Title
Measurements of production properties of K S 0 mesons and Λ hyperons in proton-carbon interactions at 31 GeV/ c

Permalink
https://escholarship.org/uc/item/90n2909x

Journal
Physical Review C - Nuclear Physics, 89(2)

ISSN
0556-2813

Authors
Abgrall, N
Aduszkiewicz, A
Ali, Y
et al.

Publication Date
2014-02-28

DOI
10.1103/PhysRevC.89.025205

Peer reviewed
Measurements of Production Properties of K_S^0 mesons and Λ hyperons in Proton–Carbon Interactions at 31 GeV/c

(The NA61/SHINE Collaboration)

University of Geneva, Geneva, Switzerland
2 Faculty of Sciences at University of Warsaw, Warsaw, Poland
3 Jagiellonian University, Cracow, Poland
4 Rudjer Boskovic Institute, Zagreb, Croatia
5 University of Athens, Athens, Greece
6 Joint Institute for Nuclear Research, Dubna, Russia
7 Karlsruhe Institute of Technology, Karlsruhe, Germany
8 Faculty of Physics, University of Sofia, Sofia, Bulgaria
9 The Universidad Tecnica Federico Santa Maria, Valparaiso, Chile
10 Institute for Nuclear Research, Moscow, Russia
11 Warsaw University of Technology, Warsaw, Poland
12 ETH, Zurich, Switzerland
13 St. Petersburg State University, St. Petersburg, Russia
14 LPNHE, University of Paris VI and VII, Paris, France
15 University of Bern, Bern, Switzerland
16 Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest, Hungary
17 Jan Kochanowski University in Kielce, Poland
18 University of Frankfurt, Frankfurt, Germany
19 University of Silesia, Katowice, Poland
20 Institute for Particle and Nuclear Studies, KEK, Tsukuba, Japan
21 University of Wrocław, Wrocław, Poland
22 University of Belgrade, Belgrade, Serbia
23 University of California, Irvine, USA
24 University of Bergen, Bergen, Norway
25 National Center for Nuclear Research, Warsaw, Poland
26 Laboratory of Astroparticle Physics, University Nova Gorica, Nova Gorica, Slovenia
27 Fachhochschule Frankfurt, Frankfurt, Germany

(Dated: September 10, 2013)

Spectra of K_S^0 mesons and Λ hyperons were measured in $p+C$ interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Results on K_S^0 and Λ production in $p+C$ interactions serve as reference for the understanding of the enhancement of strangeness production in nucleus-nucleus collisions. Moreover,
Inclusive production cross sections for K_S^0 and Λ are presented as a function of laboratory momentum in intervals of the laboratory polar angle covering the range from 0 up to 240 mrad. The results are compared with predictions of several hadron production models. The K_S^0 mean multiplicity in production processes $\langle n_{K_S^0}\rangle$ and the inclusive cross section for K_S^0 production $\sigma_{K_S^0}$ were measured and amount to \(0.127 \pm 0.005\) (stat) \(\pm 0.022\) (sys) and 29.0 ± 1.6 (stat) \(\pm 5.0\) (sys) mb, respectively.

I. INTRODUCTION

Experimental data on strange particle production in proton-proton and proton-carbon interactions in the region below few tens of GeV/c incident momentum are scarce [1–4]. There are at least two reasons why the knowledge of yields of strange mesons and baryons are of considerable interest at the beam momentum of 31 GeV/c. One is the need to include the tuned production of these particles in the precise neutrino flux calculation for accelerator neutrino experiments as an additional source of neutrinos and secondary pions. Production of neutral kaons is important for accurate calculation of the ν_e and $\bar{\nu}_e$ flux from $K_S^0_L \rightarrow \pi_\ell e^\ell$ decays. The other is the understanding of the production of strangeness in nucleus-nucleus interactions in this energy region and its proposed interpretation as a signal of the onset of deconfinement. Hadron-nucleus interactions constitute an intermediate step between proton-proton and nucleus-nucleus interactions. Therefore their study permits to understand better the influence of nuclear matter on strangeness production and can help to understand the role of the nucleus and non-exotic mechanisms of strangeness production. In addition to the primary goal of providing reference data for the T2K neutrino experiment in Japan, precise results on particle production in p+C interactions furnish important input to improve hadronic event generators which are required for the interpretation of air showers initiated by ultra high energy cosmic particles. The NA61/SHINE collaboration already published results on charged pion [5] and K^+ production [6]. In this paper we present results on K_S^0 and Λ yields. These were obtained from the analysis of the same sample of p+C collisions at 31 GeV/c beam momentum collected with the NA61/SHINE large acceptance spectrometer at the CERN SPS in 2007. The statistics of this data sample is insufficient to obtain results on Λ yields, which are about 100 times smaller than Λ yields [7].

The paper is organized as follows. Section II provides information about the NA61/SHINE experimental apparatus. The main components of the detector and trigger system are presented. In addition, the target used is described and numbers of registered proton interactions are provided. The analysis technique is discussed in Section III. In this Section, the procedure of the extraction of the K_S^0 mesons and Λ hyperons is described in detail.

The calculation of corrections and the normalization procedure are discussed. Subsection III A presents event and track selection criteria as well as the adopted phase space binning scheme. Information about extraction of the K_S^0 mesons and Λ hyperons from the data and calculation of the correction factors used to correct raw yields for detector and other effects are described in Subsections III B and III C, respectively. The main sources of the systematic uncertainty are discussed in Subsection III D. The final results are shown in Section IV. They are compared to predictions of different hadron production models in Section V. Finally, Section VI summarizes the results of the paper.

II. THE NA61/SHINE EXPERIMENTAL SET-UP

The NA61/SHINE experiment [8] is situated in the North Area H2 beam-line of the CERN SPS. It is the successor of the NA49 experiment [9]. The NA61/SHINE detector is a large acceptance hadron spectrometer, which consists of a set of large volume Time Projection Chambers (TPCs) and Time-of-Flight (ToF) scintillator walls. The schematic layout of the detector is shown in Fig. 1 together with the overall dimensions. Two of the TPCs (VTPC-1 and VTPC-2) are placed in the magnetic field produced by two super-conducting dipole magnets with maximum combined bending power of 9 Tm. During the 2007 data taking period the magnetic field was set to a bending power of 1.14 Tm to optimize the detector acceptance for the measurements needed for the T2K experiment. The TPCs were filled with Ar:CO$_2$ gas mixtures in proportions 90:10 for the VTPCs and 95:5 for the MTPCs. A set of scintillation and Cherenkov counters as well as beam position detectors (BPDs) upstream of the main detection system provided timing reference, identification and position measurements of the incoming beam particles. The 31 GeV/c secondary hadron beam was produced from 400 GeV protons extracted from the SPS in slow extraction mode. The secondary beam was transported along the H2 beam-line towards the experiment. Collimators in the beam line were adjusted to get an average beam particle rate of 15 kHz. Protons in the beam were identified by two Cherenkov counters, a CEDAR and a threshold counter, labeled C1 and C2, respectively. Two scintillation counters, S1 and S2, together with two
veto counters, V0 and V1, were used to select beam particles. The S1 counter also provided the timing (start time for all counters). Beam protons were selected by the coincidence S1 ⋅ S2 ⋅ V0 ⋅ V1 ⋅ C1 ⋅ C2. The trajectory of individual beam particles is measured in the BPDs along the beam line. These counters are small (3×3 cm2) proportional chambers with cathode strip readout (BPD-1/2/3 in Fig. 1). A special run was taken to measure the beam momentum by bending the incoming beam particles into the TPCs with the full magnetic field. From this measurement the mean momentum value of 30.75 GeV/c was obtained. Interactions in the target were selected by an anti-coincidence of the incoming beam protons with a small, 2 cm diameter, scintillation counter (S4) placed on the beam trajectory between the two vertex magnets (see Fig. 1). This minimum bias trigger was based on the disappearance of the incident proton. The results presented here were obtained from 667×10^3 proton interactions recorded with an isotropic graphite target of dimensions $2.5(W) \times 2.5(H) \times 2(L)$ cm3 and with a density of $\rho = 1.84$ g/cm3. For normalization purposes 46×10^3 proton interactions with the carbon target removed were also recorded. The carbon target was installed 80 cm in front of VTPC-1.

III. ANALYSIS TECHNIQUE

The most frequent decays of K^0_S mesons and Λ hyperons lead to the production of two oppositely charged particles. The measurement of particle tracks in the magnetic field allows to determine their charges and momenta. This section presents the method of K^0_S and Λ analysis using invariant mass distributions. When the K^0_S hypothesis is studied, positively (negatively) charged particles are assumed to be protons (π^- mesons). The analysis was made in specific invariant mass windows. The selected window should cover the invariant mass peak of K^0_S (Λ) but also include regions below and above the peak for the background estimate. Fits of the background function depend somewhat on the selected side regions. This effect was checked and added to the systematic uncertainties (see Sec. III D). The number of K^0_S and Λ was determined from fitting a sum of Lorentzian function and polynomial function for the signal and the background, respectively. The Lorentzian function is described by

$$f(x) = A \frac{\frac{1}{2} F}{(x - x_0)^2 + (\frac{1}{2} F)^2} ,$$

where parameter A controls the height of the peak, F is the full width at half maximum (FWHM), and x_0 is the mean value (in this case, the fitted K^0_S or Λ mass). The low statistics data forced to constrain the width of the signal function according to the Monte Carlo predictions. Namely, the width from Monte Carlo was set as initial value. Then, this parameter was allowed to vary (for K^0_S up to $\pm 5 \cdot \Delta F_{MC}$, where ΔF_{MC} is an error of the fitted Monte Carlo width in a given $\{p, \theta\}$ bin; for Λ up to $\pm 7 \cdot \Delta F_{MC}$). The influence of this assumption on the final result was checked and added to the systematic uncertainties (see Sec. III D). In the standard approach a 4th order polynomial was used as the background function. The sensitivity to different shapes of the background function was studied and is included in the systematic uncertainties (see Sec. III D). The raw number of K^0_S and Λ was calculated as the integral of the fitted signal function Eq. 1. Corrections were applied to the raw numbers of K^0_S and Λ in order to obtain their yields produced in the primary p+C interac-
tions after strong and electromagnetic decays. Correction factors were derived from a Monte Carlo procedure in which events were generated from the hadron production model VENUS 4.12 [10] and then sent through a full simulation of the detector. The procedure takes into account the trigger bias, the vertex fit requirement and cuts, the branching ratio for the studied type of decay, the geometrical acceptance, the reconstruction efficiency and feed-down from interactions with the target material. The feed-down correction also takes into account Λ hyperons coming from secondary vertices. The inverse multiplicative Monte Carlo correction is calculated using the following formula

$$E(p, \theta) = \left(\frac{n_x^{\text{MC}}}{N^{\text{acc}}} \right)_{\text{gen}} / \left(\frac{n_x^{\text{MC}}}{N^{\text{gen}}} \right)_{\text{gen}} \hspace{1cm} (2)$$

which compares the information on simulated particles at the primary hadron generator level (gen) with that on reconstructed identified particles (acc). The quantity n_x is the number of the identified particle of type x (K0_S or Λ) in a given bin of phase-space, N is the number of events. The correction can be split into two parts: the first one connected with correction of numbers of a given particle of type x in a given bin (n$^{\text{acc}}_x$), the second one connected with the correction of number of events (N$^{\text{acc}}$/N$^{\text{gen}}$ which will be denoted γ). Therefore, the correction can be rewritten as follows:

$$E(p, \theta) = \left(\frac{n_x^{\text{acc}}}{N^{\text{acc}}} \right)_{\text{MC}} / \left(\frac{N^{\text{acc}}}{N^{\text{gen}}} \right)_{\text{MC}} = \frac{\gamma}{\eta}. \hspace{1cm} (3)$$

The subtraction of non-target interactions was performed using information from events recorded with target removed. The normalization was obtained far away from the target where all reconstructed vertices originate from interactions with the detector material (neglecting the beam attenuation in the target). The number of particles per event in a given phase space bin, corrected for non-target interactions, is calculated as:

$$\frac{n}{N} = \frac{1}{E} \frac{n^I - Bn^R}{N^I - BN^R}, \hspace{1cm} (4)$$

where I and R superscripts indicate data with target inserted and removed, respectively. The factor B is calculated from the data:

$$B = \frac{N^I_{\text{beam}}}{N^R_{\text{beam}}} = \frac{N^I_{\text{far} \ z}}{N^R_{\text{far} \ z}}, \hspace{1cm} (5)$$

where N^R_{beam} is the number of beam particles in data with target removed and inserted, respectively, and $N^R_{\text{far} \ z}$ is the corresponding number of events with fitted vertex longitudinal coordinate, z, far away from the target. The differential spectrum is calculated as

$$\frac{dn}{dp} = \frac{n}{N} \frac{1}{\Delta p}. \hspace{1cm} (6)$$

Then the differential cross section is calculated as:

$$\frac{d\sigma}{dp} = \sigma_{\text{prod}} \frac{dn}{dp}, \hspace{1cm} (7)$$

where σ_{prod} is equal to 229.3 ± 1.9 ± 9.0 mb. The uncertainties on σ_{prod} were not included in the uncertainties of the final results presented in this paper. The measurements of the inelastic and production cross sections are presented in Ref. [11].

A. Event and track selection, data binning

The analysis is based on 667×10^3 event triggers with the graphite target inserted and 46×10^3 triggers with the target removed. Only events with a properly reconstructed beam track were retained. First of all, the information from the Beam Position Detectors, placed upstream of the target (see Fig. 1), was used to ensure a well-defined beam track (see Ref. [8] for details). Then, events with reconstructed primary vertex, within the target (vertex z position within the range [-585.0, -575.0] cm), were selected in order to reject interactions that did not take place in the target but in the surrounding detector material. Any pair of tracks with opposite charges and distance of closest approach smaller than 1 cm was taken as a possible V^0 candidate. In order to purify the sample and select candidates which correspond to K^0_S or Λ with high probability additional cuts were applied:

(i) The distance along the beam direction between the primary vertex and the V^0 decay point had to be larger than 3 cm. This cut was used to reject cases in which primary vertex tracks were wrongly reconstructed as V^0 tracks. The same minimum distance cut was used for K^0_S and Λ. Although the decay lengths of the two particles are different, the signal to background ratio are very similar using the same cut.

(ii) The V^0 momentum vector had to point back to the primary vertex within a cut of d_z and $d_y <$ 3 cm in the transverse $\{x, y\}$ plane for K^0_S and Λ candidates.

(iii) The analysis was performed in the invariant mass windows [0.35, 0.7] GeV/c2 and [1.09, 1.16] GeV/c2 for K^0_S and Λ, respectively.

(iv) A cut was applied on the angle between the momentum of the V^0 candidate and its decay products in the c.m. system. Due to the expected isotropy of the decay in the V^0 rest frame the distribution of the cosine of this angle (cos ϵ) should be flat. The cut was set to -0.95 < cos ϵ < -0.8 and -0.8 < cos ϵ < 0.8 for K^0_S and Λ, respectively.

(v) Cuts in the Armenteros-Podolanski plot were applied. The relation between Armenteros transverse momentum (p_T^{trans}) and longitudinal momentum asymmetry (α) can be used to separate K^0_S
mesons from Λ hyperons with high probability. The separation of K_S^0 and Λ candidates using the Armenteros-Podolanski plot is shown in Fig. 2. For the selection of K_S^0 candidates, the regions p_T^{arm} and <0.05 were excluded. In addition the region $α>0.5$ and $p_T^{arm} < 0.12$ is rejected in order to get rid of background originating from Λ particles. For the Λ selection, the region $p_T^{arm} < 0.03$ or >0.11 was excluded. Furthermore, the region $α<0.45$ was rejected.

The K_S^0 candidate momentum vs polar angle distribution after event, track and V^0 selection cuts is shown in Fig. 3 with superimposed binning. The bins colored in red were more sensitive to the model dependent corrections because for them the uncertainty of the shape of the event generator distributions could significantly affect the final results.

B. Raw Yields

The $(π^+π^-)$ invariant mass distributions in selected {p, θ} bins for K_S^0 candidates are presented in Fig. 4. The invariant mass distributions for Λ candidates in selected {p, θ} bins are presented in Fig. 5. The raw number of K_S^0 and Λ extracted in the selected momentum and polar angle intervals is presented in Table I.

Table I: The raw number of K_S^0 and Λ extracted by the fitting procedure in selected momentum and polar angle intervals

<table>
<thead>
<tr>
<th>$θ_{low}$ $θ_{up}$ (mrad)</th>
<th>p_{low} p_{up} (GeV/c)</th>
<th>K_S^0 n</th>
<th>$Λ$ n</th>
<th>$Δn$</th>
<th>$Δn$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 20</td>
<td>0.4 7.2</td>
<td>61 10</td>
<td>0.4 5.6 562 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 140</td>
<td>0.4 2.4</td>
<td>178 23</td>
<td>2.4 5.6 562 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 3.2</td>
<td>167 18</td>
<td>2.4 5.6 562 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 4.0</td>
<td>165 18</td>
<td>2.4 5.6 562 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 4.8</td>
<td>126 18</td>
<td>2.4 5.6 562 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8 5.6</td>
<td>132 16</td>
<td>2.4 5.6 562 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6 7.2</td>
<td>130 16</td>
<td>5.6 7.2 248 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2 8.8</td>
<td>80 15</td>
<td>7.2 10.8 468 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.8 10.8</td>
<td>115 15</td>
<td>7.2 10.8 468 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8 20.0</td>
<td>102 17</td>
<td>10.8 20.0 362 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140 240</td>
<td>0.4 2.4</td>
<td>93 15</td>
<td>0.4 2.4 60 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 4.0</td>
<td>233 20</td>
<td>2.4 5.6 344 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 5.6</td>
<td>135 20</td>
<td>2.4 5.6 344 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6 10.8</td>
<td>88 12</td>
<td>5.6 10.8 72 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 420</td>
<td>0.4 5.6</td>
<td>135 26</td>
<td>5.6 10.8 72 17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4: The invariant mass distributions for K^0_S candidates in selected $\{p, \theta\}$ bins. Data (black) with superimposed background function (red dashed) and global fit (blue solid) are shown.

Figure 5: The invariant mass distributions for Λ candidates in selected $\{p, \theta\}$ bins. Data (black) with superimposed background function (red dashed) and global fit (blue solid) are shown.
C. Corrections

The simulation chain described in Ref. [5] was used to correct raw yields for detector effects (i.e. geometrical acceptance, reconstruction efficiency, resolution of \(p \) and \(\theta \) measurements), contributions from non-primary \(V^0 \) decays, and decay branching ratios. The correction factor was calculated according to Eq. 2. For this calculation information from the simulation about reconstructed and simulated particles of each type is needed. The number of reconstructed particles is obtained in the same way as for the real data as the result of the integration of the fitted signal function after background subtraction. The momentum versus polar angle distribution of simulated \(K^0_S \) and \(\Lambda \) from the employed VENUS 4.12 model [10] is presented in Fig. 6.

The invariant mass distributions for \(K^0_S \) and \(\Lambda \) found by the fitting procedure (\(n_{\text{rec}} \)), the \(\gamma \)-correction factor, and their errors in selected momentum and polar angle intervals.

<table>
<thead>
<tr>
<th>(\theta_{\text{low}}) (mrad)</th>
<th>(\theta_{\text{up}}) (mrad)</th>
<th>(p_{\text{low}}) (GeV/c)</th>
<th>(p_{\text{up}}) (GeV/c)</th>
<th>(n_{\text{sim}})</th>
<th>(\Delta n_{\text{sim}})</th>
<th>(n_{\text{rec}})</th>
<th>(\Delta n_{\text{rec}})</th>
<th>(\gamma)</th>
<th>(\Delta \gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>0.4</td>
<td>7.2</td>
<td>10908</td>
<td>104</td>
<td>1067</td>
<td>37</td>
<td>0.0979</td>
<td>0.0035</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>0.4</td>
<td>2.4</td>
<td>58087</td>
<td>241</td>
<td>2417</td>
<td>55</td>
<td>0.0416</td>
<td>0.001</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>2.4</td>
<td>32905</td>
<td>181</td>
<td>2472</td>
<td>59</td>
<td>0.0751</td>
<td>0.0018</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>3.2</td>
<td>4.0</td>
<td>31544</td>
<td>178</td>
<td>2624</td>
<td>62</td>
<td>0.0831</td>
<td>0.0020</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>4.0</td>
<td>4.8</td>
<td>28274</td>
<td>168</td>
<td>2574</td>
<td>62</td>
<td>0.0910</td>
<td>0.0022</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>4.8</td>
<td>5.6</td>
<td>24330</td>
<td>156</td>
<td>2241</td>
<td>57</td>
<td>0.0921</td>
<td>0.0024</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>5.6</td>
<td>7.2</td>
<td>36036</td>
<td>192</td>
<td>3345</td>
<td>71</td>
<td>0.0905</td>
<td>0.0020</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>7.2</td>
<td>8.8</td>
<td>24172</td>
<td>155</td>
<td>2325</td>
<td>60</td>
<td>0.0962</td>
<td>0.0025</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>8.8</td>
<td>10.8</td>
<td>18054</td>
<td>134</td>
<td>1726</td>
<td>52</td>
<td>0.0956</td>
<td>0.0029</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>10.8</td>
<td>20.0</td>
<td>16742</td>
<td>129</td>
<td>1521</td>
<td>54</td>
<td>0.0909</td>
<td>0.0033</td>
</tr>
</tbody>
</table>

140	240	0.4	2.4	69280	263	1359	45	0.0196	0.0006
140	240	2.4	4.0	31443	177	2548	61	0.0810	0.0020
140	240	4.0	5.6	10373	102	1417	46	0.1366	0.0046
140	240	5.6	10.8	4250	65	661	34	0.1557	0.0083
140	240	10.8	20.0	119075	345	2209	61	0.0185	0.0005

Table II: The number of simulated \(K^0_S \) (\(n_{\text{sim}} \)), number of \(K^0_S \) found by the fitting procedure (\(n_{\text{rec}} \)), the \(\gamma \)-correction factor, and their errors in selected momentum and polar angle intervals.

The correction factors \(\gamma \) for \(K^0_S \) and \(\Lambda \) (see Eq. 3) were evaluated in bins of momentum and polar angle variables and are presented in Table II and Table III, respectively. The correction factor \(\eta \) is bin independent and was estimated to be equal to 0.8083 ± 0.0005.

The correction procedure was checked by evaluating the lifetime of \(K^0_S \) and \(\Lambda \) from the corrected distribution of distances between the production and decay vertices. The proper decay length (\(c \tau \)) distributions for \(K^0_S \) mesons and \(\Lambda \) hyperons are shown in Fig. 9.

![Figure 6](image_url)

Figure 6: The momentum versus polar angle distribution for simulated \(K^0_S \) mesons (top) and \(\Lambda \) hyperons (bottom).

The invariant mass distributions for \(K^0_S \) and \(\Lambda \) candidates in selected \(\{p, \theta\} \) bins are presented in Figs. 7 and 8, respectively.
Figure 7: The invariant mass distributions for simulated K_S^0 candidates in selected $\{p, \theta\}$ bins.

Figure 8: The invariant mass distributions for simulated Λ candidates in selected $\{p, \theta\}$ bins.
The obtained average proper decay lengths of 2.68 ± 0.02 cm for K^0_S and 7.46 ± 0.33 cm for Λ are consistent with the world averages.

The contribution of non-target interactions has small impact on the final results. The ratio B was found to be equal to 2.198 ± 0.027. After all cuts there were no V^0 candidates found in the data recorded with target removed. Therefore, the subtraction procedure for out of target interactions changes only the number of events removed. Therefore, the subtraction procedure for out of target interactions changes only the number of events used for the normalization of spectra. The values of N^i and N^i-BNR were 276481 and 276421, respectively.

D. Systematic errors

The main sources of the systematic uncertainty are as follows.

(i) The uncertainty connected with the track cuts. The contribution of this source was studied by varying all standard track cuts (see Sec. III A). In particular the minimum distance between the primary vertex and the V^0 decay point was varied from 3 cm to 6 cm. The invariant mass window was changed to $[0.4, 0.65]$ GeV/c^2 and to $[1.09, 1.16]$ GeV/c^2 for K^0_S and Λ, respectively. The accepted region for the $\cos \epsilon$ was reduced to $[-0.8, 0.6]$ for K^0_S and to $[-0.7, 0.7]$ for Λ. The cuts in the Armenteros-Podolanski plots were varied by about 10%.

(ii) The uncertainty connected with the background function used in the fitting procedure. Apart from the standard 4th order polynomial a set of different background functions was tried (3^{rd} order polynomial, 6th order Chebyshev polynomial, Argus function).

(iii) The uncertainty connected with the fitting procedure. Due to the low statistics of the data, fit results depend on the fit strategy and the limits set for the parameters. The most prominent effect was observed when the width of the signal function was varied. The initial values of the position and the width of the signal were taken from the large statistic MC simulations and the variation within ±10ΔF_{MC} was used for the systematic error studies.

(iv) The uncertainty connected with the inaccurate description of the reconstructed primary vertex distribution in the Monte Carlo.

(v) The uncertainty connected with the inaccuracy of the geometrical acceptance obtained from Monte Carlo simulation, reconstruction efficiency, and different algorithms used for track merging.

(vi) The uncertainty connected with the $\{p, \theta\}$ bin size due to imperfect modeling of K^0_S and Λ spectra in the Monte Carlo. This effect was only studied in the K^0_S case by looking at the distributions in different Monte Carlo generators.

The systematic errors connected with uncertainties discussed in points (i) and (iv) were found to be almost momentum independent. The uncertainties discussed in point (v) depend strongly on the selected $\{p, \theta\}$ bin. The systematic errors were estimated following the procedure presented in Refs. [5, 6].

The final systematic errors, calculated as the sum in quadrature of errors connected with the uncertainties discussed above, were found to be about 13.5-20.0% for K^0_S and Λ depending on the emission angle interval. The largest contributions always come from the uncertainty connected with the fitting approach (iii) and the uncertainty connected with the fit of the background (ii). Typical systematic errors connected with these sources were about 8-12% (iii) and about 7-8% (ii). The second most important contribution is related to the track cuts (i) and it is typically 4-5%. In addition important contribution comes from an inaccurate agreement between the data and Monte Carlo distributions of the fitted z coordinate of the primary vertex (iv). The systematic error connected with this effect is about 5%. The contributions connected with geometrical acceptance, reconstruction efficiency, and different reconstruction algorithms (v) are 3-4%, 2% and 2%, respectively. The systematic error connected with bin size (vi) was found to be about 6% in highly populated bins and about 12% in low statistic bins.

IV. RESULTS

Differential inclusive cross sections were derived following the procedure described in Sec. III. They are tabulated in Tables IV and V as well as plotted in polar angle slices in Figs. 10 and 11 for K^0_S and Λ, respectively.
The mean multiplicity in production processes and the inclusive cross section for K_S^0 production were evaluated from the results obtained in momentum and polar angle intervals. Regions outside the geometrical acceptance were corrected according to the VENUS 4.12 model [10] which predicts 23.91% of simulated K_S^0 to be outside of our \{p, θ\} bins. In the UrQMD [12] model this number is 20.27%.

The spread of model predictions was used to estimate the systematic error of the extrapolation to full phase space.

The final results with systematic errors are as follows.

\[
\langle n_{K_S^0} \rangle = 0.127 \pm 0.005 \text{ (stat)} \pm 0.022 \text{ (sys)}.
\]
Table IV: The NA61/SHINE results for the differential K^0_S production cross section in the laboratory system for p+C interactions at 31 GeV/c.

<table>
<thead>
<tr>
<th>θ_{low}</th>
<th>θ_{up}</th>
<th>p_{low}</th>
<th>p_{up}</th>
<th>$d\sigma_{K^0_S}/dp$</th>
<th>Δ_{stat}</th>
<th>Δ_{sys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mrad)</td>
<td>(GeV/c)</td>
<td>(mb/GeV/c)</td>
<td>(%)</td>
<td>(%)</td>
<td>[GeV]</td>
<td>[GeV]</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>0.4</td>
<td>7.2</td>
<td>0.061</td>
<td>0.010</td>
<td>16.8</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>0.4</td>
<td>2.4</td>
<td>1.434</td>
<td>0.188</td>
<td>13.1</td>
</tr>
<tr>
<td>2.4</td>
<td>3.2</td>
<td>4.0</td>
<td>1.662</td>
<td>0.186</td>
<td>11.0</td>
<td>15.5</td>
</tr>
<tr>
<td>4.0</td>
<td>4.8</td>
<td>5.6</td>
<td>1.200</td>
<td>0.158</td>
<td>13.1</td>
<td>14.4</td>
</tr>
<tr>
<td>5.6</td>
<td>7.2</td>
<td>6.01</td>
<td>0.075</td>
<td>12.5</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>8.8</td>
<td>3.48</td>
<td>0.066</td>
<td>18.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>10.8</td>
<td>0.403</td>
<td>0.054</td>
<td>13.4</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.8</td>
<td>20.0</td>
<td>0.082</td>
<td>0.014</td>
<td>17.0</td>
<td>18.6</td>
</tr>
</tbody>
</table>

Table V: The NA61/SHINE results for differential Λ production cross section in the laboratory system for p+C interactions at 31 GeV/c.

<table>
<thead>
<tr>
<th>θ_{low}</th>
<th>θ_{up}</th>
<th>p_{low}</th>
<th>p_{up}</th>
<th>$d\sigma_{\Lambda}/dp$</th>
<th>Δ_{stat}</th>
<th>Δ_{sys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mrad)</td>
<td>(GeV/c)</td>
<td>(mb/GeV/c)</td>
<td>(%)</td>
<td>(%)</td>
<td>[GeV]</td>
<td>[GeV]</td>
</tr>
<tr>
<td>140</td>
<td>240</td>
<td>0.4</td>
<td>2.4</td>
<td>1.589</td>
<td>0.226</td>
<td>16.5</td>
</tr>
<tr>
<td>2.4</td>
<td>4.0</td>
<td>5.6</td>
<td>1.204</td>
<td>0.139</td>
<td>8.9</td>
<td>14.4</td>
</tr>
<tr>
<td>4.0</td>
<td>5.6</td>
<td>10.8</td>
<td>0.073</td>
<td>0.011</td>
<td>14.6</td>
<td>16.9</td>
</tr>
<tr>
<td>10.8</td>
<td>20.0</td>
<td>0.082</td>
<td>0.014</td>
<td>17.0</td>
<td>18.6</td>
<td></td>
</tr>
</tbody>
</table>

The inclusive cross section for K^0_S production is $\sigma_{K^0_S} = 29.0 \pm 1.6$ (stat) ± 5.0 (sys) [mb].

Due to different phase-space distributions of Λ and K^0_S, a model-dependent correction for an unmeasured yield of Λ hyperons is about two times larger than the one for K^0_S mesons. Therefore a reliable extrapolation of the Λ hyperon yield to the full phase was not possible.

The K^0_S mean multiplicity in production processes was compared with a compilation [13] of total integrated K^0_S yields from p+p interaction experiments. For this purpose the NA61/SHINE result was scaled according to the Wounded Nucleon Model (WNM) by a multiplicative scaling factor $2/(1+\langle n_W \rangle)$ and according to the Independent Collisions Model (ICM) by a multiplicative scaling factor $1/\langle n_W \rangle$, where $\langle n_W \rangle$ is the average number of wounded nucleons inside the carbon nucleus. The value of $\langle n_W \rangle$ was found to be 1.5240 ± 0.0011 using the GLauber Initial-State Simulation AND mOre (GLISSANDO) model calculation [14].

The comparison of our result with the compilation of existing p+p results is shown in Fig. 12. Better agreement is observed between the scaled NA61/SHINE result and the measurement for p+p interactions when the ICM scaling is used. The larger value of the kaon multiplicity (0.127 ± 0.005) as compared to the WNM model ($0.063 \times 1.26 = 0.0793$) can be regarded as an indication of enhanced strange particle production in p+C collisions at 31 GeV/c. However, a definite conclusion is not possible due to the systematic uncertainties of our results.

V. COMPARISON WITH MODEL PREDICTIONS

The K^0_S results in momentum and polar angle variables normalized to mean particle multiplicity in production processes are shown in Fig. 13 with predictions from the hadron production models VENUS and UrQMD superimposed.
The K^0_S/π^- ratio is plotted versus momentum for selected polar angle intervals in Fig. 14. The π^- spectra were taken from Ref. [5]. The ratio of K^0_S/π^- is expected to be close to the ratio of the \bar{s} to \bar{u} quark production probabilities and it is therefore sensitive to the strangeness suppression factor, λ_S. Furthermore, the ratio K^0_S/π^- is used in the calculation of the feed-down corrections when extracting primary pion multiplicities from the data. In Ref. [5] VENUS model predictions, not yet confronted with the NA61/SHINE measurements, were used and therefore large systematic errors were assigned. It is seen from Fig. 14 that the agreement between data and the model is rather satisfactory for the emission angle interval 20-140 mrad whereas the disagreement is large at larger angles. The measured average multiplicity of K^0_S differs by about 20% from the one predicted by VENUS and used in the NA61/SHINE correction procedure. The K^0_S/K^+ ratio in the selected polar angle intervals is shown in Fig. 15. The K^+ spectra were measured in the same experiment [6] therefore some of the systematic errors canceled out. The d/u quark ratio in p+C interactions is 5:7. The smaller yield of K^0_S compared to that of K^+ is thus expected because it is more probable to find a u current quark to form a positively charged kaon ($u\bar{s}$) than a d quark to form a K^0 ($d\bar{s}$). The \bar{K} ($d\bar{s}$) requires the production of two sea quarks and thus it is less frequent.

The Λ results in momentum and polar angle variables normalized to mean particle multiplicity in production processes are shown in Fig. 16 with the predictions from the hadron production models superimposed. None of the models provides a satisfactory description of our measurements.

Figure 13: Mean multiplicity of K^0_S mesons in production processes in polar angle intervals: [20, 140] mrad (left), [140, 240] mrad (right). Two hadron production model predictions are superimposed. Only statistical errors are shown.

Figure 14: K^0_S/π^- ratios versus momentum in two polar angle intervals: [20, 140] mrad (top), [140, 240] mrad (bottom). The vertical error bars on the data points show the total (stat. and syst.) uncertainty. Predictions of two hadron production models are superimposed.
Figure 15: K_S^0/K^+ ratios in two polar angle intervals in two polar angle bins $[20, 140]$ mrad (top) and $[140, 240]$ mrad (bottom). The vertical error bars on the data points show the total (stat. and syst.) uncertainty. Predictions of hadron production models are superimposed.

Figure 16: Mean multiplicity of Λ hyperons in production processes in polar angle intervals: $[20, 140]$ mrad (top), $[140, 240]$ mrad (bottom). Hadron production model predictions are superimposed. Only statistical errors are shown.
VI. SUMMARY

We present the first measurement of the total cross section for K^0_S production in p+C interactions at 31 GeV/c in the experimentally sparsely covered region of a few tens of GeV/c beam momentum. The increase of the mean K^0_S multiplicity with respect to p+p collisions can be explained within errors by a factor equal to the average number of primary proton interactions in the carbon nucleus. Differential cross sections for K^0_S and Λ production were obtained in bins of laboratory momentum and emission angle and are compared with predictions of several hadron production models. Significant discrepancies between our experimental results and predictions of the VENUS 4.12 and UrQMD models are observed. These new measurements will help to further refine the prediction of the neutrino beam flux in the T2K experiment.

VII. ACKNOWLEDGMENTS

This work was supported by the Hungarian Scientific Research Fund (grants OTKA 68506 and 71989), the Polish Ministry of Science and Higher Education (grants 667/N-CERN/2010/0, NN 202 48 4339 and NN 202 23 1837), the National Science Centre of Poland, grant UMO-2012/04/M/ST2/00816, the Foundation for Polish Science - MPD program, co-financed by the European Union within the European Regional Development Fund, the Federal Agency of Education of the Ministry of Education and Science of the Russian Federation (grant RNP 2.2.2.2.1547), the Russian Academy of Science and the Russian Foundation for Basic Research (grants 08-02-00018, 09-02-00664 12-02-91503-CERN), the Ministry of Education, Culture, Sports, Science and Technology, Japan, Grant-in-Aid for Scientific Research (grants 18071005, 19034011, 19740162, 20740160 and 20039012), the German Research Foundation (grant GA 1480/2-1 and GA 1480/2-2), the Bulgarian National Scientific Foundation (grant DDVU 02/19/2010), the Ministry of Education and Science of the Republic of Serbia (grant OI171002), the Swiss National fonds Foundation (grant 200020-117913/1) and ETH Research Grant TH-01 07-3.

Finally, it is a pleasure to thank the European Organization for Nuclear Research for a strong support and hospitality and, in particular, the operating crews of the CERN SPS accelerator and beam lines who made the measurements possible.