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Arc lengths of rational

Pythagorean–hodograph curves

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Abstract

In a recent paper (Comput. Aided Geom. Design 31 (2014) 689–700) a
family of rational Pythagorean–hodograph (PH) curves is introduced,
characterized by constraints on the coefficients of a truncated Laurent
series, and used to solve the first–order Hermite interpolation problem.
Contrary to a claim made in this paper, it is shown that these rational
PH curves have rational arc length functions only in degenerate cases,
where the center of the Laurent series is a real value.
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A Pythagorean–hodograph (PH) curve1 r(t) = (x(t), y(t)) has the distinctive
property that its derivative r′(t) = (x′(t), y′(t)) satisfies

x′2(t) + y′2(t) = σ2(t) , (1)

with σ(t) lying in the same space of functions as x(t), y(t). Thus, r(t) is said
to be a polynomial or rational PH curve when (1) is satisfied by polynomial
or rational functions, respectively. Both have rational unit tangents.

1For brevity, only planar PH curves are discussed here: the results also hold for spatial
PH curves. A comprehensive treatment of PH curves may be found in [4].



Since the function σ(t) represents the parametric speed of the curve r(t),
i.e., the derivative ds/dt of arc length s with respect to the parameter t, the
cumulative arc length function s(t) is simply the indefinite integral of σ(t).
Consequently, polynomial PH curves necessarily have polynomial arc length
functions, but in general rational PH curves do not have rational arc length
functions, since the integral of a rational function may involve transcendental
(logarithmic or arctangent) terms. Since “simple” (polynomial/rational) arc
length functions are important for real–time motion control [5, 6, 7, 12] the
polynomial PH curves possess a clear advantage in this context.

The intent of this short communication is to emphasize the fundamental
difference between the arc lengths of polynomial/rational PH curves — which
is often glossed over, or totally misrepresented. For example, a recent paper
[10] begins with “The Pythagorean–hodograph (PH) curves . . . are a special
class of polynomial/rational curves with polynomial/rational speed functions.
They have polynomial/rational arc lengths . . .” In fact, as shown below, the
rational PH curves in [10] do not in general have rational arc lengths.

A geometrical approach to the construction of rational PH curves is based
[8, 11] on the dual representation, in which a plane curve is interpreted as the
envelope of a family of tangent lines, rather than a point locus. In [10], on the
other hand, the complex model [1] is adopted, with the Cartesian components
of a curve being regarded as real and imaginary parts of a complex–valued
function r(t) = x(t) + i y(t) of a real parameter t. In particular, the authors
consider rational curves defined by truncated Laurent series of the form

r(t) =

n
∑

k=−m

ak(t − c)k ,

and investigate the conditions on the complex values a−m, . . . , a0, . . . , an and
c such that σ(t) = |r′(t)| is a rational function. They focus, in particular, on
the case (m, n) = (1, 3) and show that for a non–polynomial curve (a−1 6= 0)
these conditions amount to

a2 = 0 and a2

1
+ 12 a3a−1 = 0 . (2)

The case a1 = 0 is discounted, since the conditions (2) then imply that a3 = 0
if a−1 6= 0, and the locus r(t) = a−1/(t−c)+a0 simply defines [13] a circular
arc with center a0 + i a−1/2 Im(c) and radius |a−1/2 Im(c)|. The length of a
circular arc is obviously determined by its angular extent, which involves an
arctangent dependence upon the parameter t.
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Subject to the above conditions, differentiation of the rational curve

r(t) =
a−1

t − c
+ a0 + a1(t − c) + a3(t − c)3 (3)

yields the rational parametric speed function

σ(t) = |r′(t)| =
| 6 a3(t − c)2 + a1 |2

12 |a3| |t− c|2 . (4)

Note that Im(c) 6= 0 must be assumed to exclude real points at infinity.
The fact that integrating σ(t) does not yield a rational arc length function

can be verified as follows. Consider first the case Im(c) 6= 0. By expanding
(4) and performing a partial fraction decomposition, we obtain

σ(t) = 3 |a3| (t2 − 2 Re(c) t + |c|2)

+
1

|a3|

[

Re(a3a1) + i Im(c)

(

a3a1

t − c
− a3a1

t − c

) ]

+
|a1|2

24 |a3| i Im(c)

[

1

t − c
− 1

t − c

]

.

Forming the indefinite integral then yields the arc length function

s(t) = |a3| (t3 − 3 Re(c) t2 + 3 |c|2t)

+
1

|a3|
[ Re(a3a1) t + i Im(c) (a3a1 ln(t − c) − a3a1 ln(t − c)) ]

+
|a1|2

24 |a3| i Im(c)
[ ln(t − c) − ln(t − c) ] .

This can be further reduced by using the complex logarithm expansion ln z =
ln |z|+i arg(z) and noting that ln |t−c| = ln |t−c|, arg(t−c) = − arg(t−c)
to obtain

s(t) = α3t
3 + α2t

2 + α1t + α0 + β ln |t − c| + γ arg(t − c) , (5)

where

α3 = |a3| , α2 = − 3 |a3|Re(c) , α1 = 3 |a3| |c|2 +
Re(a3a1)

|a3|
,

β =
2 Im(a3a1) Im(c)

|a3|
, γ =

|a1|2
12 |a3| Im(c)

− 2 Re(a3a1) Im(c)

|a3|
,
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and the integration constant α0 = γ arg(c)−β ln |c| yields s(0) = 0. Clearly,
one must have β = γ = 0 if the arc length (5) is to be a rational (actually,
polynomial) function. As noted above, for a true rational curve with a−1 6= 0
we have a1 = 0 ⇐⇒ a3 = 0 from (2), and this special case identifies a circle.
Otherwise, when a1, a3 are non–zero, β cannot vanish if Im(c) 6= 0. Thus,
none of the rational curves defined by (2) and (3) with a−1 6= 0 and Im(c) 6= 0
has a rational arc length. The type of rational function integration performed
above is well–known in the context of PH curves, e.g., in computing the elastic
bending energy [2], and rotation–minimizing frames [3] on space curves.

For the degenerate case with Im(c) = 0, however, the situation is different.
When c has the real value c, the parametric speed (4) becomes

σ(t) = |r′(t)| =
| 6 a3(t − c)2 + a1 |2

12 |a3| (t− c)2
, (6)

and the arc length is a rational function only in this special case, namely

s(t) = |a3|(t − c)3 +
Re(a3a1)

|a3|
t − |a1|2

12|a3|(t − c)
. (7)

A real value c for the center of the Laurent series generates a point at infinity
on the curve r(t) — an undesirable feature in most practical applications —
although for a finite curve segment one can always choose c to lie outside the
prescribed curve parameter domain t ∈ [ a, b ].

The residue of a rational function at a pole t = c is the coefficient of the
term (t− c)−1 in its partial fraction expansion, and the general condition for
a rational function to have a rational integral is that the residues at each of
its poles must vanish [9, §7.2]. If Im(c) 6= 0, the function (4) has the distinct
simple poles t = c and t = c, with corresponding residues

(t − c)σ(t) |
t=c

=
|a1|2

24|a3| i Im(c)
, (t − c)σ(t) |

t=c
= − |a1 − 12a3 i Im(c)|2

24|a3| i Im(c)
.

Clearly, these values cannot both vanish when a1, a3 are non–zero. On the
other hand, when Im(c) = 0, and c has the real value c, the function (6) has
only the double pole t = c. The residue of σ(t) at this pole is

d

dt
(t − c)2σ(t)

∣

∣

∣

∣

t=c

= 0 ,

and hence s(t), the integral of σ(t), is a rational function.
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Example 1. Consider the rational curve (3) defined by the values

a−1 = − 2 i , a0 = 2 + i , a1 = 6 + 6 i , a3 = 3 , c = 1 − i .

Since these values satisfy the conditions (2), they specify a rational PH curve,
for which the parametric speed (4) is

σ(t) =
9 t4 − 36 t3 + 78 t2 − 72 t + 26

t2 − 2 t + 2
.

Omitting the integration constant α0, the corresponding arc length function
(5), satisfying s′(t) = σ(t), is

s(t) = 3 t3 − 9 t2 + 24 t + 12 ln
√

t2 − 2t + 2 + 10 tan−1
1

t − 1
.

In this case, the arc length is clearly not a rational function of the parameter.

Example 2. We use the same values as in the previous example, except that
the real value c = 2 is substituted for c. The parametric speed (6) is then

σ(t) =
9 t4 − 72 t3 + 222 t2 − 312 t + 170

(t − 2)2
.

Again omitting the integration constant α0, the corresponding arc length (7)
is defined by the rational function

s(t) =
3 t4 − 24 t3 + 78 t2 − 108 t + 46

t − 2
.

The vanishing–residue criterion might, in principle, be used as the point
of departure for identifying more general classes of rational PH curves with
rational arc lengths. However, it is not obvious how to impose this condition
in a geometrically meaningful manner, and in practice it may prove quite
restrictive. Clearly, the polynomial arc lengths of polynomial PH curves offer
a much simpler and more robust framework for real–time motion control.
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