics. In other words, we test whether it is feasible to locate a single
parameter combination that receives consistent performance for
multiple different forcing datasets and river basins (Widén-
Nilson et al., 2007). This would be desirable, and opens up possibil-
ities to estimate the parameters of PCR-GLOBWB from basic soil
and catchment properties. This would reduce the need for calibra-
tion and facilitate prediction in ungauged basins. To provide
insights into the transferability of the parameter estimates from
one catchment to the next, we calculate the correlation coefficients
and their significance, between the NRMSE values of the 1000 dif-
ferent samples of the LHS ensemble derived for each different
basin and forcing dataset. The results of this analysis are summa-
rized in Table 5a. Overall significant correlations (marked bold)
are found, with the CFSR dataset as main exception, here coeffi-
cient values appear to be rather low, with the exception of the
Murray and Rhine river basins. This again demonstrates that it is
rather difficult, if not impossible to find a single realization of the
parameter values that receives consistent performance for each
of the basins and forcing datasets considered herein. The likelihood
of finding such parameterization further deteriorates if different
forcing datasets are being used. In a second step we investigated
the possibilities for regionalization by calculating the same corre-
lation coefficients of the NRMSE for basins with similar character-
istics. We therefore select (1) the Rhine and Danube, two Alpine
European catchments in moderate climate zones, and (2) the
Mackenzie and Yukon, two arctic catchments in Northern Canada
and Alaska. The correlation coefficients for the different forcing
datasets are shown in Tables 5b and c. For the Rhine and Danube
the correlation coefficients are relatively high and significant at a
level of 0.01, especially for the CFSR (0.92) and ERA-Interim
(0.94) forcing datasets. For the Mackenzie and Yukon basins, the
correlation is somewhat lower, nonetheless, a significant correla-
tion of 0.92 is obtained for the ERA-CRU dataset.

The results presented thus far highlight several important find-
ings. In the first place, it seems impossible to find a single param-
eterization that works well across the different watersheds and
forcing datasets. This necessitates a catchment specific GHMmodel
calibration, which in hindsight is perhaps not a surprising result as
the dominant hydrological processes vary considerably between
individual catchments. Yet, there seems to be a possibility for
regionalization when dividing catchments in groups with similar
basin characteristics, as has been shown here for the Danube and
Rhine river basins. But even then one should realize that the opti-
mal parameter values derived for each catchment are compensat-
ing for model structural errors and input data measurement errors.
This is common in virtually all watershed modeling studies and
severely diminishes our ability to correlate the parameter values
to basic soil and catchment properties. Note that the quality of
the model input data varies considerably between different catch-
ments, and hence the parameter compensation effect differs for
each watershed. Therefore regionalization methods should prop-
erly be tested.

In the second place, our results demonstrate that the chosen
forcing dataset strongly determines the optimal parameter values.
Each individual forcing dataset has its own optimal parameter esti-
mates. This result is perhaps not surprising given the relatively
large differences among the different forcing datasets. Yet it fur-
ther complicates parameter estimation, given the computational
demands of global scale hydrological models such as PCR-
GLOBWB and the fact that the model will be applied using different
operational, historical and climate model datasets (Candogan
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Yossef et al., 2011; Wada et al., 2010; Sperna Weiland et al., 2010).
Moreover, in climate impact studies, in which a model such as PCR-
GLOBWB may be forced with meteorological data from an ensem-
ble of GCMs for different time-slices (Vaze et al., 2010; Sperna
Weiland et al., 2010) the model should preferably be used with a
default parameterization derived from available global datasets
(Van Beek et al., 2011). Only if one single forcing dataset is
employed, as for example in a flow forecasting system (Candogan
Yossef et al., 2011, 2013), it may be feasible to estimate the param-
eters from discharge and/or other data. In addition the current
study used one single hydrological model, focusing on parameter
and forcing uncertainty and ignoring hydrological model uncer-
tainty, whereas several studies demonstrated that different models
may respond differently to (climate) changes in forcing data
(Vansteenkiste et al., 2012; Ficklin and Barnhart, 2014). The cur-
rent study should be repeated with other GHMs to test whether
the statement that forcing uncertainty is larger than parameter
uncertainty is in general valid.

Finally, we would like to note that residual-based calibration or
sampling approaches as used herein have inherent weaknesses
that make it very difficult to detect model structural errors
(Gupta et al., 2008; Vrugt and Sadegh, 2013). A diagnostic
approach with compelling summary metrics rooted in hydrologic
theory will significantly increase our chances to pinpoint reasons
for model malfunction.
4. Conclusions

The goal of this study was to explore the possibilities for the cal-
ibration of PCR-GLOBWB, a global hydrological model. Our analysis
specifically analyzed the influence of parameter and meteorologi-
cal forcing data uncertainty on simulation uncertainty. From this
analysis the following conclusions can be drawn:

� Simple random search of the parameter space led to parameter
estimates that exhibit better performance than the
default parameterization for nearly all basins and forcing
combinations.

� The model did not demonstrate consistent performance during
the calibration and evaluation period. The parameter values are
likely compensating for structural model deficiencies and biases
in the forcing data. Consistency may be improved by imple-
menting a more advanced calibration method or by increasing
the length of the calibration period, as it may currently be too
short to excite all components of model behavior and properly
consider climate variability. Unfortunately, this significantly
increases the computational requirements of the analysis. And
even then, the resulting optimal parameterization may not be
robust under changing environmental conditions.

� The behavioral parameter solutions derived from one water-
shed exhibit poor performance for other watersheds. A catch-
ment and forcing specific model calibration appears most
productive to optimize the predictive abilities of PCR-
GLOBWB, although there may be possibilities for regionaliza-
tion based on catchment similarities.

� From the current analysis we conclude that parameter uncer-
tainty constitutes only a relatively minor part of hydrograph
simulation uncertainty. This demonstrates that the apparent
dichotomy between model simulations and data cannot be
resolved by increasing model complexity and resolving sub-
grid processes. Instead, what is much-needed is an improved
characterization of global rainfall amounts at spatial resolutions
of 0.5� and smaller. Physically-based hydrological model output
along with stream flow observations can help to diagnose
where biases in precipitation are largest.
� In light of the limited availability of high quality meteorological,
river discharge, surface and subsurface data one might argue
that the complexity of PCR-GLOBWB is not warranted by the
available discharge observations. The use of a simple lumped,
parsimonious, and CPU-efficient hydrologic model allows use
of advanced Bayesian sampling approaches that could poten-
tially lead to a better simulation performance. Yet, most of these
models simulate only the discharge at the watershed outlet or
interior point, and thus cannot be used to simulate other hydro-
logic variables of great importance in global modeling studies.
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