Title
Kinetics and thermodynamics of Pb sorption onto bentonite and poly(acrylic acid)/bentonite hybrid sorbent

Permalink
https://escholarship.org/uc/item/90s720v4

Journal
Desalination and Water Treatment, 57(47)

ISSN
1944-3994

Authors
Rafiei, HR
Shirvani, M
Ogunseitan, OA

Publication Date
2016-10-07

DOI
10.1080/19443994.2015.1130655

Peer reviewed
Kinetics and thermodynamics of Pb sorption onto bentonite and poly(acrylic acid)/bentonite hybrid sorbent

Hamid R. Rafiei, Mehran Shirvani & Oladele A. Ogunseitan

To cite this article: Hamid R. Rafiei, Mehran Shirvani & Oladele A. Ogunseitan (2016): Kinetics and thermodynamics of Pb sorption onto bentonite and poly(acrylic acid)/bentonite hybrid sorbent, Desalination and Water Treatment, DOI: 10.1080/19443994.2015.1130655

To link to this article: http://dx.doi.org/10.1080/19443994.2015.1130655

Published online: 04 Jan 2016.

Article views: 8
ABSTRACT

In this work, bentonite (Bent) and poly(acrylic acid)–bentonite (PAA–Bent) hybrid were applied for the removal of Lead (Pb) from aqueous solutions. Sorption experiments were conducted under batch condition at different times, Pb concentrations, and temperatures. Equilibrium studies showed that Pb sorption data on PAA–Bent followed the Langmuir model. Both capacity and affinity of PAA–Bent and Bent for Pb retention increased with rising temperature. Maximum capacity (q_m) of PAA–Bent for Pb sorption was 91.88 mg g$^{-1}$ at 15°C which increased to 96.13 mg g$^{-1}$ at 50°C. For the Bent sample, the q_m values were 52.31 and 82.51 mg g$^{-1}$, respectively, at 15 and 50°C. The Langmuir Pb sorption affinity parameter (K_L) was increased from 0.12 to 2.25 L mg$^{-1}$ for PAA–Bent and from 0.009 to 1.19 L mg$^{-1}$ for Bent, as temperature rose from 15 to 50°C. Pseudo-first and pseudo-second-order kinetic models could best describe the time-dependent Pb sorption data by the PAA–Bent which occurred at a fast rate approaching equilibrium within ~30–60 min. For the Bent sample, the Elovich model was the best fitted model to the Pb sorption data. Calculation of thermodynamic parameters including Gibbs free energy changes ($\Delta G^\circ = 20.07$ to -40.63 kJ mol$^{-1}$), enthalpy change ($\Delta H^\circ = 146.359$ kJ mol$^{-1}$), and entropy change ($\Delta S^\circ = 578.42$ J mol$^{-1}$ K$^{-1}$) showed that Pb sorption on the PAA–Bent is more spontaneous, endothermic, and favored as compared to Pb sorption process on the Bent with $\Delta G^\circ = -19.51$ to -30.44 kJ mol$^{-1}$, $\Delta H^\circ = 70.02$ kJ mol$^{-1}$ and $\Delta S^\circ = 310.94$ J mol$^{-1}$ K$^{-1}$. In conclusion, the PAA–Bent hybrid sorbent can be considered as a suitable candidate for the removal of Pb from aqueous solutions.

Keywords: Montmorillonite; Organo-clay; Lead; Adsorption

1. Introduction

Environmental contamination with toxic metals has become a global concern that threatens human health [1,2]. Lead (Pb) has been recognized as one of the most common toxic heavy metals, due to its wide application in many industries [3]. Wastewater processing from lead–acid batteries, paints, phosphate fertilizers, electronics, combustion of fossil fuels, forest fires, mining activities, automobile emissions, and corrosion of Pb-containing piping material are the major sources releasing Pb into the environment [1,2]. Lead
poisoning typically results from the ingestion of contaminated food or water and can cause a variety of symptoms, especially in children, depending on the duration of Pb exposure [2,3]. Damage to liver and kidney, anemia, mental retardation, depression, increase in blood pressure, nausea, infertility, abdominal pain, fatigue, problems with sleep, headaches, stupor, slurred speech, and loss of coordination are some reported symptoms of chronic Pb poisoning [2,3]. In 1991, the US Centers for Disease Control and Prevention (CDC) established an acceptable blood lead level (BLL) of 10 μg/dL for children, but recently, the CDC reduced the threshold to 5 μg/dL [4].

Various technologies such as chemical precipitation, membrane separation, advanced oxidation process, electrochemical technique, and adsorption procedures have been developed for Pb(II) removal from wastewaters [5]. Among these methods, adsorption has some advantages, such as flexibility in design and operation, low cost, and producing superior effluent suitable for reuse without other pollutants [5,6]. Activated carbon is the most commonly used adsorbent due to its large surface area and high thermal stability, but the high cost, low adsorption efficiency and difficulties in the separation of powdered activated carbon from wastewater for regeneration limit its large-scale application as an adsorbent [7,8]. To date, different types of natural and synthetic sorbents including clay minerals (e.g. bentonite, palygorskite, and kaolinite) [9–11], multi-walled carbon nanotubes [12], mercapto-functionalized sepiolite [13], zeolite–nanoscale zero-valent iron composite [14], 8-hydroxyquinoline-immobilized bentonite [15], N-methylimidazole-modified palygorskite [16], as well as various biosorbents [17,18], and polymers [19–21] have been used for removing of metals from aqueous solutions.

Adsorption using innovative clay/polymer hybrid materials is regarded as one of the most effective methods to remove heavy metals from aqueous solutions, because these hybrids possess lots of functional groups and unique network structure [7,8,22–26]. Clays represent promising support materials for polymers due to their mechanical and chemical stability, low cost, abundant availability, and non-toxicity to organisms [7,24]. For example, Zhao et al. [23] reported the application of bentonite–polyacrylamide composite for the removal of copper(II) from aqueous solutions. Polymer-supported nanosized hydrated Fe (III) oxides were also shown to efficiently remove Pb (II), Cd(II), and Cu(II) from drinking water [24]. Nanohydroxyapatite–alginate composite [25] and carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites [8] are among other organic–inorganic hybrid materials used for Pb(II) adsorption from aqueous solutions. The bare clay and polymer particles are easily aggregated or coagulated in aqueous solutions, limiting their practical usage. This limitation can be minimized by the use of insoluble clay–polymer composites [8,26]. Furthermore, the clay fillers disperse within the polymer and increase the surface area for sorption since agglomeration is largely limited [22].

Possessing many polar carboxyl groups in its structure, poly(acrylic acid) (PAA) has shown a great ability to form strong complexes with metal ions in solution [7,8,27–29]. The high water solubility and weak structural stability of PAA, however, hinders application of this polymer to remove heavy metal ions from wastewater. Combining this polymer with clay minerals can help to overcome these limitations. He et al. [30] produced a kind of PAA/bentonite composite by in situ polymerization of acrylic acid monomers in bentonite (Bent) interlayer spaces, and successfully utilized the composite to remove lead(II) ions from solutions. In our previous work [31] we also prepared and characterized a new hybrid sorbent by grafting of PAA into the Bent galleries and studied equilibrium parameters of Pb sorption by the prepared sorbent. In the present work, the effects of contact time, initial concentration, and temperature on Pb sorption by the hybrid sorbent were investigated.

2. Experimental

2.1. Materials

The natural Bent was obtained from Mehredjan mine (33˚ 36´ 7˝ N, 55˚ 10´ 4˝ E), Isfahan, Iran. The chemical constituent of the Bent was analyzed by XRF and given in Table 1. The cation exchange capacity (CEC) of the clay, determined by Na-acetate method [32], was 66 cmol·kg⁻¹. A stock solution of Pb (2,000 mg L⁻¹) was prepared by dissolving required amount of Pb(NO₃)₂ in 0.01 M CaCl₂ solution as background electrolyte. The stock solution was then diluted to the various concentrations between 50 and 1,200 mg Pb L⁻¹. N-Cetyltrimethylammonium (CTA) bromide (purity > 99%) with chemical formula of C₁₆H₃₃N(CH₃)₃Br from Merck and PAA (MWca. 2000) from Sigma–Aldrich were used in preparation of the nanocomposite. All other chemicals used in this study were of analytical grade and all solutions were prepared with distilled water.

2.2. Preparation of PAA–Bent nanocomposite

Synthesis of surfactant-modified Bent (organo-clay) was carried out using CTA as intercalating species.
according to the following procedure. Twenty grams of natural Bent was mixed with 300 mL of distilled water and 6 mL of 0.01 M HCl. The mixture was subsequently heated to 70°C for 2 h. An amount of CTA equivalent to 2CEC of the Bent was dispersed into the Bent suspension and stirred vigorously for 12 h at 70°C. The mixture was then centrifuged and washed several times with hot distilled water until no bromide ion was detected by a 0.01 M AgNO$_3$ solution. The CTA-modified Bent was dried in an oven at 80°C for 24 h and ground to 270 mesh (0.05 mm).

For the synthesis of PAA–organo/Bent hybrid, 10 g of surfactant-modified Bent was dispersed in 200 mL of phosphate buffer solution (pH 4.0), cooled to 4°C, and sonicated for 10 min at 20 kHz frequency and rated power of 120 W. Then, 200 mL of a 5% PAA aqueous solution was added to the reaction flask and sonication was continued for 30 min at 4°C. The mixture was then stirred at 60°C for 3 h, centrifuged at 5,000 rpm for 20 min, and the sediment was dried in oven at 70°C for 24 h. The dried sample was subsequently ground and particles smaller than 0.05 mm was used in the batch Pb(II) sorption studies.

2.3. Characterization of the sorbents

Infrared spectra of the sorbents were recorded using a JASCO FT-IR 460 spectrometer in range of 400–4,000 cm$^{-1}$. In order to characterize the initial material, a spectrum of pure CTA surfactant and PAA were also recorded. X-ray diffraction (XRD) analyses of the powdered samples were performed using a Philips PANalytical X’pert high score diffractometer with Cu Kα radiation, running at 40 kV and 40 mA, over the 2θ range of 2°–40°. The total carbon content in natural and modified bentonites was determined by a Skalar Primacs$^{\text{SILC}}$ carbon analyzer. Electron micrographs of the gold-coated samples were taken using a scanning electronic microscope (SEM) (VEGA/TESCAN model).

2.4. Lead sorption experiments

Lead sorption experiments were conducted in batch mode under natural pH conditions with background electrolyte concentration of 0.01 mol L$^{-1}$ CaCl$_2$. The initial pH value of the Pb solutions ranged from 5.69 to 4.93 depending on the Pb concentration. Isothermal experiments were conducted at different temperatures (15–50°C) by mixing 0.15 g subsamples of each sorbent with 20 mL of aqueous solutions with increasing Pb concentration from 50 to 1,200 mg L$^{-1}$ in 50 mL polyethylene centrifuge tubes. The mixtures were shaken in a thermostatic mechanical shaker at 180 rpm. After shaking for 24 h, the solid and liquid phases were separated by centrifugation at 2,500 rpm for 10 min and the residual Pb concentrations in the supernatants were determined using a Perkin Elmer AAnalyst200 atomic absorption spectrometer (AAS) at a wavelength of 283.3 nm. Equilibrium pH values in the supernatants were also measured. Sorption of Pb for each sample was calculated through the following equation:

$$q_e = \frac{(C_0 - C_e)V}{m} \quad (1)$$

where q_e refers to the amount of Pb sorbed (mg g$^{-1}$), C_0 and C_e represent the initial and equilibrium Pb concentration (mg L$^{-1}$), respectively, V is the volume of the aqueous solution (L), and m is the mass of dry sorbent (g). The Pb sorption percentage, R (%), after a certain period of time was calculated from the difference of initial and final Pb concentrations using the following equation:

$$R(\%) = \frac{C_0 - C_t}{C_0} \times 100 \quad (2)$$

where C_0 and C_t are the initial and final Pb concentrations (mg L$^{-1}$), respectively. All Pb removal experiments were conducted in triplicates. Blank experiments, without the addition of sorbents, were also considered to ensure that the decrease of Pb concentration was actually caused by the sorption onto the sorbents, rather than the tube wall.

The experimental data were fitted to the Langmuir and Freundlich isotherm equations. The non-linear equation of the Langmuir isotherm model is [33]:

Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>Fe$_2$O$_3$</th>
<th>MgO</th>
<th>CaO</th>
<th>K$_2$O</th>
<th>TiO$_2$</th>
<th>Na$_2$O</th>
<th>LOIa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (%)</td>
<td>66.37</td>
<td>13.24</td>
<td>2.04</td>
<td>2.37</td>
<td>1.79</td>
<td>0.51</td>
<td>0.13</td>
<td>1.69</td>
<td>10.83</td>
</tr>
</tbody>
</table>

aLoss of ignition.
where \(q_m \) is the maximum Pb sorption capacity (mg g\(^{-1}\)) and \(K_L \) (L mg\(^{-1}\)) is the affinity of Pb ions to the sorption sites. To determine if adsorption process is favorable, a dimensionless constant named separation factor or equilibrium parameter, which is defined as below was calculated [16]:

\[
R_L = \frac{1}{1 + K_L C_0}
\]

where \(K_L \) is the Langmuir constant and \(C_0 \) is the highest initial metal concentration (mg L\(^{-1}\)). If \(R_L \) values lie between 0 and 1, the adsorption is favorable [16].

The non-linear equation of the Freundlich sorption model is as follows [33]:

\[
q_e = K_F C_e^N
\]

where \(K_F \) and \(N \) are the Freundlich constants indicating Pb sorption capacity and intensity, respectively.

Thermodynamic parameters for Pb sorption including changes in Gibbs free energy (\(\Delta G^o \)), enthalpy (\(\Delta H^o \)), and entropy (\(\Delta S^o \)) were calculated using the following equations [34,35]:

\[
\Delta G^o = -RT \ln K_d
\]

where \(R \) is the universal gas constant (8.314 J mol\(^{-1}\) K\(^{-1}\)), \(T \) is the temperature (K), and \(K_d \) is the distribution coefficient of the solute between the adsorbent and the solution in equilibrium. The \(K_d \) value was calculated using following equation:

\[
K_d = \frac{q_e}{C_e}
\]

where \(C_e \) and \(q_e \) were defined earlier. The enthalpy change (\(\Delta H^o \)) and entropy change (\(\Delta S^o \)) were then estimated from the slope and intercept of plots of \(\ln K_d \) vs. \(1/T \), respectively, according to the following equation [34,35]:

\[
\ln K_d = \frac{\Delta S^o}{R} - \frac{\Delta H^o}{RT}
\]

For the kinetic studies, 0.15 g subsamples of each sorbent were mixed with 20 mL of solutions containing 400 or 800 mg L\(^{-1}\) of Pb. A series of such conical centrifuge test tubes were then shaken at a constant speed of 180 rpm. Samples were collected at predetermined time intervals (10, 30, 60, 120, 240, 480, 960, and 1,440 min), centrifuged and the supernatants were analyzed for Pb concentration using the AAS.

Four most commonly used kinetic models i.e. pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models [15,33,36], were used to describe the experimental data using non-linear regression. The uniformity between the experimental data and model-predicted values was expressed by determination coefficients (\(R^2 \)) values. The pseudo-first-order model is expressed in Eq. (9):

\[
q_t = q_e (1 - e^{-k_1 t})
\]

where \(q_t \) and \(q_e \) are the amount of Pb sorbed (mg g\(^{-1}\)) at time \(t \) (min) and at equilibrium, respectively, and \(k_1 \) (min\(^{-1}\)) is the rate constant of the pseudo-first-order adsorption process.

The pseudo-second-order model can be described in Eq. (10):

\[
q_t = \frac{k_2 q_e^2 t}{1 + k_2 q_e t}
\]

where \(k_2 \) is the constant of pseudo-second-order rate (g mg\(^{-1}\) min\(^{-1}\)). The initial sorption rate “\(h \)” (mg g\(^{-1}\) min\(^{-1}\)), can also be calculated using the pseudo-second-order parameters as follows:

\[
h = k_2 q_e^2
\]

The Elovich kinetic equation is often used to interpret the kinetics of chemisorption on highly heterogeneous sorbents. It can be expressed as Eq. (12):

\[
q_t = \frac{1}{\beta} \ln (\alpha \beta) + \frac{1}{\beta} \ln t
\]

where \(\alpha \) and \(\beta \) are constants [36].

The intraparticle diffusion equation can be written as follows:

\[
q_t = k_i t^{0.5} + I
\]

where \(I \) is the intercept and \(k_i \) is the intraparticle diffusion rate constant (mg g\(^{-1}\) min\(^{-1/2}\)).
3. Results and discussion

3.1. Sorbents characteristics

The XRD patterns of the Bent, PAA–Bent and CTA–Bent are presented in Fig. 1. Reflection at 2θ = 7.14° (basal spacing of 1.2 nm) revealed in the XRD pattern of Bent indicated montmorillonite as a major phase. Minor phases were quartz (2θ = 26.6°) and cristobalite (2θ = 21.8°). The structural changes of montmorillonite are mainly reflected in the shifting of d_{001} peak towards the lower values of 2θ [37]. The basal spacing of the CTA–Bent and PAA–Bent increased to 3.55 and 3.88 nm, respectively, indicating intercalation of the surfactant and polymer into the interlayer spaces of Bent and formation of the intercalated nanostructure. This d-value is a result of the orientation of surfactant chains in the interlayers of the clay with a paraffinic or pseudo-trilayer arrangement [38,39]. Surfactants such as alkyl ammonium compounds mainly enlarge the interlayer spacing of clays and facilitate the penetration of polymers into the clay galleries during the preparation of the polymer/clay composites [38].

The FT-IR spectra of Bent, CTA–Bent, PAA–Bent, surfactant (CTA) and polymer (PAA) are shown in Fig. 2 and the spectral bands are summarized in Table 2. The FT-IR spectra of the modified bentonites were different from that of the Bent. The band at 1,637.2 cm\(^{-1}\) is related to the bending vibration of hydroxyl groups from water molecules [40,41]. FT-IR spectrum of PAA shows stretching vibrations of C=O group (carboxyl or carbonyl) at 1,647.8 cm\(^{-1}\) [42,43].

![Fig. 1. XRD diffractograms of bentonite (Bent), organo-bentonite (CTA-Bent), and polyacrylic acid organo-bentonite (PAA-Bent).](image1.png)

![Fig. 2. FT-IR spectra of bentonite (Bent), cetyltrimethylammonium bromide (CTAB), polyacrylic acid (PAA), CTA–Bent, and PAA–Bent.](image2.png)
This characteristic band was shifted to higher frequencies (1,671.9 cm\(^{-1}\)) after the polymer was combined with the clay which can be related to the interactions between the C=O groups and the clay surfaces [44]. New absorption bands were detected at 2,850.2 and 2,919.7 cm\(^{-1}\) in the spectrum of CTA–Bent, which were assigned to stretching vibrations of C–H bond in –CH\(_2\) and in –CH\(_3\) group of the aliphatic chain of the CTA surfactant [40,45]. Additionally, the bending vibration of the methyl groups can be observed at 1,468.5 cm\(^{-1}\), verifying the intercalation of surfactant molecules between the silicate layers [44,46].

The experimental values of organic carbon content of the Bent and the CTA–Bent were 0.05 and 27.81%, respectively. Hence, the organic carbon in the CTA–Bent sample was almost entirely derived from the exchanged organic cations. Surfactant loading was fairly close to 185% of the CEC of the clay. The OC content of the PAA–Bent was 29.86%, suggesting that the PAA reacted successfully with the CTA–Bent. The morphologies of CTA–Bent and PAA–Bent are represented in Fig. 3, showing layered structure and nanosize scale.

3.2. Lead sorption kinetics

Fig. 4 shows the removal percentage of Pb from aqueous solution by Bent and PAA–Bent hybrid as a function of contact time at initial Pb concentration of 400 and 800 mg L\(^{-1}\). For both Pb concentrations, the initial sorption rate was high because sufficient adsorption sites were available for Pb ions to interact with easily. However, the number of unoccupied sites decreases with time, slowing down the Pb sorption reaction [47]. Sorption of Pb on the PAA-Bent was very fast at the lower Pb concentration (\(C_0 = 400\) mg L\(^{-1}\)) where more than 99.4% of the Pb sorption took place within the first 30 min, suggesting high complexation affinity between Pb ions and reactive functional groups on the surface of PAA–Bent. Lead sorption process on the Bent, however, approached equilibrium beyond the 1,440 min applied in this study for the sorption tests. Maximum Pb removal from solution by the Bent was only 63%.

At initial Pb concentration of 800 mg L\(^{-1}\), the percentage of Pb sorbed from the solution by the PAA–Bent was 74.7% compared with the 51.8% sorbed
by the Bent (Fig. 4). At higher Pb concentrations, more Pb ions were left unadsorbed in solution due to the saturation of binding sites [11, 47]. The time required to reach equilibrium increased with increasing the initial Pb concentration. For instance, as the Pb concentration increased from 400 to 800 mg L\(^{-1}\), the equilibrium time for Pb sorption by the PAA–Bent nanocomposite increased from ~30 to ~60 min. However, equilibrium was not attained for Pb sorption by Bent within the experimental timescale applied in this study.

The Pb sorption kinetic parameters derived from various models are shown in Table 3. It is obvious that the sorption kinetics of Pb onto PAA–Bent follows the pseudo-second-order and pseudo-first order kinetic models better than the Elovich and intraparticle diffusion models (Table 3, Fig. 5), suggesting that the sorption process is probably controlled by

<table>
<thead>
<tr>
<th>Kinetic parameters</th>
<th>Sorbents</th>
<th>400 mg Pb L(^{-1})</th>
<th>800 mg Pb L(^{-1})</th>
<th>400 mg Pb L(^{-1})</th>
<th>800 mg Pb L(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bent</td>
<td>PAA-Bent</td>
<td>Bent</td>
<td>PAA-Bent</td>
<td>Bent</td>
</tr>
<tr>
<td>(q_{e,\text{exp}}) (mg g(^{-1}))</td>
<td>33.51</td>
<td>57.08</td>
<td>52.33</td>
<td>81.58</td>
<td></td>
</tr>
<tr>
<td>Pseudo-first-order</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_e) (mg g(^{-1}))</td>
<td>25.86</td>
<td>43.87</td>
<td>52.68</td>
<td>78.82</td>
<td></td>
</tr>
<tr>
<td>(k_1) (min(^{-1}))</td>
<td>0.0271</td>
<td>0.0291</td>
<td>0.291</td>
<td>0.293</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.739</td>
<td>0.788</td>
<td>0.998</td>
<td>0.986</td>
<td></td>
</tr>
<tr>
<td>Pseudo-second-order</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_e) (mg g(^{-1}))</td>
<td>27.58</td>
<td>47.98</td>
<td>53.48</td>
<td>80.58</td>
<td></td>
</tr>
<tr>
<td>(k_2) (g mg(^{-1}) min(^{-1}))</td>
<td>0.0014</td>
<td>0.0007</td>
<td>0.0156</td>
<td>0.0078</td>
<td></td>
</tr>
<tr>
<td>(h) (mg g(^{-1}) min(^{-1}))</td>
<td>1.07</td>
<td>1.79</td>
<td>44.61</td>
<td>50.97</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.824</td>
<td>0.878</td>
<td>0.988</td>
<td>0.992</td>
<td></td>
</tr>
<tr>
<td>Intra-particle diffusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_i) (mg g(^{-1}) min(^{-1/2}))</td>
<td>0.696</td>
<td>1.177</td>
<td>0.575</td>
<td>0.998</td>
<td></td>
</tr>
<tr>
<td>(I)</td>
<td>8.01</td>
<td>15.52</td>
<td>37.96</td>
<td>55.14</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.865</td>
<td>0.823</td>
<td>0.183</td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td>Elovich model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha) (mg g(^{-1}) min(^{-1}))</td>
<td>18.36</td>
<td>30.66</td>
<td>786.0</td>
<td>1245.0</td>
<td></td>
</tr>
<tr>
<td>(\beta) (g mg(^{-1}))</td>
<td>0.316</td>
<td>0.179</td>
<td>0.199</td>
<td>0.132</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.922</td>
<td>0.950</td>
<td>0.712</td>
<td>0.776</td>
<td></td>
</tr>
</tbody>
</table>
chemisorption. It has also been reported in the literature that polyacrylic acid possesses numerous carboxyl functional groups with a high tendency to bond Pb ions via complexation (chelation) reactions. He et al. [30], for example, suggested that the chelation is the dominating adsorption mechanism for lead(II) ions by a PAA/B composite. Miyajima et al. [48] also showed that Pb forms monodentate and bidentate complexes with polyacrylic acid.

Increasing Pb concentration from 400 to 800 mg L\(^{-1}\) increased the values of initial rate “\(h\)” from 44.61 to 50.97 mg g\(^{-1}\) min\(^{-1}\) for PAA–Bent and from 1.07 to 1.79 mg g\(^{-1}\) min\(^{-1}\) for Bent (Table 3), because the initial metal ion concentration plays an important role as a driving force to overcome mass transfer resistance for metal ion transport between the solution and the surface of the adsorbent [34]. The amount of Pb sorbed at equilibrium (\(q_e\)) was also found to follow the same trend. The \(q_e\) value increased from 52.33 to 81.58 mg g\(^{-1}\) for PAA–Bent and from 33.51 to 57.08 mg g\(^{-1}\) for Bent, with doubling the initial Pb concentration from 400 to 800 mg L\(^{-1}\) (Table 3), confirming that the solution with lower Pb concentration reaches equilibrium faster [49].

For Pb sorption on Bent, the best fit of experimental data was obtained by the Elovich model, according to the \(R^2\) values presented in Table 3. This equation assumes that the active sites of the sorbent are heterogeneous in nature and therefore exhibit different activation energies for chemisorption [19]. The constant \(a\) increased but the constant \(\beta\) decreased with increasing the initial Pb concentration (Table 3), confirming the direct relationship between the Pb concentration and sorption rate as Chien and Clayton [36] showed that decrease in \(1/\beta\) and/or increase in \(a\) enhance the reaction rate.

3.3. Effect of temperature on Pb sorption efficiency

Fig. 6 illustrates the effect of temperatures ranged from 15 to 50°C on Pb removal efficiency at various initial Pb concentrations. Increased Pb concentration from 50 to 1,200 mg L\(^{-1}\) resulted in decrease in percentage of Pb removal by Bent and PAA–bent at all temperatures, which can be attributed to the
saturation of available active sites on the sorbents above a certain concentration of Pb ions [50]. As can be seen from Fig. 6, the sorption percentage of Pb by Bent increased with increasing temperature. Lead sorption process was favored at higher temperatures, suggesting that the Pb sorption reaction is endothermic. This may be a result of increase in the mobility of Pb ions toward the sorbent with increasing temperature. In case of the PAA–Bent sorbent, dependence of the Pb sorption efficiency to temperature was negligible at all studied solution concentrations. It may be because of the fact that grafting of PAA on the surface and interlayer spaces of the Bent substantially increased the number of functional groups for the fast Pb complexation reactions, minimizing the effect of temperature on the overall sorption process rate.

3.4. Effect of temperature on Pb sorption isotherms

Fig. 7 shows sorption isotherms of Pb on the PAA–Bent and Bent at various temperatures. The parameters of the isotherms and correlation coefficients (R^2) are also summarized in Table 4. The sorption capacity of PAA–Bent for Pb was higher than that of Bent as deduced from the q_m values calculated for the sorbents. The K_F values of the fitted Freundlich equation also indicate that PAA–Bent has higher capacity for Pb sorption compared to the Bent (Table 4). The hybrid sorbent had also a higher affinity toward Pb ions as estimated from the greater K_L value calculated for PAA–Bent compared to Bent. The R_L values at different temperatures were all below 1.0 (Table 4), which means the adsorption is favorable [16]. Moreover, R_L values decrease with increasing temperatures, demonstrating that the ongoing adsorption process is much more favorable at higher temperatures. Similar results were also reported by Shirvani et al. [51] who studied the adsorption of Ni ions by Ca–bentonite. Considering the Freundlich N parameters represented in Table 4 also indicates that PAA–Bent binds Pb more strongly than Bent do, as smaller values of N shows stronger bonds for that specific sorbate with the surface [52].

The experimental sorption capacities varied from 56.93 to 90.48 mg g$^{-1}$ for Bent and from 89.33 to 95.63 mg g$^{-1}$ for PAA–Bent, depending on the temperatures. A similar trend was also observed for the q_m and K_F values calculated from the Langmuir and Freundlich equations, respectively. The increase in sorption capacities with temperature indicates the endothermic nature of the Pb sorption processes. The Langmuir affinity constant, K_L, also increased from 0.009 to 1.191 L mg$^{-1}$ for Bent and from 0.120 to 2.249 L mg$^{-1}$ for PAA–Bent with increasing temperature. The Freundlich N values decrease with increasing temperature, suggesting that Pb binding strength to the surface functional groups was enhanced at higher temperatures.

The equilibrium pH values of the supernatants after Pb sorption were 5.23–7.41 for Bent/Pb and from 4.87 to 6.19 for PAA–Bent/Pb systems at various concentrations from 50 to 1,200 mg L$^{-1}$. In fact, the final pH of the solution decreased gradually with increasing initial concentration of Pb(II). PAA–Bent composite has lots of –COOH functional groups, which can be dissociated and released protons while bonding the Pb(II) ions [7,8,27–29].

3.5. Lead sorption thermodynamics

Thermodynamic parameters of Pb sorption by Bent and PAA–Bent obtained from ln K_d vs. $1/T$ plots (Fig. 8) are given in Table 5. The negative values of ΔG° at different temperatures imply the spontaneous nature of the Pb sorption process. Further, the decrease in the values of ΔG° with the increasing...
Fig. 7. Langmuir and Freundlich isotherm models fitted to equilibrium Pb sorption data onto Bent (a and c) and PAA–Bent (b and d) at different temperatures.

Table 4
Isothermal parameters and correlation coefficients calculated for Langmuir and Freundlich models fitted to the Pb sorption data on the PAA–Bent and Bent at different temperatures

<table>
<thead>
<tr>
<th>Isothermal constants</th>
<th>PAA-Bent</th>
<th></th>
<th></th>
<th></th>
<th>Bent</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15°C</td>
<td>25°C</td>
<td>35°C</td>
<td>50°C</td>
<td>15°C</td>
<td>25°C</td>
<td>35°C</td>
<td>50°C</td>
</tr>
<tr>
<td>(q_{m\text{(exp.)}}) (mg g(^{-1}))</td>
<td>89.33</td>
<td>90.71</td>
<td>90.85</td>
<td>95.63</td>
<td>56.93</td>
<td>59.62</td>
<td>68.02</td>
<td>90.48</td>
</tr>
<tr>
<td>(q_{m\text{(exp.)}}) (mmol g(^{-1}))</td>
<td>0.431</td>
<td>0.437</td>
<td>0.438</td>
<td>0.461</td>
<td>0.274</td>
<td>0.287</td>
<td>0.328</td>
<td>0.436</td>
</tr>
<tr>
<td>Langmuir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_{m}) (mg g(^{-1}))</td>
<td>91.88</td>
<td>93.01</td>
<td>90.45</td>
<td>96.13</td>
<td>61.15</td>
<td>59.62</td>
<td>68.02</td>
<td>90.48</td>
</tr>
<tr>
<td>(K_{L}) (L mg(^{-1}))</td>
<td>0.120</td>
<td>0.226</td>
<td>1.456</td>
<td>2.249</td>
<td>0.009</td>
<td>0.168</td>
<td>0.873</td>
<td>1.191</td>
</tr>
<tr>
<td>(R_{2})</td>
<td>0.921</td>
<td>0.943</td>
<td>0.981</td>
<td>0.947</td>
<td>0.871</td>
<td>0.862</td>
<td>0.928</td>
<td>0.943</td>
</tr>
<tr>
<td>(R_{L})</td>
<td>0.148</td>
<td>0.080</td>
<td>0.013</td>
<td>0.008</td>
<td>0.700</td>
<td>0.105</td>
<td>0.023</td>
<td>0.016</td>
</tr>
<tr>
<td>Freundlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K_{F})</td>
<td>22.89</td>
<td>33.77</td>
<td>38.83</td>
<td>42.65</td>
<td>7.22</td>
<td>15.39</td>
<td>24.43</td>
<td>32.09</td>
</tr>
<tr>
<td>(N)</td>
<td>0.231</td>
<td>0.172</td>
<td>0.151</td>
<td>0.142</td>
<td>0.306</td>
<td>0.209</td>
<td>0.167</td>
<td>0.176</td>
</tr>
<tr>
<td>(R^{2})</td>
<td>0.782</td>
<td>0.897</td>
<td>0.845</td>
<td>0.849</td>
<td>0.969</td>
<td>0.963</td>
<td>0.859</td>
<td>0.908</td>
</tr>
</tbody>
</table>

Notes: \(q_{m\text{(exp.)}} \) is the experimentally measured maximum Pb sorption by the sorbents under the conditions applied in this experiment given to compare with the \(q_{m} \) values estimated by the Langmuir model.
temperature indicates the sorption was more spontaneous and favorable at higher temperatures [53,54]. Cations are readily desolvated at high temperatures, and hence their sorption becomes more favorable [54]. The values of ΔG° ranged from -20.06 to -40.62 kJ mol$^{-1}$, suggesting that a surface complexation reaction is the major mechanism responsible for the Pb sorption process [53,55]. PAA–Bent shows more negative values of ΔG° for Pb sorption compared to the Bent, indicating the greater affinity for Pb removal. Özcan et al. [15] also reported that ΔG° values for Pb sorption on 8-hydroxyquinoline-immobilized bentonite changed from -24.30 to -29.72 kJ mol$^{-1}$ with increasing temperature from 20 to 50°C.

The positive values of ΔH° (Table 5) indicate the endothermic behavior of the Pb sorption process. This fact was also demonstrated from the increase in Pb sorption with temperature (Table 4). The magnitude of ΔH° gives an idea about whether the sorption is physical or chemical in nature. The ΔH° value for physical adsorption is usually no more than 4.2 kJ mol$^{-1}$ and for chemical adsorption is more than 21 kJ mol$^{-1}$ [34]. Therefore, it seems that adsorption of Pb ions on PAA–Bent and Bent is a chemical process and strong interactions between the Pb ions and functional groups on the surface of PAA–Bent and Bent might be formed [34]. The greater ΔH° value was calculated for the Pb sorption process on PAA–Bent compared to the Bent which may be due to the larger activation energy of the sorption onto the PAA–Bent [23].

The positive values of ΔS° (Table 5) suggests some structural changes in the sorbents [23] and increased randomness at the solid/solution interface during the adsorption of Pb onto sorbents [53]. Chemisorption reactions are associated with decreasing the number of water molecules surrounding the sorptive ions via partial dehydration process which cause the degree of freedom of the water molecule to be increased [53,56]. The ΔS° value of the Pb sorption on PAA–Bent is higher than that on the Bent, which can be explained by the greater interactions between Pb ions and PAA functional groups on the surface of PAA–Bent nanocomposite [23].

4. Conclusions

Batch experiments indicated that poly(acrylic acid)–bentonite (PAA–Bent) hybrid sorbent is superior to bentonite (Bent) in removing of Pb from aqueous solution. Maximum sorption capacity of the hybrid sorbent at standard temperature (25°C) was found to be 90.7 mg g$^{-1}$ which is far greater than that of natural Bent (59.6 mg g$^{-1}$). The capacity and affinity of both Bent and PAA–Bent for Pb sorption increased with increasing temperature. Sorption process of Pb on the PAA–Bent was fast, approaching to equilibrium within a few hours, while no distinct equilibrium condition was observed for Pb sorption on the Bent even after 1,440 min of exposure. Thermodynamic parameters for Pb sorption onto the PAA–Bent and Bent

<table>
<thead>
<tr>
<th>Sorbent</th>
<th>ΔS° (J mol$^{-1}$ K$^{-1}$)</th>
<th>ΔH° (kJ mol$^{-1}$)</th>
<th>ΔG° (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bent</td>
<td>310.94</td>
<td>70.023</td>
<td>-19.513</td>
</tr>
<tr>
<td>PAA–Bent</td>
<td>578.42</td>
<td>146.359</td>
<td>-20.068</td>
</tr>
</tbody>
</table>

Table 5

The plots of ln K_d vs. $1/T$ for the estimating of thermodynamic parameters of Pb sorption by PAA–Bent and Bent.
studies showed that sorption of Pb on both Bent and PAA–Bent were endothermic and spontaneous. Overall, PAA–Bent hybrid is a potential sorbent for Pb removal from contaminated waters.

References

