Title
Effect of CH4 and O2 variations on rates of CH4 oxidation and stable isotope fractionation in tropical rain forest soils

Permalink
https://escholarship.org/uc/item/9053w7tc

Authors
Teh, Yit Arn
Conrad, Mark
Silver, Whendee L.
et al

Publication Date
2003-10-01
Effect of CH₄ and O₂ variations on rates of CH₄ oxidation and stable isotope fractionation in tropical rain forest soils

Yit Am Teh¹, Mark Conrad⁴, Whendee L. Silver³ and Charlotte M. Carlson⁵

¹Ecosystem Sciences Division, University of California at Berkeley, Center for Isotope Geosciences, Lawrence Berkeley National Laboratory, ²Department of Chemistry and Biochemistry, Middlebury College

Abstract

Methane-utilizing bacteria are the primary sink for CH₄ in reduced soils, and account for as much as 96% of all CH₄ produced. Methanotrophic bacteria strongly discriminate against the heavy isotope of carbon, resulting in CH₄ oxidation that is not significantly more enriched in ¹³C than the original source material. Previous studies have shown an isotope mass balance approach to quantify CH₄ sources and sinks in the field based on the assumption that the fractionation factor for CH₄ oxidation is a constant. This study quantifies the effect of systematic variations in CH₄ and O₂ concentrations on rates of CH₄ oxidation and stable isotope fractionation in tropical rain forest soils. Soils were collected from the 0-10 cm depth, incubated with varying concentrations of CH₄ (100 ppmv, 500 ppmv, and 1000 ppmv) and 100 ppmv O₂, and CH₄ and O₂ treatments showing similar rates of CH₄ uptake. Rates of CH₄ oxidation did not vary significantly between the different O₂ treatments. The fractionation factor for CH₄ oxidation varied significantly between the different CH₄ treatments, with the 100 ppmv CH₄ treatment showing the lowest rate of CH₄ uptake, and the other 2 treatments showing similar rates of CH₄ uptake. Rates of CH₄ oxidation did not vary significantly between the different CH₄ treatments. The isotope fractionation factor for CH₄ oxidation was calculated for each incubation using a Redfield fractionation model. Rates of CH₄ oxidation varied significantly between CH₄ treatments, with the 100 ppmv CH₄ treatment showing the lowest rate of CH₄ uptake, and the other 2 treatments showing similar rates of CH₄ uptake. Rates of CH₄ oxidation did not vary significantly between the different O₂ treatments. The fractionation factor for CH₄ oxidation varied significantly between the different CH₄ treatments, with the 100 ppmv CH₄ treatment showing the lowest rate of CH₄ uptake, and the other 2 treatments showing similar rates of CH₄ uptake. Rates of CH₄ oxidation did not vary significantly between the different O₂ treatments. These results challenge the assumption that the isotope fractionation factor for CH₄ oxidation remains constant, regardless of in situ activity or CH₄ pool size.

Introduction

Upland tropical forests are generally considered an ozone sink for atmospheric CH₄ (Keller & Matson 1994), though recent research suggests that tropical rainforests are a net source of CH₄ when warmed (Figure 1; also Silver et al. 1999). The factors that regulate CH₄ emissions that are significantly more enriched in ¹³C than the original source material. Previous studies have shown an isotope mass balance approach to quantify CH₄ sources and sinks in the field based on the assumption that the fractionation factor for CH₄ oxidation is a constant. This study quantifies the effect of systematic variations in CH₄ and O₂ concentrations on rates of CH₄ oxidation and stable isotope fractionation in tropical rain forest soils. Soils were collected from the 0-10 cm depth, incubated with varying concentrations of CH₄ (100 ppmv, 500 ppmv, and 1000 ppmv) and 100 ppmv O₂, and CH₄ and O₂ treatments showing similar rates of CH₄ uptake. Rates of CH₄ oxidation did not vary significantly between the different O₂ treatments. The fractionation factor for CH₄ oxidation varied significantly between the different CH₄ treatments, with the 100 ppmv CH₄ treatment showing the lowest rate of CH₄ uptake, and the other 2 treatments showing similar rates of CH₄ uptake. Rates of CH₄ oxidation did not vary significantly between the different O₂ treatments. These results challenge the assumption that the isotope fractionation factor for CH₄ oxidation remains constant, regardless of in situ activity or CH₄ pool size.

Results I

• Rates of CH₄ oxidation varied significantly between CH₄ treatments (ANOVA, P = 0.0005; see Figure 2), with the 100 ppmv CH₄ treatment showing the lowest rate of CH₄ uptake (Fisher LSD, P < 0.05).
• Rates of CH₄ oxidation did not vary significantly between the different O₂ treatments (Figure 5).

Results II

• The isotope fractionation factor (εCH₄=εCH₄) for CH₄ oxidation varied significantly between CH₄ treatments at the 0.010 level (ANOVA, P = 0.005, see Table 1). The fractionation factor for CH₄ oxidation was greater in the 100 ppmv CH₄ treatment than in the 100 ppmv CH₄, 500 ppmv CH₄ (Fisher’s LSD, P < 0.05).
• Initial CH₄ concentrations were positively correlated with εCH₄ (P < 0.04, r² = 0.24, see Figure 4). Rates of CH₄ oxidation were negatively correlated with εCH₄ (P < 0.05, r² = 0.33; see Figure 3).
• A multiple regression model that included initial CH₄ concentration and CH₄ oxidation rate as independent variables accounted for 94% of the variability in the isotope fractionation data, suggesting that both factors are important in determining the extent of isotope fractionation (P < 0.04, r² = 1.0).
• The fractionation factor for CH₄ oxidation did not vary significantly between the different CH₄ treatments. These results challenge the assumption that the isotope fractionation factor for CH₄ oxidation remains constant, regardless of in situ activity or CH₄ pool size.

Conclusions

• The isotope fractionation factor (εCH₄=εCH₄) for CH₄ oxidation was not constant.
• The degree of isotope fractionation was best predicted by the rate of the process (methanotrophic biomass) and by the initial concentration of substrate.
• Isotope mass balance models cannot be quantitatively applied without knowledge of the total activity of the methanotrophic population.

Acknowledgments

This research was supported by the National Science Foundation (NSF) and the Department of Energy. The support of the Oak Ridge National Laboratory is gratefully acknowledged. We thank B. Mosher, R. Torrens, and D. Coleman for their assistance in the laboratory.

References

Figure 2. CH₄ oxidation rate for different initial CH₄ concentrations at 21°C (date range represented mean values and error bars represent standard errors.)

Figure 3. CH₄ oxidation rate for different initial CH₄ concentrations and different initial O₂ concentrations at 21°C (date range represented mean values and error bars represent standard errors.)

Figure 4. Regression of the isotope fractionation factor for CH₄ oxidation on the concentration of CH₄ oxidation rate and substrate CH₄ concentration (P = 0.0003, r² = 0.86).

Figure 5. Regression of the isotope fractionation factor for CH₄ oxidation on the concentration of CH₄ oxidation rate and substrate CH₄ concentration (P = 0.0003, r² = 0.06).

Table 1. Isotope fractionation factor for CH₄ oxidation in different CH₄ treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ppmv</td>
<td>1.0173</td>
</tr>
<tr>
<td>500 ppmv</td>
<td>1.0212</td>
</tr>
<tr>
<td>1000 ppmv</td>
<td>1.0225</td>
</tr>
</tbody>
</table>

Means were compared using Fisher’s LSD test, followed by an error term, and the symbol “A” indicates significant difference.