Title
THE TEMPERATURE DEPENDENCE OF THE SPECIFIC HEAT AND ENTROPY OF CeAl3

Permalink
https://escholarship.org/uc/item/9062790q

Authors
Edelstein, A.S.
Fisher, R.A.
Phillips, N.E.

Publication Date
1986-11-18
To be presented at the Conference on Magnetism and Magnetic Materials, Baltimore, MD, November 17-20, 1986; and to be published in Journal of Applied Physics

THE TEMPERATURE DEPENDENCE OF THE SPECIFIC HEAT AND ENTROPY OF CeAl₃

A.S. Edelstein, R.A. Fisher, and N.E. Phillips

October 1986
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The temperature dependence of the specific heat and entropy of CeAl$_3$

A. S. Edelstein, Naval Research Laboratory, Washington D.C. 20375

R. A. Fisher and Norman E. Phillips, MMRD, Lawrence Berkeley Laboratory, University of California, Berkeley CA 94720

It is thought that with decreasing temperature CeAl$_3$ first condenses into a crystal-field $J_z = \pm 3/2$ doublet ground state and then further condenses into a Kondo singlet state. To test this description, we use it to calculate the specific heat and entropy of CeAl$_3$. We calculate the specific heat contribution of the $J_z = \pm 5/2$ doublet using the resonant level model. The contributions from the $J_z = \pm 5/2$ and $\pm 1/2$ doublets are computed using the known crystal-field energies but allowing for a broadening of the levels. If it is assumed that the excited crystal-field states have Lorentzian distributions with a width of the order of 50K, the calculation is in generally good agreement with experimental data for the f-electron contribution. (The specific heat of LaAl$_3$, which was measured for the purpose and is reported here, was subtracted from the total to obtain the f-electron contribution.)

PACS: 65.40, -f, 65.50.+m, 75.10.Dg
I. Introduction

There has been considerable interest in the fact that the specific heat, \(C(T) \), of CeAl\(_3\), a heavy-fermion system, can not be fit by Kondo single impurity theory. More specifically, the ratio \(C/T \) exhibits a maximum near 0.5K, while Kondo single impurity theory predicts that this quantity increases monotonically with decreasing temperature. One explanation\(^1\) for the maximum is that it is due to a minimum in the density of states, but it can also be explained\(^2\) by a temperature dependent density of states without a minimum. In another approach to a calculation of \(C(T) \) at low temperatures, Sticht et al.\(^3\) have combined Fermi-liquid theory and a band-structure calculation. Here we ignore the decrease in \(C/T \) below 0.5K, and focus our attention on the f-electron \(C(T) \), and particularly the entropy, \(S(T) \), over a broader temperature range, \(T<20K \). We compare experimental results for \(C(T) \) of CeAl\(_3\) with new data for LaAl\(_3\) to obtain the f-electron entropy of CeAl\(_3\), and we present a model calculation of the f-electron \(C(T) \) and \(S(T) \) for CeAl\(_3\). The calculation is based on a generalization of a model used previously\(^4\) [to calculate the magnetization and magnetic field dependence of \(C(T) \)] to include a possible broadening of the excited crystal-field levels by interaction with the conduction electrons. Our motivation for this study was the following: 1) Rice and Ueda\(^5\) predicted that heavy-fermion systems will magnetically order if their multiplicity is only two. Since the crystal-field ground state of CeAl\(_3\) is believed
to be a doublet, one might think that their theory predicts that CeAl\textsubscript{3} should magnetically order, but no magnetic ordering has been observed6 for T \geq 20 mK. 2) We wished to investigate whether a single impurity Kondo model which includes crystal-field effects could approximately predict the observed C(T) and S(T).

II. Experimental Specific Heat and Entropy

Specific heat measurements on CeAl\textsubscript{3}, performed on polycrystalline samples, were reported earlier.2,7 To estimate the phonon contribution we also measured C(T) for a polycrystalline sample of LaAl\textsubscript{3}. The results, in mJ/mole K, can be represented by

\[C(T) = 4.95T + 0.1213T^3 + 4.13 \times 10^{-4}T^5 - 3.88 \times 10^{-7}T^7, \] \hspace{1cm} (1)

to within \pm 0.5\%. We assume that the f-electron contribution is given by subtracting C(T) for LaAl\textsubscript{3} from C(T) for CeAl\textsubscript{3}. The measured C(T) of CeAl\textsubscript{3} and LaAl\textsubscript{3}, and their difference, \Delta C, are plotted in Fig. 1. The curve in Fig. 1 representing the specific heat of CeAl\textsubscript{3} has been corrected2 for a small amount of Ce\textsubscript{3}Al\textsubscript{11} (2.6 wt.\%) which was present in the sample. One sees, as expected, that the f-electron contribution dominates the specific heat below 10K. The experimental f-electron S(T) was computed by integrating \Delta C/T. It is similar to estimates that have been published8,9 earlier.

III. Model Specific Heat and Entropy

The crystal-field splits the six f-electron J=5/2 state into
three doublets. Neutron scattering experiments10,11 have established that the crystal-field ground state has $J_z = \pm 3/2$ and that there are excited state doublets with $J_z = \pm 5/2$ and $J_z = \pm 1/2$ at 60.3 and 88.2 K, respectively. In the earlier calculation4 we assumed that the contribution of the ground state $J_z = \pm 3/2$ doublet to the magnetization could be calculated by the resonant level model, RLM.12 We assumed4 that the contribution of the other two doublets to the magnetization could be calculated using crystal-field theory. We restate the reasoning behind these assumptions. If it were not for the interactions with the conduction electrons, the contribution of the crystal-field ground state doublet to the susceptibility would be proportional to $1/T$. These interactions with the conduction electrons give rise to a finite, zero-temperature, spin self-correlation time $\tau = 1/T_K$ (T_K is the Kondo temperature and is believed1 to be equal to 4.5 K). Because of this correlation time, the factor $1/T$ in the $J_z = \pm 3/2$ doublet's contribution to the susceptibility is replaced at low temperatures by $1/T_K$. We used the RLM to incorporate this change. The contributions of the $J_z = \pm 5/2$ and $J_z = \pm 1/2$ doublets to the susceptibility are already approximately temperature independent below 10K; therefore they may be less affected by the interactions with the conduction electrons. Since we were only considering the properties of CeAl$_3$ at low temperatures ($T<5K$), we neglected the interactions of the excited states with the conduction electrons. Thus, we assumed that the energy levels of the excited state doublets were perfectly sharp.

Here, since we are including temperatures as high as 20K, we
shall modify the earlier model4 to make it more realistic at these higher temperatures by including a broadening of the excited crystal-field states by their interaction with the conduction electrons. The scattering of the conduction electrons by \(f \)-electrons in excited states gives rise to the resistivity maximum13 that occurs near 40K. It is likely that these interactions with the conduction electrons broaden the excited state energy levels. There is experimental evidence10,11 that these levels are broadened and that their width is of the order 20K. We assume that the energy levels of both excited state doublets are Lorentzian distributions which are centered at the energies determined by the neutron experiments, with full width at half maximum, \(\Gamma \), which is the same for each doublet.

With these assumptions the \(f \)-electron \(C(T) \) is given by

\[
C(T) = C_{3/2,\text{RLM}}C_{\text{ES,CF}},
\]

where \(C_{3/2,\text{RLM}} \) and \(C_{\text{ES,CF}} \) are respectively the contributions of the \(J_Z = \pm 3/2 \) doublet, which is calculated using the RLM, and of the \(J_Z = \pm 1/2 \) and \(\pm 5/2 \) excited state doublets, which are calculated using crystal-field theory. The quantity \(C_{3/2,\text{RLM}} \) is calculated from

\[
C_{3/2,\text{RLM}} = N_0 \frac{\partial}{\partial T} \int E N(E) f(E/kT) \, dE,
\]

where \(N_0 \) is Avogadro's number, \(f \) is the Fermi function and the RLM density of states is taken to be \(N(E) = \Delta/2\pi(E^2 + \Delta^2) \). The normalization of this function is the one obtained by a more detailed theory14 treating dilute Kondo impurities. The quantity \(C_{\text{ES,CF}} \) is calculated from

\[
C_{\text{ES,CF}} = (N_0/k)(\langle E^2 \rangle - \langle E^2 \rangle / \langle E^0 \rangle \rangle / T^2 \langle E^0 \rangle,
\]
where \(k \) is Boltzmann's constant,

\[
\langle E^0 \rangle = 1 + \sum_{j=1}^{2} \frac{I(E_j,0,T)/I(E_j,0,\infty)}{I(E_j,0,\infty)},
\]

(5)

\[
\langle E^n \rangle = \sum_{j=1}^{2} \frac{I(E_j,n,T)/I(E_j,0,\infty)}{I(E_j,0,\infty)} \quad n=1,2
\]

(6)

and

\[
I(E_j,n,T) = \int_0^{+\infty} \frac{E^n}{(E-E_j)^2+\Gamma^2} \exp(-E/kT) dE.
\]

(7)

In these expressions \(E_j \) represents the crystal-field splitting.

[The integral in Eq. (7) is carried out only over positive energies. If negative energies were included they would give rise to a large, unphysical contribution at low temperatures because the argument of the Boltzmann factor becomes positive.]

Values of \(C(T) \) and \(S(T) \) were calculated numerically from these equations using values for the parameters that have been either estimated or measured previously, i.e., \(\Delta=4.5K, E_1=60.3K \) and \(E_2=88.2K \). The calculation was made for various values of the Lorentzian width including zero (i.e., for sharp crystal-field states). Figures 2 and 3 compare the model predictions with the experimental values of \(C(T) \) and \(S(T) \). One sees that the fit to both the specific heat and the entropy is improved if one includes the broadening of the excited states. The quality of the fit is best if one uses Lorentzian broadened excited state levels with a width \(\Gamma\approx50K \). Increasing \(\Delta \) to 6K improves the quality of the fit to \(C(T) \), but worsens the fit to \(S(T) \). The use of a Gaussian function to represent the broadening of the levels does not provide as good a fit as that obtained with Lorentzians.
The model successfully predicts many of the features of $C(T)$ and $S(T)$ for CeAl$_3$. For the best fits to the experimental data, the excited states have Lorentzian distributions with $T=50K$ centered at the positions determined by the neutron experiments10,11. If the model is correct, the large value for the width of the Lorentzian distributions suggests that it arises because of Kondo-like interactions with the conduction electrons.

The occupancies, $0_{5/2}$ and $0_{1/2}$, of the $J_Z = \pm 5/2$ and $\pm 1/2$ states can be calculated using

$$0_j = \frac{I(E_j,0,T)}{I(E_j,0,\infty)}<E^0>.$$

(8)

Even with T as large as 50K, because of the Boltzmann factor in Eq. (7), these occupancies go rapidly to zero in the limit $T \to 0$. For this width and $T=3K$, the largest occupancy is only 1%. Thus, despite the broadening, our results suggest that the low temperature degeneracy of the f-level is still 2. Therefore it seems that the work5 of Rice and Ueda predicts that CeAl$_3$ should magnetically order at low temperatures.

The work at Berkeley was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
REFERENCES

REFERENCES (continued)

1. Specific Heat of CeAl₃ and LaAl₃, and their difference, ΔC = C(CeAl₃) - C(LaAl₃), which is taken to be the f-electron contribution.

2. Comparison of the experimental f-electron specific heat, ΔC, with the model predictions. The solid curve denotes smoothed, corrected values of the experimental data. The dashed curves, representing the model predictions, are labeled by the values of the Lorentzian width, Γ, in K.

3. Comparison of the experimental f-electron entropy with the model predictions. The solid curve denotes the integral of ΔC/T (see Fig. 1). The dashed curves, representing the model predictions, are labeled by the values of the Lorentzian width, Γ, in K.
Fig. 1
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.