Title
HAMILTONIAN STRUCTURE OF PARTICLE MOTION IN AN IDEAL HELICAL WIGGLER WITH GUIDE FIELD

Permalink
https://escholarship.org/uc/item/8xs1n9vz

Authors
Littlejohn, R.G.
Kaufman, A.N.
Johnston, G.L.

Publication Date
1986-12-01
HAMILTONIAN STRUCTURE OF PARTICLE MOTION IN
AN IDEAL HELICAL WIGGLER WITH GUIDE FIELD

R.G. Littlejohn, A.N. Kaufman, and G.L. Johnston

December 1986
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Hamiltonian Structure of Particle Motion in an Ideal Helical Wiggler with Guide Field*

Robert G. Littlejohn and Allan N. Kaufman
Lawrence Berkeley Laboratory and Physics Department
University of California, Berkeley, CA 94720

and

George L. Johnston
Plasma Fusion Center, Massachusetts Institute of Technology
Cambridge, MA 02139

December 1986

Abstract

The ideal helical wiggler with guide field is shown to possess an integrable Hamiltonian. Explicit generating functions are presented for the canonical transformation to action/angle variables.

* This work was supported by the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098.
The following is a reduction of the motion of a particle in the magnetic field:

\[B = B_0 \hat{z} + B_w (x \cos kz + y \sin kz), \]

to integrable form, including a partial reduction to action/angle variables. Essentially the same problem was solved by Roberts and Buchsbaum [1], but without revealing the Hamiltonian structure. The practical use of the calculation presented here is as a basis for a perturbative treatment of more difficult and/or realistic magnetic field models [2].

Choose units so that \(e=m=c=1 \), and the following gauge:

\[A = B_0 xy + \frac{B_w}{k} (-x \cos kz - y \sin kz). \]

Then the relativistic Hamiltonian (squared) is

\[
H^2(x,p) = (p_x + \frac{B_w}{k} \cos kz)^2 + (p_y - B_0 x + \frac{B_w}{k} \sin kz)^2 + p_z^2 + 1.
\]

Now introduce the following canonical transformation:

\[(x,p) \rightarrow (Q_1,Q_2,Q_3;P_1,P_2,P_3), \]

given by the generating function:

\[
F(x,y,z;P_1,P_2,P_3) = (P_1 + B_0 y)(x - \frac{B_w}{B_0 k} \sin kz) + P_2 (\frac{p_1}{B_0} + y + \frac{B_w}{B_0 k} \cos kz)
\]

\[+ P_3 z - \frac{B_w^2}{4B_0 k^2} \sin 2kz - \frac{B_w^2}{2B_0 k} z. \]

This yields the following transformation equations:
\[\begin{align*}
p_x &= p_1 + B_0 y, \\
p_y &= p_2 + B_0 x - \frac{B_w}{k} \sin kz, \\
p_z &= p_3 - \frac{B_w}{B_0} (\cos kz) (p_1 + B_0 y) - \frac{B_w}{B_0} (\sin kz)p_2 - \frac{B_w^2}{B_0^2} \cos^2 kz, \\
Q_1 &= p_2/B_0 + x - \frac{B_w}{B_0} \sin kz, \\
Q_2 &= p_1/B_0 + y - \frac{B_w}{B_0} \cos kz, \\
Q_3 &= z.
\end{align*} \]

Untangling this, we obtain
\[\begin{align*}
x &= Q_1 - p_2/B_0 + \frac{B_w}{B_0} \sin kz, \\
y &= Q_2 - p_1/B_0 - \frac{B_w}{B_0} \cos kz, \\
z &= Q_3, \\
p_x &= B_0 Q_2 - \frac{B_w}{k} \cos kz, \\
p_y &= B_0 Q_1, \\
p_z &= p_3 - \frac{B_w}{B_0} (B_0 Q_2 \cos kz + p_2 \sin kz).
\end{align*} \]

In the new variables, we have
\[H^2 = p_2^2 + B_0^2 Q_2^2 + [p_3 - \frac{B_w}{B_0} (B_0 Q_2 \cos kz + p_2 \sin kz)]^2 + 1. \]
Note that this H is ignorable in both Q_1 and P_1, so both of these are invariants. In fact, Q_1 and P_1 are closely related to a kind of generalized guiding center position, denoted by X and Y:

$$X = Q_1, \quad Y = -\frac{P_1}{B_0}$$

The Hamiltonian now has only 2 degrees of freedom. It is still not clear that it is integrable, since it depends on all 4 canonical variables: Q_2, P_2, Z, P_3. Notice that it has a harmonic oscillator term in Q_2 and P_2, with frequency B_0. The physical significance of the variables Q_2 and P_2 is that they are essentially the x and y components of the four-velocity:

$$\dot{x} = B_0 Q_2, \quad \dot{y} = P_2$$

However, the harmonic oscillator term is coupled to the longitudinal motion through the term $[P_3 - ...]^2$.

Introduce action/angle variables for the Q_2, P_2 variables, i.e. set

$$Q_2 = (2J/B_0)^{\frac{1}{4}} \sin \theta, \quad P_2 = (2J/B_0)^{\frac{1}{4}} \cos \theta,$$

so that the new canonical variables are $(\theta, J; z, P_3)$. The Hamiltonian becomes

$$H^2 = 2B_0 J + [P_3 - B_w (2J/B_0)^{\frac{1}{4}} \sin (\theta + kz)]^2 + 1.$$

Now introduce a new canonical transformation: $(\theta, J; z, P_3) \rightarrow (\phi, J; z, P_3')$, generated by

$$F'(\theta, z; J, P_3') = J (\theta + kz) + z P_3'$$

yielding

$$\phi = \theta + kz, \quad P_3' = P_3 + kJ.$$

Then the Hamiltonian becomes

$$H^2 = 2B_0 J + [P_3' + kJ - B_w (2J/B_0)^{\frac{1}{4}} \sin \phi]^2 + 1.$$
This is now ignorable in \(z \), so that \(P_3 \) is an invariant.

The Hamiltonian now has only one essential degree of freedom, and so is integrable. The integration can be carried out via elliptic functions [3].

Acknowledgments

This work was supported by the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098.

References

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.