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Equilibrium configuration of

a bounded inextensible membrane

subject to solar radiation pressure

Bo Fu, Rida T. Farouki, and Fidelis O. Eke

Department of Mechanical and Aerospace Engineering,
University of California, Davis, CA 95616.

Abstract

The equilibrium shape of a thin inextensible membrane subject to
solar radiation pressure under given boundary constraints is studied.
The membrane is assumed to be insusceptible to elastic deformation
and to have negligible bending resistance, and its steady–state shape
is therefore described by a developable surface (i.e., a surface of zero
Gaussian curvature), resulting from an equilibrium between radiation
pressure and membrane tension forces. A quantitative understanding
of the mechanics of such membranes is essential in characterizing the
dynamics of solar sail spacecraft that use sail wing tip displacement
as an attitude control mode. The analysis in this paper develops a
theoretical foundation for the billowed wing shape. Under reasonable
simplifying assumptions, the key result is that solar radiation pressure
and a given wing tip displacement yield a billowed solar sail wing with
the shape of a generalized cylinder (i.e., a developable ruled surface,
whose rulings are all parallel, rather than a general developable with
variable ruling directions). The base curve geometry for the solar sail
is also determined as the solution to a boundary value problem. The
results presented herein allow the shape of the billowed membrane to
be computed to any desired precision, for any given tip displacement.

Keywords: solar sails; inextensible membranes; developable surfaces;
elliptic integrals; numerical quadrature; boundary value problem.
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1 Introduction

Solar sails differ from traditional spacecraft in that they harvest momentum
from solar radiation pressure, rather than expulsion of onboard propellants.
This property of solar sails can significantly reduce mass–to–orbit, especially
for round–trip missions requiring a spacecraft to carry return fuel on launch.
This results is greatly improved mission cost effectiveness, making solar sails
promising candidates for future interplanetary space transportation [15].

Although interest in solar sail technology has grown within the last decade,
following the successful demonstration of solar sail technology by the Japanese
IKAROS [19] mission in 2010 and also the recent Lightsail–1 mission by the
Planetary Society in 2015, the technology is still in a rudimentary state of
development. Most solar sail studies have thus far focused on small sails.
However, the idea of large solar sails is not new [2, 3, 4, 9, 13, 21]. Large
sails have the potential to carry payloads up to several metric tons, and could
be the key to cost–effective space cargo transportation.

Attitude control remains a critical area of interest in the exploitation of
solar sail technology. This is because attitude control for solar sails requires
methodologies fundamentally different from those employed by traditional
spacecraft. A deployed solar sail will require continuous attitude correction,
due to the misalignment of the sail center of pressure (cp) and the sail center
of mass (cm). The cm–cp misalignment results from both manufacturing and
deployment imperfections, and thus cannot be avoided. The large moment
of inertia of a deployed solar sail will also require large body moments for
attitude maneuvers, limiting the use of traditional attitude control methods.
The reader may consult the paper [20] by Wie for a more detailed discussion
of the limitations of traditional attitude control methods in solar sails.

For a solar sail, it makes sense to use solar radiation pressure (SRP) as
the only source for attitude control moment generation. This can be done
by manipulating the cm and cp positions on the sail. Most attitude control
methods proposed for solar sails require the addition of substantial mass to
the craft as the sail size increases. Recently, an attitude control methodology
was proposed by Fu and Eke [7] that does not require significant additional
mass. This approach employs a square solar sail, as shown in Figure 1.

The square sail consists of four right triangular wings, connected to the
support booms only at their tips and at the center. For example, in Figure 1
wing A is attached to the support booms at points O, P , and Q. The basic
idea is to displace the sail membrane–boom attachment point, such as point
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Figure 1: Schematics of square solar sail

P , a distance δ toward the center O, so that the membrane billows under
solar radiation pressure. This billowing of the sail membrane causes a shift
in both the membrane cm and cp, which in turn induces a body torque that
can be exploited for attitude control. Simultaneous displacements of more
than one of the four wing tips in a square solar sail allow body moments to
be generated about all three body axis directions. The reader may consult
[7] for a more detailed description of the method, which will be referred to
as the Tip Displacement Method (TDM) of attitude control.

An accurate estimate of the shape of the billowed sail wing under a given
tip displacement is critical in the effective application of TDM in solar sail
attitude control, since the SRP forces and torques are a direct result of the
billowed shape. Several authors [10, 11, 17, 22] have proposed methods to
estimate the deformed shapes and resulting total forces on solar sails, using
a variety of approaches. The analysis in [7] was based upon some reasonable
assumptions concerning the shape of the deformed membrane, to facilitate
estimation of the resulting attitude torques. The main assumption is that the
shape of the billowed wing is a portion of a right circular cylinder. A more
rigorous study, that does not invoke the right circular cylinder assumption,
was conducted by Fu and Eke [8]. By means of a numerical optimization
method, it was found that the billowed wing shape differs from a cylindrical
shape, but for small tip displacements this deviation is small and a cylindrical
shape is sufficient for attitude torque estimations.

Although the studies [7] and [8] extended knowledge of the TDM and
billowed wing profile, a sound theoretical basis for understanding the billowed
wing shape was lacking. In [7], the shape was assumed to be cylindrical, and
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in reference [8], the shape was assumed to be a generalized cylinder, with
the base curve obtained numerically via an optimization algorithm. This
paper provides a deeper understanding of the wing profile through a first–
principles approach to the mechanics of bounded inextensible membranes,
and a rigorous method of solving the boundary value problem that determines
the equilibrium shape of the sail wing base curve, for any given wing tip
displacement. The sail wing is modeled as an inextensible membrane, whose
billowed shape is determined by equilibration of solar radiation pressure and
internal membrane stresses, upon imposing membrane boundary conditions
— namely, the displacement of one wing tip.

Although many aspects of plate and membrane mechanics have previously
been studied in depth [1, 5, 6, 12, 14, 16], the authors are unaware of any prior
detailed investigation of the specific problem addressed herein, concerning
the equilibrium shape of an initially flat membrane that is inextensible but
offers no bending resistance, and billows under the action of uniform pressure
when one tip is displaced. The deformed shape of an inextensible membrane
must be a developable, i.e., a ruled surface of zero Gaussian curvature [18]. A
developable surface may be a cylinder (whose rulings are all parallel); a cone

(whose rulings all pass through a fixed point); or a tangent developable (the
surface generated by the family of tangent lines to a given space curve — the
most general case). Through a detailed investigation of the force and torque
equilibrium of a differential membrane surface element, it is shown in this
paper that the billowed sail necessarily assumes the shape of a (generalized)
cylinder, i.e., the surface generated by a family of parallel lines emanating
from a given “base” curve.

2 Kinematics of a solar sail wing

As noted above, a deformed inextensible membrane assumes the shape of a
developable surface, a special type of ruled surface that can be developed [18]
or “flattened” by pure bending action, without any stretching/compressing.
The development process preserves distances, angles, and surface areas.

Consider a billowed inextensible solar sail wing, as shown in Figure 2. If
the sail boundary OP is described by a “base curve” c(s), the sail surface
admits a parameterization of the form

r(s, t) = c(s) + td(s) , (1)
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Figure 2: Billowed sail wing

where d(s) is a unit vector specifying the ruling direction at each point of
c(s) and t is distance along the ruling originating from c(s). Inextensibility
of the curve c(s) is enforced by assuming an arc–length parameterization,
i.e.,

|c′(s)| ≡ 1. (2)

Note that arc–length parameterization is common in describing inextensible
objects, such as ropes or chains.

Expression (1) describes a general ruled surface, which is not necessarily
developable. To define a developable surface, appropriate to the context of an
inextensible solar sail membrane, the arc–length parameterization condition
(2) is not sufficient, and we must impose another condition which ensures that
r(s, t) has zero Gaussian curvature. The Gaussian curvature of a parametric
surface can be determined [18] as follows (for brevity, we henceforth omit the
dependence of c and d and their derivatives c′, c′′ and d′,d′′ on s). The first
partial derivatives of r(s, t) are

rs = c′ + td′ , rt = d ,

and, if they are linearly independent, the unit surface normal is specified by

n =
rs × rt

|rs × rt|
=

(c′ + td′) × d

|(c′ + td′) × d| .

Now since |d| = 1 and d · d′ = 0, the first fundamental form of r(s, t) has
the coefficients

E := rs · rs = |c′ + td′|2 , F := rs · rt = c′ · d , G := rt · rt = 1 .
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Similarly, the second partial derivatives of r(s, t) are

rss = c′′ + td′′ , rst = d′ , rtt = 0 ,

and the second fundamental form has the coefficients

L = n · rss , M = n · rst , N = n · rtt = 0 .

The Gaussian curvature K of r(s, t) is defined in terms of the first and second
fundamental form coefficients as

K =
LN − M2

EG − F 2
,

and the condition K ≡ 0 is sufficient and necessary for a developable surface.
In the present context, this condition becomes

[ (c′ + td′) × d ] · d′ ≡ 0 ,

which reduces to
c′ · (d × d′) ≡ 0 . (3)

Equation (3) states that, for a developable surface, the base curve c and
ruling direction d are related, and cannot be arbitrarily specified. Defining
a unit vector e

e :=
d′

|d′| (4)

in the direction of the derivative d′ of the ruling vector, equation (3) can be
expressed as

c′ · (d × e) ≡ 0 , (5)

i.e., c′ is linearly dependent on d and e. Since d and e are orthogonal, and
span the surface tangent plane, the unit surface normal vector n may be
written as

n = e × d . (6)

Note that n depends only on s, i.e., it is constant along each ruling — in fact,
this can be regarded as a geometrical property that distinguishes developable
from non–developable ruled surfaces. The introduction of the unit vector e in
the direction of d′ helps to simplify the analysis of the membrane mechanics,
as will be seen in the following section.
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3 Mechanics of solar sail wing

The analysis of the solar sail wing mechanics will be based on the simplifying
assumptions enumerated below. The intent is to formulate a basic analytical
model, which may serve as the point of departure for studying higher–order
effects (such as inclusion of non–zero shear stresses, finite bending stiffness,
or load–dependent stiffness).

(a) The sail membrane material is inextensible, and hence the geometrical
form of the billowed wing is governed by equation (5).

(b) The membrane material cannot carry any torsional or bending load, a
reasonable assumption for sails with a large ratio of area to thickness
(area/thickness ∼ 1010 for the large solar sail considered in [7, 8]).

(c) Shear stresses in the membrane are considered to be negligible — the
dominant stress being a direct stress orthogonal to the rulings, with a
constant magnitude along each ruling.

(d) The solar radiation pressure (SRP) is calculated on the basis of specular
reflection from the membrane, a common assumption in a first analysis.

However, there are no a priori assumptions concerning the variation of the
ruling direction d. It should be noted that assumption (c) must be invalid
along the edge OQ in Figure 2 if the sail is attached to the support boom at
only the two points O and Q. At some distance from this edge, however, it
may offer a reasonable approximation to the actual membrane stress state.

3.1 Force equilibrium

Based on the above assumptions, the only forces exerted on the sail wing are
the SRP force and tensile forces orthogonal to the rulings. The SRP force
FSRP incurred by pure specular reflection from a sail area element dA acts
in the direction of the surface normal n, and may be expressed as

FSRP = −P0 (n · s)2 n dA ,

where s is a unit vector in the direction of the incident radiation and P0 is
the nominal SRP (i.e., when s is parallel to n) at the sail location. For an
interplanetary solar sail that is not too close to the sun, the incident radiation
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is assumed to be uniform, with P0 and s constant for any given time and
sail location. Since the surface normal n is constant along each ruling, it
suffices to consider a differential area element dA between two rulings that
correspond to parameter values s and s + ds along the base curve c(s).

Consider a wing element ABCD between two rulings (see Figure 3). The
vector function defined by

l(s) := l(s)d(s) (7)

is introduced, l(s) being the length of the ruling emanating from the point
c(s) on the base curve (it is not necessary to precisely specify l(s) for the
following analysis). The differential area element dA can be found as follows.
To first order in ds, the corner points A, B, C, D have the locations

rA = c , rB = c + c′ds , rC = c + c′ds + l + l′ds , rD = c + l ,

Thus the vectors
→

AC and
→

BD are

→

AC = rC − rA = c′ds + l + l′ds ,
→

BD = rD − rB = l − c′ds .

Now by equation (3), the scalar triple product

~AB · ( ~AD × ~BC) = c′ · (d× d′) l2(ds)2

vanishes, so the differential surface element ABCD is a planar quadrilateral
to the first order in ds.

The area of the differential surface element is then given, to first order in
ds, by

dA = 1
2
|

→

AC ×
→

BD | = 1
2
| (l+c′ds+l′ds)×(l−c′ds) | = |(c′×l+ 1

2
l′×l)| ds .

Introducing the scalar quantity P := P0(n · s)2 and the vector area element

dA := n dA = (c′ × l + 1
2
l′ × l) ds ,

the SRP force on the differential membrane strip can be written as

FSRP = −P dA = −P (c′ × l + 1
2
l′ × l) ds . (8)

Let σ(s) denote the product of the membrane thickness and the tensile
normal stress along the ruling l(s), as shown in Figure 3. Since the stress
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Figure 3: Differential membrane strip bounded by two surface rulings

is always in the direction of e, and uniform along each ruling, we can define
a tension vector T(s) := σ(s)l(s)e(s). The tension forces on the edges AD
and BC of the differential area element are then

FAD = −T(s) and FBC = T(s + ds) = T(s) + T′(s) ds . (9)

Thus, in steady state equilibrium, from (8) and (9) we must have

FBC + FAD + FSRP = T + T′ds −T − P (c′ × l + 1
2
l′ × l)ds = 0 .

Dividing by ds then gives the steady state force equilibrium condition

T′ = P (c′ × l + 1
2
l′ × l) . (10)

This states that the change in tension force between two consecutive rulings
is proportional to the external SRP force P and the surface area bounded by
those rulings, and its direction coincides with the surface normal.

When the base curve c(s) is constrained to be planar and the rulings l(s)
are orthogonal to the plane containing it, equation (10) reduces to the well–
known equilibrium equation for a one–dimensional inextensible chain [23].
Equation (10) can thus be regarded as a two–dimensional generalization of
the inextensible chain equation. However, equation (10) alone is not sufficient
to characterize the equilibrium membrane mechanics: moments acting on the
membrane must also be considered.
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Figure 4: Sub–element of differential strip bounded by two surface rulings

3.2 Moment equilibrium

Consider a sub–element of a differential strip bounded by rulings emanating
from the points c(s) and c(s + ds) of the base curve, that corresponds to
an increment dt in the ruling parameter (indicated by the shaded region in
Figure 4). The vector area of this sub–element is given by [18]

√
EG − F 2 n ds dt = |rs × rt|n ds dt = (c′ × d + td′ × d) ds dt .

Let the center of pressure on this sub–element be identified by displacement
dr relative to the point r(s, t) = c(s) + td(s). Then the total SRP moment
on the differential strip about point A can be formulated as an integral with
respect to t, namely

MSRP =

∫ l

0

[ td + dr ] × [−P (c′ × d + td′ × d) ds dt ] .

Since dr and ds are infinitesimals of the same order, to first order in ds this
becomes

MSRP = − [ 1
2
P l2d × (c′ × d) + 1

3
P l3d× (d′ × d) ] ds . (11)
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The tension forces on edges AD and BC also exert moments about point
A. The total moment generated by tensile forces along edge AD can be
expressed as an integral with respect to t,

MAD =

∫ l

0

td× (−σe) dt , (12)

Since the ruling direction d, tensile stress σ, and directional vector e depend
only on the arc length s, the integral in (12) can be directly evaluated from
0 to l to give

MAD = − 1
2
l2 σ d × e . (13)

Similarly, the total moment generated by tensile forces along edge BC can
be expressed by an integral with respect to t with integration limits 0 and
l(s + ds),

MBC =

∫ l(s+ds)

0

[ c′ds + td(s + ds) ] × [ σ(s + ds)e(s + ds) ] dt . (14)

Now exact expressions for functions of the form f(s + ds), such as the
upper integration limit l(s+ds), ruling direction d(s+ds), etc., are unknown.
To evaluate (14), one can invoke the first order approximation f(s + ds) =
f(s) + f ′(s)ds, and decompose the integral in (14) into two parts: from 0 to
l, and from l to l + l′ds. This gives

MBC =

∫ l

0

[ c′ds + t(d + d′ds) ] × [ (σ + σ′ds)(e + e′ds) ] dt

+

∫ l+l′ds

l

[ c′ds + t(d + d′ds) ] × [ (σ + σ′ds)(e + e′ds) ] dt . (15)

Evaluating each part with respect to its integration limits gives, to first order
in ds,

MBC = 1
2
l2 σ d× e + [ σl c′ × e + 1

2
l2(σd× e)′ + ll′σd × e ] ds . (16)

The last two terms on the right in equation (16) can be further combined
into a total derivative,

MBC = 1
2
l2 σ d× e + [ σl c′ × e + (1

2
l2σd× e)′ ] ds . (17)
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From equations (11), (13), and (17) we can sum the moments about point A
— after simplifying, we obtain

MBC + MAD + MSRP = [ σl c′ × e + 1
2
l2(σd × e)′ + ll′σd× e

− 1
2
P l2d × (c′ × d) − 1

3
P l3d× (d′ × d) ] ds .

Setting T = σ l e, this reduces to

MBC+MAD+MSRP = [ c′×T+1
2
(l×T)′−1

2
P l×(c′×l)−1

3
P l3d×(d′×d)] ds .

Setting the above expression to zero, the condition for moment equilibrium
of a bounded inextensible membrane at steady state is

2c′ ×T + (l ×T)′ − P l × (c′ × l) − 2
3
P l × (ld′ × l) = 0 . (18)

The first and second terms in (18) represent moments generated by tensile
stresses, while the third and fourth represent moments generated by the SRP.
Note that the SRP moments are always in the direction of −e, since

l × (c′ × l) = l × (|c′| |l| sin γ n) = |c′| |l|2 sin γ e = l2 sin γ e ,

where γ is the angle formed by the base curve c and the ruling direction d

(as shown in Figure 4), and

d× (d′ × d) = d′ = |d′| e .

In summary, the billowed sail wing must satisfy equations (5), (10), and
(18) in the steady state.

4 Inextensible sail wing under SRP

In the solar sail tip–displacement attitude control method, the billowed sail
shape directly affects the induced attitude torque. However, a first–principles
analysis of the actual sail shape induced by SRP has not yet been performed.
It has been intuitively supposed that the billowed wing will assume the form
of a generalized cylinder, and this was invoked as a “reasonable” assumption
in prior studies [7, 8]. However, as shown below, a formal justification for this
supposition — based on a quantitative analysis of the sail mechanics — is a
non–obvious and non–trivial task. The preceding results lay the foundation

12



for a more rigorous analysis of the precise sail shape. Based on these results,
it is now shown that (under the stated assumptions) the shape of a billowed
sail wing subject to SRP and a given tip displacement does indeed assume
the form of a generalized cylinder.

The argument proceeds as follows. Equation (18) is equivalent to

2c′ × T + l′ × T + l × T′ − P l × (c′ × l) − 2
3
P l3d′ = 0 .

Substituting from equation (10) then gives

2c′ × T + l′ × T + P l × (c′ × l + 1
2
l′ × l) − P l × (c′ × l) − 2

3
P l3d′ = 0 ,

which reduces to

2c′ ×T + l′ × T + 1
2
P l × (l′ × l) − 2

3
P l3d′ = 0 ,

or, on expanding the vector triple product,

2c′ × T + l′ × T + 1
2
P [ l2l′ − (l · l′)l ] − 2

3
P l3d′ = 0 . (19)

Next, taking the dot product of (19) with c′ and noting that c′ · (c′×T) = 0,
this becomes

c′ · (l′ × T) + 1
2
P [ l2(c′ · l′) − (l · l′)(c′ · l) ] − 2

3
P l3(c′ · d′) = 0 . (20)

From (7), we substitute l = l d and l′ = l′d + l d′ into equation (20) and
simplify to obtain

c′ · (l′d× T) + c′ · (l d′ × T) + 1
2
P l3(c′ · d′) − 2

3
P l3(c′ · d′) = 0 . (21)

Since T = σ l e, the first term in equation (21) vanishes because of the
developability condition (5). From the definition of the unit vector e in
equation (4), the second term also vanishes. Thus, noting that l 6= 0 and
P 6= 0, equation (21) reduces to

c′ · d′ = 0 . (22)

Since the base curve c is parameterized by arc length, inextensibility implies
that |c′(s)| ≡ 1, i.e., c′ is a unit vector, and the developability condition (5)
indicates that c′ must lie in the plane spanned by the unit vectors d and e.
Hence, there exists an angle γ(s) such that

c′ = cos γ d ± sin γ e . (23)
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Then, taking the dot product of equation (23) with d′ and using equation (22)
yields

sin γ |d′| = 0 . (24)

Now the angle γ(s) remains invariant if the billowed sail wing is developed
into a planar triangle, in which case γ(0) = 90◦ — i.e., the edges OP and
OQ in Figure 1 are orthogonal. Hence, since sin γ 6≡ 0, equation (24) implies
that |d′| = 0, i.e.,

d′ = 0 .

In other words, the ruling direction d is constant, and the billowed sail shape
corresponds to a generalized cylinder. In particular, all rulings are parallel
to the edge OQ in Figure 2.

5 Solution of the boundary value problem

When projected onto the (x, z) plane, a solar sail wing profile that is a
generalized cylinder is simply the base curve c(s), as shown in Figure 5. For
solar radiation pressure orthogonal to the wing, the steady state billowed
wing profile is a result of the wing boundary conditions, that is, the amount
of tip displacement δ. The following analysis allows the billowed wing base
curve c(s) to be accurately determined for any given tip displacement δ.

The unit tangent to the base curve can be written as

t(s) = (cos α(s), sinα(s)) ,

where α(s) is the angle it makes with positive x–direction, measured positive
clockwise in the (x, z) plane (see Figure 5). It was shown in [8] that α is
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related to the base curve arc length s by the expression

tan α = K0(Ls − 1
2
s2) + C0 , (25)

where L is the total arc length, and K0 and C0 are constants to be determined
from the boundary conditions. Interpreting this as a quadratic equation in
s, it has the solution

s = L ±
√

L2 − 2(tanα − C0)/K0 . (26)

Let αi and αf be the initial and final tangent angles, at s = 0 and s = L.
When s = 0 the expression on the right must vanish, and this is only possible
if we choose the minus sign and

C0 = tanαi .

Similarly, when s = L the radical term must vanish, and this gives

K0 =
2(tanαf − tan αi)

L2
.

Hence, the expression (26) can be re–written as

s = L
[

1 −
√

1 − (τ − τi)/(τf − τi)
]

(27)

where, for brevity, we set

τ = tanα , τi = tanαi , τf = tanαf .

Note that s is monotone–increasing for τ ∈ [ τi, τf ].

5.1 Boundary conditions

The sail base curve must satisfy the boundary constraints

∫ L

0

cos α ds = L − δ ,

∫ L

0

sin α ds = 0 .

Noting that

cos α =
1√

1 + τ 2
, sin α =

τ√
1 + τ 2

, (28)
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and using (27) to impose the changes of variables s → τ with

ds =
L dτ

2
√

(τf − τi)(τf − τ)
,

these conditions can be re–formulated as
∫ τf

τi

dτ
√

(τf − τ)(1 + τ 2)
= 2

√

τf − τi (1 − δ/L) , (29)

∫ τf

τi

τ dτ
√

(τf − τ)(1 + τ 2)
= 0 . (30)

The expressions on the left are elliptic integrals — i.e., integrals in which the
integrand is rational in the integration variable τ and a single square root of
a cubic or quartic expression in τ . Consider the indefinite integrals

∫

dτ
√

(τf − τ)(1 + τ 2)
and

∫

τ dτ
√

(τf − τ)(1 + τ 2)
.

They can be reduced to linear combinations of the standard forms

F(k, τ) =

∫

dτ
√

(1 − k2τ 2)(1 − τ 2)
and E(k, τ) =

∫

√

1 − k2τ 2

1 − τ 2
dτ ,

known as elliptic integrals of the first and second kind, with parameter k. To
accomplish this, the integration variable and parameter must be generalized
to complex quantities. Specifically, we have

∫

dτ
√

(τf − τ)(1 + τ 2)
=

√
2 i kF(k, ζ) , (31)

∫

τ dτ
√

(τf − τ)(1 + τ 2)
=

√
2 i k [ τf F(k, ζ) − (τf + i)E(k, ζ) ] , (32)

where

k =

√

2 i

τf + i
, ζ =

√

1 − i τ

2
. (33)

However, this approach is difficult to implement, since standard algorithms
for the evaluation of F and E are based on the assumption of a real variable
and parameter. We rely instead on a direct treatment of equations (29)–(30).
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5.2 Transformation of the integrals

For brevity, we set p = τi and q = τf −τi. Writing τ = p+q u with u ∈ [ 0, 1 ],
equations (29)–(30) can be re–formulated so that the integrals have fixed
limits. This yields the equations

f(p, q) :=

∫ 1

0

du√
1 − u

√

1 + (p + qu)2
− 2 (1 − δ/L) = 0 , (34)

g(p, q) :=

∫ 1

0

(p + qu) du√
1 − u

√

1 + (p + qu)2
= 0 , (35)

in p and q. In general, numerical methods must be employed to solve these
equations. The Newton–Raphson iteration requires the partial derivatives of
f and g, which may be expressed as

fp(p, q) = −
∫ 1

0

(p + qu) du√
1 − u [ 1 + (p + qu)2 ]3/2

, (36)

fq(p, q) = −
∫ 1

0

u(p + qu) du√
1 − u [ 1 + (p + qu)2 ]3/2

, (37)

gp(p, q) =

∫ 1

0

du√
1 − u [ 1 + (p + qu)2 ]3/2

, (38)

gq(p, q) =

∫ 1

0

u du√
1 − u [ 1 + (p + qu)2 ]3/2

. (39)

The integrals in (34)–(35) and (36)–(39) can be evaluated to any desired
precision by a suitable numerical quadrature scheme, but diligence is required
to ensure satisfactory results. These integrals are all of the form

I =

∫ 1

0

h(u)√
1 − u

du , (40)

where the functions h(u) are non–singular on u ∈ [ 0, 1 ]. Since the integrands
are unbounded as u → 1, the direct application of numerical quadrature rules
does not yield accurate results. To circumvent this problem, the integrals can
be decomposed as

I =

∫ 1

0

h(u) − h(1)√
1 − u

du +

∫ 1

0

h(1)√
1 − u

du . (41)
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Here the integrand of the first term,

J :=

∫ 1

0

h(u) − h(1)√
1 − u

du , (42)

is non–singular, since by l’Hôpital’s rule it has the limiting value 0 as u → 1.
The integral (42) is therefore better suited to numerical quadrature. Note
also that the second term in (41) has the simple exact value

∫ 1

0

h(1)√
1 − u

du = 2 h(1) .

5.3 Numerical quadrature scheme

A numerical quadrature rule estimates the integral of a function φ(u) over
an interval u ∈ [ a, b ] as a weighted sum of discrete values φ(ui), sampled at
nodes u1, . . . , uN ∈ [ a, b ]. Well–known examples include the Gaussian and
Newton–Cotes quadrature rules. A key requirement, in the present context,
is the ability to efficiently achieve any desired accuracy through simple rules
for successively densifying the node set u1, . . . , uN . The composite Simpson
rule admirably serves this need, and is very easy to implement.

For uniformly–space nodes ui = i/N , i = 0, . . . , N (where N is even), the
composite Simpson rule quadrature formula estimates the integral (42) as

J ≈ 1

3N

N/2
∑

i=1

w(u2i−2) + 4 w(u2i−1) + w(u2i) , (43)

where we set

w(u) :=
h(u) − h(1)√

1 − u
.

Choosing N = 2n for n = 1, 2, . . ., one can re–use the previously–computed w
values on increasing n to n + 1, to formulate an efficient, rapidly–convergent
method. Table 1 illustrates the rapid convergence of the composite Simpson
rule quadrature values (43) for the functions (34)–(35) and (36)–(39), when
p = 0.2 and q = −0.4. It can be shown that the error ǫ in the estimates of
these integrals satisfies the bound

|ǫ| <
1

180N4
max

u∈[ 0,1 ]
|w(4)(u)| .
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n f fp fq g gp gq

1 0.37947007 0.13650015 0.16792902 -0.14196016 1.93959849 1.31104963
2 0.38094052 0.13073230 0.15846683 -0.13512882 1.94370025 1.29868088
3 0.38145473 0.12859954 0.15501024 -0.13267627 1.94517054 1.29408413
4 0.38163359 0.12783445 0.15378903 -0.13180477 1.94568487 1.29242857
5 0.38169617 0.12756233 0.15335870 -0.13149603 1.94586515 1.29183839
6 0.38171817 0.12746585 0.15320690 -0.13138677 1.94592858 1.29162891
7 0.38172592 0.12743170 0.15315330 -0.13134813 1.94595094 1.29155471
8 0.38172866 0.12741961 0.15313436 -0.13133446 1.94595884 1.29152845
9 0.38172963 0.12741534 0.15312767 -0.13132963 1.94596163 1.29151916

10 0.38172997 0.12741383 0.15312530 -0.13132792 1.94596261 1.29151588
11 0.38173009 0.12741329 0.15312446 -0.13132732 1.94596296 1.29151471
12 0.38173013 0.12741310 0.15312417 -0.13132711 1.94596309 1.29151430
13 0.38173015 0.12741304 0.15312406 -0.13132703 1.94596313 1.29151416
14 0.38173015 0.12741301 0.15312403 -0.13132700 1.94596315 1.29151411
15 0.38173016 0.12741301 0.15312401 -0.13132699 1.94596315 1.29151409
16 0.38173016 0.12741300 0.15312401 -0.13132699 1.94596315 1.29151408
17 0.38173016 0.12741300 0.15312401 -0.13132699 1.94596315 1.29151408
18 0.38173016 0.12741300 0.15312401 -0.13132699 1.94596315 1.29151408

Table 1: Variation of composite Simpson rule quadrature values with n =
log2 N for the functions (34)–(35) and (36)–(39) when p = 0.2, q = −0.4.

5.4 Newton–Raphson iteration

From an initial estimate (p0, q0) the Newton–Raphson iteration computes an
iterated sequence of approximations

(pk, qk) = (pk−1, qk−1) + (δp, δq) , k = 1, 2, . . . ,

to the solution of equations (34)–(35). The increments (δp, δq) at iteration
k are the solutions of the linear system

[

fp fq

gp gq

] [

δp
δq

]

= −
[

f
g

]

,

where it understood that f, fp, fq, g, gp, gq are evaluated at (pk−1, qk−1).
To estimate a starting approximation (p0, q0), the base curve is modelled

as a circular arc of radius r, subtended by angle 2θ, between the points (0, 0)
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and (1− δ/L, 0) in the (x, z) plane. Here, the parameters r and θ must obey
the constraints

2 rθ = L and 2 r sin θ = L − δ ,

and consequently θ must satisfy

sin θ = (1 − δ/L) θ .

Hence, using the truncated Taylor series approximation sin θ ≈ θ − 1
6
θ3, we

obtain
θ ≈

√

6δ/L .

Since the end tangents of the circular arc are (τi, τf) = (tan θ,− tan θ) we set
(p0, q0) = (tan θ,−2 tan θ). This starting approximation is satisfactory for
small δ/L ( <∼ 0.25), and the residual |f(p, q)| and |g(p, q)| values are typically

suppressed below 10−12 after just 4 or 5 Newton–Raphson iterations.
However, when computing p, q for a sequence of increasing δ/L values, it

is preferable to use the converged p, q for the previous δ/L as the starting
approximation for the subsequent δ/L. This yields faster convergence (within
just 2 or 3 iterations) and greater certainty of convergence when δ/L > 0.25.
Table 2 lists the p, q values and corresponding tangent angles αi, αf computed
in this manner for 0.025 ≤ δ/L ≤ 0.500 in increments of 0.025 — these values
are also illustrated graphically in Figures 6 and 7.

0.0 0.1 0.2 0.3 0.4 0.5
–10

–8

–6

–4

–2

0

2

4

6

8

δ/L

p

q

Figure 6: Variation of the parameters p and q with δ/L.
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δ/L p q αi αf

0.025 0.5243253583 -0.7809938038 27.669162◦ −14.395274◦

0.050 0.7778872476 -1.1508868819 37.878891◦ −20.455497◦

0.075 0.9998865098 -1.4697646018 44.996749◦ −25.167803◦

0.100 1.2123148217 -1.7709385326 50.481861◦ −29.188761◦

0.125 1.4239466441 -2.0676681441 54.920649◦ −32.770255◦

0.150 1.6396782650 -2.3672876799 58.621998◦ −36.039989◦

0.175 1.8628704135 -2.6747596758 61.772830◦ −39.072775◦

0.200 2.0962032592 -2.9939733431 64.496385◦ −41.916546◦

0.225 2.3420670364 -3.3283365410 66.878814◦ −44.603937◦

0.250 2.6027749865 -3.6810960671 68.982959◦ −47.158158◦

0.275 2.8807004966 -4.0555408939 70.856180◦ −49.596254◦

0.300 3.1783814389 -4.4551535296 72.535093◦ −51.931060◦

0.325 3.4986129117 -4.8837414267 74.048604◦ −54.172423◦

0.350 3.8445408178 -5.3455668766 75.419930◦ −56.328013◦

0.375 4.2197652928 -5.8454884115 76.667988◦ −58.403874◦

0.400 4.6284621407 -6.3891251708 77.808384◦ −60.404818◦

0.425 5.0755311714 -6.9830564347 78.854131◦ −62.334699◦

0.450 5.5667823740 -7.6350711228 79.816174◦ −64.196628◦

0.475 6.1091743705 -8.3544866547 80.703797◦ −65.993131◦

0.500 6.7111250457 -9.1525637957 81.524924◦ −67.726261◦

Table 2: Variation of the parameters p, q and tangent angles αi, αf with δ/L.

5.5 Base curve geometry

Once the p, q parameters are computed, the shape of the sail base curve can
be determined. To accomplish this, the relation (27) is inverted to express
the tangent τ = tan α in terms of the arc length s as

τ = τf − (τf − τi)(1 − s/L)2 = p + q − q(1 − s/L)2 . (44)

Thus, using dx/ds = cos α, dz/ds = − sin α and the relations (28), the arc–
length parameterization c(s) = (x(s), z(s)) of the base curve has the integral
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Figure 7: Variation of the base curve tangent angles αi, αf with δ/L.

representation

x(s) =

∫ s

0

dξ
√

1 + [ p + q − q(1 − ξ/L)2 ]2
,

z(s) = −
∫ s

0

[ p + q − q(1 − ξ/L)2 ] dξ
√

1 + [ p + q − q(1 − ξ/L)2 ]2
.

The forms defining x(s), z(s) are again (incomplete) elliptic integrals. Since
the integrands are non–singular, the Simpson rule quadrature may be applied
with uniform nodes ξ1, . . . , ξN ∈ [ 0, s ] to evaluate them. Alternatively, by
differentiating these expressions, a standard (e.g., 4th–order Runge–Kutta)
scheme may be employed to integrate the resulting differential equations with
suitable steps in the arc length s between 0 and L.

Figure 8 illustrates the computed base curve shape for the cases δ/L =
0.025, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. Note that the base curve is distinctly
asymmetric, with a steeper tangent angle at x = 0 than at x = L − δ (as
indicated in Table 2). Note also that equation (44) defines an exact relation
between the tangent τ = tan α and the arc length s along the base curve,
facilitating the integrations required to determine the total solar radiation
forces and moments on a billowed sail.

For practical use, it might be preferable to pre–compute and store the p
and q values corresponding to a sufficiently dense sampling of δ/L, and then
invoke an interpolation scheme to estimate intermediate values — this is a
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Figure 8: Sail base curve shape for δ/L = 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.

common methodology for the efficient evaluation of transcendental functions
to a prescribed precision. The smooth variation of p, q with δ/L (see Figure 6)
suggests that this can yield high accuracy without the cost of iterating over
numerical quadratures for each δ/L.

6 Discussion

A quantitative analysis of the mechanics of a bounded inextensible solar sail
membrane wing has been presented. A key component of this analysis is the
parameterization of the sail surface as a developable ruled surface, with the
developability condition being expressed as the constraint (3) satisfied by the
base curve c(s) and ruling direction d(s). This condition can be regarded as a
two–dimensional generalization of the governing equation for an inextensible
chain. Moreover, the parameterization allows one to take advantage of the
invariant direction of the SRP force along each ruling. The force and moment
equations can then be formulated for an element bounded by two neighboring
rulings, yielding the univariate equilibrium equations (10) and (18).

The parameterization also facilitates integrations over the entire surface
by expressing the ruling parameter integration limit in terms of the base
curve parameter. For the right–triangle sail wing considered herein, the t
integration limit is l(s). When the sail billows into a generalized cylinder
surface we have s + l(s) = L, where L is the fixed length of the base curve
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c(s) from O to P , so the integration range for t is simply 0 to L − s. Many
physical quantities of interest that require integration over the entire surface,
such as total surface SRP force, moment about the center, etc., can thus be
easily computed based on the presented solution.

The simplifying assumptions concerning the sail membrane mechanics
adopted herein facilitate a rigorous study of the idealized case of inextensible
membranes subject to SRP. In this ideal case, the membrane thickness is
negligible compared to its overall dimensions, and the membrane cannot
support any bending or torsional loads. These assumptions may no longer be
appropriate for thick membranes, for which one may need to accommodate
bending and torsional stresses in the equilibrium analysis. Also, the ideal
case considers only specular SRP reflection, yielding forces that act in the
surface normal direction, and it is assumed that the surface reflectivity is
homogeneous and does not degrade with time. These assumptions may be
invalidated by manufacturing variations or environmental factors, in which
case the analysis would need to specifically account for them.

Several other observations arise from this study. The moment vector dr
in equation (11) makes only a higher–order contribution to the total torque,
and may therefore be neglected. Thus, finding the exact location of the center
of pressure on the differential sub–element — a task that incurs significant
analytical effort — is unnecessary. Also, the introduction of the unit vector
e = d′/|d′| greatly simplifies the analysis, since using the explicit derivative
of d′/|d′| is cumbersome and hinders interpretation. Although the base curve
geometry can be expressed in terms of standard elliptic integrals, they incur
complex variables and parameters, and singular integrands, which complicate
the solution of the boundary value problem. However, by appropriate trans-
formations of the integrals, the boundary value problem can be solved to any
desired precision in real arithmetic using simple numerical quadrature rules.
This is much more efficient and accurate than the numerical optimization
algorithms presented in [8], and the present method allows one to find the
base curve for any given boundary conditions. Finally, although this study
considers only steady state equilibrium, it can be readily extended to encom-
pass a complete dynamical theory of bounded inextensible membranes. Such
a theory may also be of interest in other engineering applications.
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7 Conclusion

A rigorous analysis of the equilibrium mechanics of inextensible membranes
subject to solar radiation pressure and given boundary constraints has been
presented. The inextensibility condition and the force and torque balance
equations yield a system of constraints that govern the shape of the billowed
membrane sail wing for a specified tip displacement. These constraints yield
the (non–obvious) conclusion that the resulting equilibrium sail shape is a
generalized cylinder, i.e., a ruled surface whose rulings are all parallel to each
other. The geometry of the base curve as a solution to the boundary value
problem is also given, with accompanying numerical results.
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