Title
Reduction of Carbon Dioxide in Aqueous Solutions by Ionizing Radiation

Permalink
https://escholarship.org/uc/item/9106k5n4

Authors
Garrison, W.M.
Morrison, D.C.
Hamilton, J.G.
et al.

Publication Date
1951-03-13
Reduction of Carbon Dioxide in Aqueous Solutions
By Ionizing Radiation
W. M. Garrison, D. C. Marrison, J. C. Hamilton
A. A. Benson and M. Calvin
March 13, 1951

Berkely, California
REDUCTION OF CARBON DIOXIDE IN AQUEOUS SOLUTIONS BY IONIZING RADIATION

March 13, 1951

W. M. Garrison, D. C. Morrison, J. G. Hamilton, A. A. Benson and M. Calvin

Crocker Laboratory, Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California

* The work described in this paper was sponsored by the U. S. Atomic Energy Commission.

The question of the conditions under which living matter originated on the surface of the earth is still a subject limited largely to speculation. The speculation has a greater chance of approaching the truth insofar as it includes and is based upon the ever wider variety of established scientific fact. One of the purposes of the herein reported observation was to add another fact to the ever increasing information which might have any bearing upon this most interesting question. It is not our purpose in the present communication to discuss the various proposals or the arguments which have been adduced for and against them.

One of the most popular current conceptions is that life originated in an organic milieu on the surface of the earth. (1,2,3,4,5) The problem to which

(5) J. B. S. Haldane, Pelican Books (1932).
we are addressed is the origin of that organic milieu in the absence of any life. It appeared to us that one source, if not the only source, of reduced carbon compounds in complex arrangements might be the interaction of various high energy radiations with aqueous solutions of inorganic materials, particularly carbon dioxide, and nitrogenous compounds such as ammonia and nitrogen, since it appears that these compounds were the commoner forms in which the essential elements found themselves on the primordial earth (6,7).

(7) H. Wartenburg, Naturwiss., 18, 400 (1950).

While it has long been known that high energy radiations can cause organic decomposition and oxidation, it seemed useful to us to demonstrate that conditions could be found in which high energy radiations could induce the reduction with water of carbon dioxide and the ultimate creation of polyatomic molecules (other than simple polymerization of monomers) of carbon, oxygen, hydrogen and nitrogen.

Experimental

The general technique employed in this investigation was to bombard air-free aqueous solutions of C14 labelled CO$_2$ in a closed system with and without the addition of ferrous sulfate. The bombardments were made using the 40 Mev helium ion beam of the 60-inch cyclotron at Crocker Laboratory. To detect the amount and nature of the reduction products, chemical separations were made on the bombarded solution after the addition of carrier amounts of formic acid, formaldehyde, and methyl alcohol. These were separated as solid derivatives and assayed for C14 activity. In most of the bombardments one millicurie of from 5 to 9 percent C14 labelled CO$_2$ was used. This made it possible to detect the reduction of approximately one part in 106.
Target Assembly

A diagram of the target assembly is shown in Figure 1. The aqueous solutions were bombarded in an all-glass target cell (A) which consisted essentially of a 50 ml pyrex flask one side of which was drawn in to give a window (B) having an average thickness of approximately 5 mil over the bombarded area. The cell had a volume of 12 ml. It was connected to a glass manifold (C) which in turn was connected through stopcocks to a 100 ml product gas storage bulb (D) to a 25 ml CO₂ reservoir (E) to a mercury manometer (F) and to an outlet (G) through which the entire system could be evacuated. The assembly was supported on a bracket (H) which was fastened to the bell-jar type target (I). The helium ion beam was brought out of the cyclotron vacuum through a 1.5 mil aluminum foil (J) and was delimited in cross section by the aperture (K) in plate (L). The target window was cooled by means of an air stream which entered at (M) and emerged through the aperture (K). The beam current was monitored through the electrode (N). With the all-glass target cell, it was necessary, because of the non-uniform thickness of the window, to calculate the number of ion-pairs produced from the amount of Fe⁺² oxidation, assuming the same ion-pair yield for this reaction in the glass cell as was obtained in the cell having the platinum window. With the latter target cell, it was possible to estimate within a few percent the energy loss of the helium ions in penetrating the 1.5 mm aluminum foil, 10 cm of air path, and the one mil platinum window.

Bombardment Procedure

The target cell was first flushed with nitrogen, then filled with triple-distilled deaerated water, or deaerated one molar ferrous sulfate solution at a pH of approximately 3.5. The water was deaerated by boiling and then allowed to cool in a glass-stoppered vessel which had been filled with nitrogen gas. The one molar ferrous sulfate solutions were prepared by adding a known weight of ferrous sulfate. After the target cell was filled, it was immediately
connected to the manifold which was then evacuated until roughly 5 percent of the target solution had been evaporated. Stopcock (1) was then closed and the manifold was evacuated including the product gas storage bulb and that portion of the manifold to stopcock (2) which was connected to the CO$_2$ reservoir containing approximately one millicurie of from 5 to 9 percent C14 labelled CO$_2$. After the evacuation was complete, the manifold was isolated by closing stopcock (3). Stopcocks (1)(2) were then opened and the CO$_2$ was allowed to equilibrate with the target solution. The target cell was then bombarded with a 0.5 μA beam of 40 Mev helium ions. Bombardment data for each of the experiments are summarized in Table I.

Chemical Procedures

After bombardment, the target cell was allowed to stand for from 1 to 2 hours to permit the induced radioactivity to decay out. Stopcocks (1)(2) were closed and the target cell was removed from the manifold. The solution was then treated with sulfuric acid to dissolve the ferric hydroxide and adjusted to pH 1. The unreacted C14O$_2$ was stripped with nitrogen and recovered in NaOH solution. After most of the high specific activity C14O$_2$ had been removed, the solution was then flushed with tank CO$_2$ which was discarded. A sample of the solution was withdrawn at this point for ferric ion analysis.

To the remainder of the solution was added formic acid, formaldehyde and methyl alcohol carriers in amounts to give 100 milligrams of the isolated product, i.e., barium formate, methone derivative of formaldehyde, and barium carbonate prepared from the CO formed on oxidation of the methyl alcohol fraction.

The pH of the solution was then adjusted to 7 and the formaldehyde and methyl alcohol were distilled "in vacuo". The distillate was treated with methone solution in 50 percent excess and acidified. This precipitated the methone-formaldehyde derivative and the methyl alcohol was separated from this mixture by a second vacuum distillation. The methyl alcohol distillate was
wet oxidized with a chromium trioxide-sulfuric acid mixture containing potassium iodate and the evolved \(\text{CO}_2 \) was recovered as barium carbonate. In none of the bombardments was this barium carbonate fraction active.

The methone-formaldehyde precipitate was filtered off, washed and dissolved in sodium hydroxide. The solution was acidified and the precipitate centrifuged, washed, redissolved in \(\text{NaOH} \), and reprecipitated. This procedure was repeated and then the methone-formaldehyde reaction product was recrystallized twice from acetone-water. A sample of the purified methone-formaldehyde product was counted.

The residue from the first distillation containing the formic acid was acidified to pH 1 and distilled "in vacuo". The distillate was titrated to phenolphthalein endpoint with a saturated barium hydroxide solution after flushing with \(\text{CO}_2 \) followed by nitrogen. The precipitate of barium carbonate which formed was centrifuged off. The supernatant containing the barium formate was evaporated to approximately 0.5 ml and while warm, was treated with absolute ethyl alcohol which precipitated crystalline barium formate. This was redissolved in water and recrystallized in this manner four times.

A fraction of original solution which had been removed for iron determination was acidified with \(6\text{ N H}_2\text{SO}_4 \) and titrated with standard solution of potassium permanganate. A second fraction of this solution was reduced with \(\text{SO}_2 \) and titrated with \(\text{KMnO}_4 \) after the excess \(\text{SO}_2 \) was removed by boiling. The \(\text{Fe}^{+3} \) concentration in the target solution was calculated from the difference in titre. In Table I, bombardments 1, 2, and 3 were made using the all-glass cell. Bombardment 4 was made using the cell having a one mil platinum window. With this cell, the helium ion beam incident on the solution had an energy of 35.8 Mev. The number of ion-pairs produced in bombardments 1, 2, and 3 were calculated assuming that the ion-pair yield for ferric ion oxidation obtained in bombardment 4 was also obtained using the all-glass target cells. This assumption is considered
reasonable since the energy loss in the glass and platinum windows were of
the same order of magnitude.

To insure that HC^{14}O_2 and $\text{HC}^{14}\text{H}_2\text{O}$ were actually produced by helium ion
bombardment, the following additional control experiments were made: (1) A
sample of the original unbombarded target solution containing $^{14}\text{O}_2$ and FeSO_4
was retained at approximately 30°C. for one week and then processed in a manner
identical to that used in separating the HCOOH, HCHO and CH_3OH fractions in
the bombarded samples. No ^{14}C activity could be detected in these fractions
from the unbombarded solution indicating that reduced ^{14}C compounds were not
present in the original solution or formed by a metabolic process involving
mold or other organisms. (2) A blank bombardment (§5) was made without added
$^{14}\text{O}_2$ and the isolated HCOOH and HCHO carriers were inactive. (3) Mass absorp-
tion curves run on active barium formate produced in the radiation reduction
of $^{14}\text{O}_2$ were identical with those obtained using known samples of active barium
formate prepared chemically and having the same specific activity and counting
geometry. (4) No decay could be detected in the activity of the radiation
produced HC^{14}O_2 and $\text{HC}^{14}\text{H}_2\text{O}$.

Discussion

An examination of Table 1 demonstrates unequivocally that it is quite
possible to reduce appreciable quantities of carbon dioxide to formic acid by
means of water through the agency of radiation. In fact, it appears that
approximately one-fourth of the dissolved carbon dioxide was reduced in experiment §4
Whether or not the formic acid is further reduced to formaldehyde or whether the
formaldehyde has its origin in a direct reduction of carbon dioxide still remains
to be demonstrated, but formaldehyde can also be produced from carbon dioxide
and water under the influence of radiation.
The actual ion-pair yield is certainly not optimal even in the experiment #2 in view of the large excess of the number of ion pairs produced over the number of molecules of carbon dioxide in the solution. Presumably, this reduction is achieved by means of the secondary hydrogen atoms resulting from the ionization. The actual amount of reduction observed is clearly still only the resultant of the reduction and oxidation reactions. The oxidation reaction is presumably minimized by the destruction of the hydroxyl radicals by their reaction with ferrous ion. (8,9,10)

(9) M. Burton, J. Phys. Colloid Chem. 51, 611 (1947)
(10) A. O. Allen, J. Phys. Colloid Chem. 52, 479 (1948)

Whether or not carbon-carbon bonds and carbon-nitrogen bonds can be formed and more highly organized structures created under the influence of high energy radiations is at present under investigation.

Acknowledgment: We wish to thank Professor W. M. Latimer for helpful discussions and the crew of the 60-inch cyclotron at the Crocker Laboratory for the bombardments
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombardment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Window</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume of solution (cc)</td>
<td>glass</td>
<td>glass</td>
<td>glass</td>
<td>glass</td>
<td>glass</td>
</tr>
<tr>
<td></td>
<td>$^{14} \text{C}_{2}$ + FeSO$_4$</td>
<td>$^{14} \text{C}_{2}$ + FeSO$_4$</td>
<td>$^{14} \text{C}_{2}$</td>
<td>$^{12} \text{C}_{2}$ + FeSO$_4$</td>
<td>$^{12} \text{C}_{2}$ + FeSO$_4$</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>13.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Gas volume, manifold + product gas bulb (cc)</td>
<td>145.</td>
<td>145.</td>
<td>145.</td>
<td>145.</td>
<td>145.</td>
</tr>
<tr>
<td>Initial concentration of $^{14} \text{C}_{2}$ in solution (M)</td>
<td>6.8×10^{-5}</td>
<td>8.2×10^{-5}</td>
<td>1.0×10^{-5}</td>
<td>8.2×10^{-5}</td>
<td>$\sim 8 \times 10^{-5}$</td>
</tr>
<tr>
<td>Number of CO$_2$ Molecules dissolved in H$_2$O phase</td>
<td>5.5×10^{17}</td>
<td>6.7×10^{17}</td>
<td>8.3×10^{17}</td>
<td>6.2×10^{17}</td>
<td>$\sim 7 \times 10^{17}$</td>
</tr>
<tr>
<td>Partial pressure of $^{14} \text{C}_{2}$ in gas space (mm Hg)</td>
<td>2.4</td>
<td>2.9</td>
<td>3.6</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>C14 activity (mc)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>none</td>
<td>--</td>
</tr>
<tr>
<td>C14 in CO$_2$ (%)</td>
<td>9.0</td>
<td>6.0</td>
<td>4.8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Energy of emerging helium ions (Mev)</td>
<td>40.</td>
<td>40.</td>
<td>40.</td>
<td>40.</td>
<td>40.</td>
</tr>
<tr>
<td>Bombardment current (µA)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Total bombardment (µA-hr)</td>
<td>0.75</td>
<td>0.042</td>
<td>0.042</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Number of ion-pairs produced in solution (assuming 32.5 e.u./i.p.)</td>
<td>7.8×10^{21}</td>
<td>4.4×10^{20}</td>
<td>4.4×10^{20}</td>
<td>3.1×10^{21}</td>
<td>1.3×10^{21}</td>
</tr>
<tr>
<td>Hydrogen pressure after bombardment (mm Hg)</td>
<td>208.</td>
<td>8.</td>
<td>(*)</td>
<td>(*)</td>
<td>(*)</td>
</tr>
<tr>
<td>Number of hydrogen molecules produced</td>
<td>1.1×10^{21}</td>
<td>1.43×10^{20}</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Initial concentration of Fe$^{+2}$ (M)</td>
<td>0.80</td>
<td>(*)&</td>
<td>none</td>
<td>0.77</td>
<td>--</td>
</tr>
<tr>
<td>Concentration of Fe$^{+3}$ after bombardment</td>
<td>0.23</td>
<td>(*)&</td>
<td>0.10</td>
<td>6.2$ \times 10^{20}$</td>
<td>--</td>
</tr>
<tr>
<td>Number of Fe$^{+3}$ atoms formed</td>
<td>1.5$ \times 10^{21}$</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ion-pair yield for Fe$^{+3}$ formation</td>
<td>0.20</td>
<td>--</td>
<td>--</td>
<td>0.20</td>
<td>--</td>
</tr>
<tr>
<td>Total C14 activity in the HCOOH fraction (µc)</td>
<td>0.21</td>
<td>1.32</td>
<td>8.7$ \times 10^{-3}$</td>
<td>inactive</td>
<td>inactive</td>
</tr>
<tr>
<td>Number of CO$_2$ molecules reduced to HCOOH</td>
<td>2.2$ \times 10^{16}$</td>
<td>1.5$ \times 10^{17}$</td>
<td>1.2$ \times 10^{15}$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fraction of dissolved CO$_2$ reduced to HCOOH</td>
<td>0.04</td>
<td>0.22</td>
<td>1.4$ \times 10^{-3}$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ion-pair yield for HCOOH formation</td>
<td>2.9$ \times 10^{-6}$</td>
<td>3.6$ \times 10^{-4}$</td>
<td>2.8$ \times 10^{-6}$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total C14 activity in the HCHO fraction (µc)</td>
<td>5.7$ \times 10^{-3}$</td>
<td>8 $\times 10^{-3}$</td>
<td>inactive</td>
<td>inactive</td>
<td>inactive</td>
</tr>
<tr>
<td>Number of CO$_2$ molecules reduced to HCHO</td>
<td>6.4$ \times 10^{14}$</td>
<td>9 $\times 10^{14}$</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ion-pair yield for HCHO formation</td>
<td>0.82$ \times 10^{-7}$</td>
<td>2.1$ \times 10^{-6}$</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

(*) not determined