
UC Davis
UC Davis Previously Published Works

Title
The Dose Makes the Poison -- Leveraging Uncertainty for Effective Malware Detection

Permalink
https://escholarship.org/uc/item/91j6p0j3

Authors
Sun, Ruimin
Yuan, Xiaoyong
Lee, Andrew
et al.

Publication Date
2017-08-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91j6p0j3
https://escholarship.org/uc/item/91j6p0j3#author
https://escholarship.org
http://www.cdlib.org/


The Dose Makes the Poison - Leveraging
Uncertainty for Effective Malware Detection

Ruimin Sun∗, Xiaoyong Yuan†, Andrew Lee¶, Matt Bishop ‖, Donald E. Porter∗∗,
Xiaolin Li§, Andre Gregio†† and Daniela Oliveira‡

University of Florida, USA ∗gracesrm@ufl.edu, †chbrian@ufl.edu, ‡daniela@ece.ufl.edu, §andyli@ece.ufl.edu
University of North Carolina at Chapel Hill, USA ∗∗porter@cs.unc.edu

University of California at Davis, USA ‖mabishop@ucdavis.edu
Federal University of Parana, Brazil ††gregio@inf.ufpr.br

Duke University, USA ¶andrew@cs.duke.edu

Abstract—Malware has become sophisticated and organiza-
tions don’t have a Plan B when standard lines of defense fail.
These failures have devastating consequences for organizations,
such as sensitive information being exfiltrated.

A promising avenue for improving the effectiveness of
behavioral-based malware detectors is to combine fast (usually
not highly accurate) traditional machine learning (ML) detectors
with high-accuracy, but time-consuming, deep learning (DL)
models. The main idea is to place software receiving borderline
classifications by traditional ML methods in an environment
where uncertainty is added, while software is analyzed by time-
consuming DL models. The goal of uncertainty is to rate-limit
actions of potential malware during deep analysis.

In this paper, we describe CHAMELEON, a Linux-
based framework that implements this uncertain environment.
CHAMELEON offers two environments for its OS processes:
standard—for software identified as benign by traditional ML
detectors—and uncertain—for software that received borderline
classifications analyzed by ML methods. The uncertain environ-
ment will bring obstacles to software execution through random
perturbations applied probabilistically on selected system calls.
We evaluated CHAMELEON with 113 applications from common
benchmarks and 100 malware samples for Linux. Our results
show that at threshold 10%, intrusive and non-intrusive strategies
caused approximately 65% of malware to fail accomplishing their
tasks, while approximately 30% of the analyzed benign software
to meet with various levels of disruption (crashed or hampered).
We also found that I/O-bound software was three times more
affected by uncertainty than CPU-bound software.

I. INTRODUCTION

Attacks are continuously evolving and existing protection
mechanisms do not cope well with the increased sophistica-
tion of attacks, especially advanced persistent threats (APTs),
which target organizations. Malware used in APTs attempts
to blend in with approved corporate software and traffic, and
can act slowly, thus evading detection. As a result, by the
time an attack is discovered, sensitive information has already
been exfiltrated and many computers have been compromised,
making recovery difficult [1], [2].

Real-time malware detection is hard. The industry still
relies on antivirus technology for threat detection [3], [4],
which is effective for malware with known signatures, but
not sustainable given the massive amount of new malware
samples released daily. Additionally, since zero-day malware
has no known signature, and polymorphic and metamorphic
attacks constantly change their patterns, signature scanning

operates at a practical detection rate of only 25%–50% [5].
Alternative approaches identify behavioral properties, such as
unusual sequences of system calls, and use behavioral patterns
to characterize malware. However, research has shown that
behavioral-based detectors suffer from a high false-positive
rate [6], [7], because of the increasing complexity and diversity
of current software. Aggressive heuristics, such as erring on
the side of blocking suspicious software, can interfere with
employee productivity, resulting in employees overriding or
circumventing security policies.

Recently, deep learning has achieved state-of-the-art results
in a broad spectrum of applications, and has been considered
a promising direction for behavioral-based approaches with
high detection rates. However, it is unlikely that deep learning
methods will be useful in real-time malware detection, because
they require considerable computation time for classification
when the model needs to be retrained incrementally. Incremen-
tal retraining is a common requirement for malware detection,
as new variants and samples are regularly discovered and
added to the training set. The importance of real-time malware
detection is the difference between prevention (discovering
malware before some damage is done) and recovery from an
attack after the fact.

Thus, there is a frustrating trade-off in malware detection:
one can have fast, but less accurate detection using traditional
ML methods, or one can use DL for accurate results, but
possibly at a much later time. A promising solution to have the
best of both approaches is to combine both types of detectors
via a spectrum-behavioral operating system (OS). The main
idea is as follows. All software in the system starts running
in the standard OS environment and is continuously monitored
through a behavioral detector. The behavioral detector is based
on classical ML algorithms, which provide fast classification
and retraining. If a piece of software receives a borderline
classification (i.e., reaches a threshold set by the system
administrator), it is moved to the uncertain environment. In
this environment the software will experience probabilistic
and random perturbations, whose severity will depend on
whether the software is whitelisted by the organization. The
goal of these perturbations is to thwart the actions of potential
malware or compromised benign software while deep analysis
is underway. If the deep analysis finds the software benign, it
is placed back in the standard environment, where it is again
continuously monitored.

1



In this paper, we propose CHAMELEON, a kernel module
realizing this spectrum OS behavior for Linux. CHAMELEON
has the potential to allow the successful combination of ML
detection methods with the power of DL for real-time malware
detection to protect computer infrastructures in organizations.

Today, it is standard practice for organizations to restrict or
whitelist mission-critical software used by their employees [6].
Employees are supposed to use only approved software tied
to their primary task and are allowed to use some personal
software. CHAMELEON applies non-intrusive strategies (e.g.,
delay a system call execution) to whitelisted software, and
intrusive strategies (e.g., increase or decrease the bytes in
a buffer passed as a parameter to a system call) to non-
whitelisted software. The goal of CHAMELEON is to create
obstacles to the execution of software running in the uncertain
environment, thus buying time for DL-based detectors to
provide a definitive and accurate classification of the software.

We evaluated CHAMELEON with 100 samples of Linux
malware and 113 common software from several categories.
Our results show that at a threshold of 10%, intrusive strategies
thwart 62% of malware, while non-intrusive strategies caused
a failure rate of 68%. At threshold 50%, the percentage of
adversely affected malware increased to 81% and 76% re-
spectively. With a 10% threshold, the perturbations also cause
various levels of disruption (crash or hampered execution) to
approximately 30% of the analyzed benign software. With a
50% threshold, the percentage of software adversely affected
raised to 50%. We also found that I/O-bound software was
three times more affected by uncertainty than CPU-bound
software.

CHAMELEON has the potential to allow for a combination
of traditional ML and DL malware detection, and also provided
a “safety net” for failures in standard malware detection
solutions. Further CHAMELEON advances systems security,
as it can (i) make systems diverse by design because of
the unpredictable execution in the uncertain environment, (ii)
increase attackers’ workload, and (iii) decrease the speed of
attacks and their chance of success.

This paper is organized as follows. Section II describes
the threat model and assumptions. Section III describes
CHAMELEON’s design and implementation. Section IV eval-
uates CHAMELEON. Section V discusses CHAMELEON’s re-
sults and limitations. Section VI summarizes related work on
malware detection, software diversity, and attempts on unpre-
dictability as a security mechanism. Section VII concludes the
paper.

II. THREAT MODEL AND ASSUMPTIONS

CHAMELEON’s goal is to provide an environment that
rate-limits the effects of potential malware, while more time-
consuming deep analysis is underway. CHAMELEON’s protec-
tion is designed for corporations and similar organizations,
which adopt a standard practice of controlling software running
at the corporate perimeter. These controls commonly apply to
mission-critical and task-primary software, as well as allowing
some personal software [7]. Organizations face the challenge
of enforcing perimeter security, while also causing minimum
interference to employees’ primary tasks. The combination
of fast, preliminary classification by traditional ML methods
and deep analysis for borderline cases can help address this
challenge.

We also assume that if an organization is a target of a well-
motivated attacker, malware will eventually get in. A classic
scenario is when a C-level personnel of a targeted organization
falls victim to a spear-phishing email attack, thereby causing
an APT backdoor to be installed in one of the computers of the
victim’s company. The malware is zero-day and is not detected
by any antivirus. It also behaves in a way that does not raise red
flags for a behavior-based detector. Further, a mis-configuration
in the administrator’s software restriction policies allows the
software to run. In a standard OS, this APT would initiate a
devastating attack in the organization. With CHAMELEON, this
APT might receive a borderline classification at some point
by a traditional ML detector and would then be placed in the
uncertain environment. In this environment the APT backdoor
partially works, while deep analysis makes a more definitive
diagnosis.

We assume that a whitelisted software receiving a border-
line classification by a traditional ML-based detector can be
an indication of software compromise.

It is worth noting that CHAMELEON does not com-
pete with standard lines of defenses, such as antiviruses and
traditional behavioral-based detectors. It is complementary,
equipping these solutions with a safety net in the event of
misdiagnosis.

III. DESIGN AND IMPLEMENTATION

We designed and implemented CHAMELEON for the Linux
OS. CHAMELEON offers two environments to its processes: (i)
a standard environment, which works predictably as any OS
would, and (ii) an uncertain environment, where a subset of
the OS system calls undergo unpredictable interferences.

The key insight is that interference in the uncertain en-
vironment will hamper the malware’s chances of success, as
some system calls might return errors in accessing system
resources, such as network connections or files. Moreover,
random unavailability and some delays will make gaining CPU
time difficult for malware.

A. The Interference Set
Our first step was deciding what system calls were good

candidates for interference. We relied on Tsai et al.’s study [8],
which ranked Linux system calls by their likelihood of use
by applications. Based on these insights, we selected 37
system calls for the interference set to represent various OS
functionalities relevant for malware (file, network, and process-
related). Most of these system calls (summarized in Table I) are
I/O-bound, since I/O is essential to most malware, regardless
of its sophistication level.

We introduced new versions for all system calls in the
interference set. When CHAMELEON’s uncertainty module
is loaded, it records the pointer to each system call in the
interference set as orig_<syscall_name> and alters the
respective table entry to point to my_<syscall_name>().
We also developed two sets of interference strategies, detailed
below.

B. Interference Strategies
The non-intrusive interference strategies will perturb soft-

ware execution within the OS specification. They are applied
to whitelisted software running in the uncertain environment.

2



Category System call

File
related

sys open, sys openat, sys creat, sys read, sys readv,
sys write, sys writev, sys lseek, sys close, sys stat, sys lstat,
sys fstat, sys stat64, sys lstat64, sys fstat64, sys dup,
sys dup2, sys dup3, sys unlink, sys rename

Network
related

sys bind, sys listen, sys connect, sys accept,
sys accept4, sys sendto, sys recvfrom,
sys sendmsg, sys recvmsg, sys socketcall

Process
related

sys preadv, sys pread64,
sys pwritev, sys pwrite64, sys fork, sys clone, sys nanosleep

TABLE I: System call Interference Set.

System call silencing with error return: The system call
immediately returns an error value randomly selected from
the range [-255, -1]. This strategy can create difficulties for the
execution of the process, especially if it does not handle errors
well. Further it can cause transient unavailability to resources,
such as files and network connections, creating difficulties for
a fork bomb or a network flooder to operate. Note that not
all error returns are in the specification; most system calls on
Linux have an expected subset, and valid software might fail
to check for an unspecified error.
Process delay: Injects a random delay within the range [0,0.1s]
during the system call execution with the goal to drag potential
malware execution. It can create difficulties in timely malware
communication with a C&C for files exfiltration, as well as
prevent flooders from sending enough packets in a very short
time, rate-limiting DoS in a victim server.
Process priority decrease: Decreases the dynamic process
priority to the lowest possible value, delaying its scheduling
to one of the system’s CPUs.

The intrusive interference strategies will cause perturba-
tions that may corrupt the software. They are applied to non-
whitelisted software running in the uncertain environment.
System call silencing: The system call immediately returns
a value that indicates a successful execution, but without
executing the system call.
Buffer bytes change: Decreases the size of the number of
bytes in a buffer passed as a parameter to a system call.
It can be applied to all system calls with a buffer param-
eter, such as sys_read, sys_write, sys_sendto and
sys_recvfrom. This strategy can corrupt the execution
of malicious scripts, thus frustrating attempts to exfiltrate
sensitive data. Viruses can also be adversely affected by the
disruption of the buffer with a malicious payload trying to be
injected into a victim’s ELF header, and the victim may get
corrupted and lose its ability to infect other files.
Connection restriction: Changes the IP address in sys_bind,
or limits the queue length for established sockets waiting to be
accepted in sys_listen. The IP address can be randomly
changed, which will likely cause an error, or it can be set to
the IP address of a honeypot, allowing backdoors to be traced.
File offset change: Changes a file pointer in the sys_lseek
system call so that subsequent invocations of sys_write and
sys_read will access unpredictable file contents.

C. System Architecture
The uncertain environment adds some fields to the Linux

task_struct (i.e., thread descriptor):
process_env: Informs if the process should run in the

standard or uncertain environment.

Fig. 1: System architecture. When a process running in the uncertain
environment invokes a system call in the interference set (1), the
Uncertainty Module checks if the process is running in the uncertain
environment (2), and depending on the execution of the corruption
protection mechanism (3), randomly selects an interference strategy
to apply to the system call. The corruption protection mechanism pre-
vents interferences during accesses to critical files, such as libraries.

fd_list: Keeps a list of critical file descriptors during
runtime execution. Interference on system files, such as library
or devices, will likely crash the program execution. Thus,
interference is not applied to system calls manipulating those
file descriptors (see Section III-D for more details).

threshold: Represents the probability that a system
call from the interference set invoked by a process in the
uncertain environment will undergo interference. The higher
the threshold, the higher the probability that an interference
strategy will be applied.

Figure 1 illustrates the architecture and operation of the
uncertain environment. A key component of the architecture
is a loadable kernel module, the Uncertainty Module, which
monitors the execution of all system calls in the interference
set, and applies a randomly-chosen interference strategy to the
system call, depending on the process environment and the
interference threshold.

For example, consider Process 2 in Figure 1, loaded in
the uncertain environment and invoking sys_write (Step
1). Because sys_write is in the interference set, it can
introduce uncertainty in its own execution. First the system call
inspects Process 2’s environment and finds that it runs in the
uncertain environment (Step 2). Next, sys_write runs the
corruption protection mechanism (Section III-D) to make sure
that no interference will occur if the system call is accessing a
critical file (Step 3). If sys_write is not accessing a critical
file, CHAMELEON decides based on the threshold whether or
not a strategy should be applied. If a strategy is to be applied,
sys_write randomly selects one of the strategies that can
be applied to its execution.

D. Corruption Protection Mechanism
The uncertainty module employs a corruption protec-

tion mechanism to prevent interference while a process
in the uncertain environment is accessing critical system
files, which might cause early termination of the process.
The files are identified through file descriptors, created by
sys_open, sys_openat and sys_creat, and deleted by
sys_close. System calls whose parameters are file descrip-
tors, such as sys_lseek, sys_read and sys_write,
are under this protection mechanism. These protected files
are determined by an administrator and tracked by setting
an extended attribute in the file’s inode in the .security
namespace; a similar strategy is employed by SELinux [9].

3



When a process running in the uncertain environment opens
a file with a pathname beginning with critical directories or
containing keywords, the file’s descriptor (fd) is added to
a new per process data structure fd list. Later, when this
process invokes sys_read or sys_write referring to an fd
in fd list, the protection mechanism will prevent interference
strategies from being applied to these system calls.

IV. EVALUATION

The goal of our evaluation was to discover the impact of
CHAMELEON’s uncertain environment in malware and benign
softwares behavior. We deployed and evaluated CHAMELEON
on a Linux machine running Ubuntu 14.04 with kernel release
3.13, with 16GB RAM, 160GB Hard Disk, x86 64 architec-
ture, and 8 processors.

Our evaluation leveraged a collection of 113 software
including common software from GNU projects [10], SPEC
CPU2006 [11] and Phoronix-test-suite [12], and 100 Linux
malware from THC [13] and VirusShare [14].

The 100 malware samples were randomly selected from
different categories (22 flooders, 14 worms, 15 spyware, 24
Trojans and 25 viruses). In total, our evaluation set contained
147 I/O-bound and 66 CPU-bound software samples, contain-
ing both common benign software and malware.

For each software or malware sample (and always starting
with a clean virtual machine), we configured the system with
all files and parameters needed for the evaluation. Then we ran
the software (first in the standard environment and later in the
uncertain environment) and logged execution-related data, such
as the number of invoked system calls, system call parameters,
output values, and whether or not the program was adversely
affected.

A. General Software
We ran our samples of general software (I/O-bound and

CPU-bound) in the uncertain environment and observed their
execution outcome. We consider the following cases as Ham-
pered executions: (i) a text editor temporarily losing some
functionality; (2) a scientific tool producing partial results;
(3) a network tool missing packets. The execution outcome
was considered Crashed if the software hanged longer than
twice its standard runtime and needed to be manually killed.
A Succeeded execution generates outputs that are exactly the
same as those produced with the same test case in the standard
environment and with a runtime that does not exceed twice that
in the standard runtime.

As shown in Table II, at threshold 10% with intrusive
strategies, on average 37% of the tasks experienced some form
of crash or hamper. With non-intrusive strategies, this percent-
age was 30%. For a 50% threshold and intrusive strategies,
59% of the software was adversely affected. With non-intrusive
strategies, this number was 10% smaller. Programs that wrote
into files were the most sensitive to uncertainty as all of the
text editors (for 50% threshold) and half of them (for 10%
threshold) were adversely affected by uncertainty.

Software that relies on the correctness of the data written
into files, such as text editors, were the most sensitive to
uncertainty. With intrusive strategies at threshold 50%, none
of the 15 text editors running in the uncertain experiment
completed their intended tasks. With non-intrusive strategies,

only 33% of the software executed without errors. With a
threshold of 10%, non-intrusive strategies obtained a Succeed
ratio of 73.3%. With intrusive strategies for the same threshold,
nearly half of the software crashed or were hampered. These
results show that APTs that rely on exfiltrating sensitive data
and keyloggers would have a very low success rate in the
uncertain environment. This result also shows that text-editors
are not suitable to be protected under CHAMELEON.

We analyzed the performance penalty caused by the inter-
ference strategies, such as process delay and process priority
decrease on all 23 benchmark software whose execution could
be scripted. Highly interactive software were tested manually
and showed negligible overhead. Figure 2 shows the average
runtime overhead for software whose execution could be
scripted running in the uncertain environment. For runtimes
ranging from 0 to 0.01 seconds, the average penalty is 8%; for
runtimes ranging from 0.1 to 1 seconds, the average penalty is
4%; for runtimes longer than 10 seconds, the average penalty
is 1.8%. This shows that the longer the runtime, the smaller
the overhead is. One hypothesis is that software with longer
execution time are usually CPU-bound programs performing
time-consuming calculations. Because most of the system calls
in the interference set are I/O related, CPU-bound programs
are perturbed less and thus smaller overhead are incurred.

Fig. 2: Performance penalty for 23 benchmark software whose exe-
cution time could be scripted. We categorized the software according
to their average runtime.

During our analysis we also measured the code coverage by
compiling the analyzed software source code with gcov [15],
EMMA [16] and Coverage.py [17] based on the software’s
programming language. On the 71 applications for which we
had source code, the average coverage was 69.49%.

We also tested 26 benign applications with different work-
loads running in the standard and uncertain environment.
The workloads contained three levels: light, medium and
heavy, which corresponded to test, train, and ref level for
SPEC CPU2006, and first, middle-most, and last-level in the
Phoronix Test Suite. Our results showed that 2 of the 26
benign software were adversely affected on all three different
workloads, indicating that the workload type does not impact
the program outcome in the uncertain environment for the two
sets of interference strategies we used.

B. Malware

We also analyzed how malware were affected by the
uncertain environment, for intrusive and non-intrusive strate-
gies. We considered that malware were adversely affected by
the uncertain environment if they crashed or executed in a

4



hampered fashion. An execution is considered Crashed if mal-
ware terminates before performing its malicious actions. An
execution is considered Succeeded if malware accomplished
its intended task, such as injecting malicious payload into an
executable. The following outcomes are examples of hampered
malware execution in the uncertain environment: (1) a virus
that injects only part of the malicious code to an executable
or source code file; (2) a botnet that loses commands sent to
the bot herder; (3) a cracker that retrieves wrong or partial
user credentials; (4) a spyware that redirects incomplete stdin,
stdout or stderr of the victim; (5) a flooder that sends only a
percentage of the total number of packets it attempted.

Our evaluation with 100 Linux malware samples showed
that, when intrusive strategies were applied, 81% of the
malware samples failed to accomplish their tasks at threshold
50%, and 62% failed at threshold 10%. Non-intrusive strategies
yielded similar results for threshold 50% and 10%, with 76%
and 68% of malware adversely affected, respectively.

Table II shows the impact of intrusive and non-intrusive
strategies in the uncertain environment for different types of
malware for the thresholds of 10% and 50%. For each type
of malware samples, threshold 50% caused about 20% more
Crashed and 13% fewer Succeeded outcomes in the uncertain
environment than threshold 10% for both intrusive and non-
intrusive strategies. Non-intrusive strategies caused about 9%
more Hampered and 5% fewer Crashed execution outcomes
than intrusive strategies for different thresholds, showing as
expected that non-intrusive strategies are less disturbing to
malware than intrusive strategies.

At threshold 50%, intrusive and non-intrusive strategies had
a similar ratio of Crashed execution: 40% to 60% for each
type of malware. At threshold 10%, non-intrusive strategies
had spyware with the lowest ratio (13%) of Crashed execution
and flooders with the highest (36%); Intrusive strategies had
flooders with the lowest ratio (13%) of Crashed execution
and viruses with the highest (44%). In other words, since
threshold 50% had a strong influence on malware execution in
the uncertain environment, different sets of strategies (intrusive
or non-intrusive) caused similar impact on execution outcomes.

The studied viruses appeared not to be sensitive to strategy
and threshold, with the ratios of different execution outcomes
similar for all cases—Crashed ratio at about 40%, Succeeded
ratio at about 25%, and Hampered ratio at about 30%. This
can be explained by the homogeneous nature of these viruses’
implementation. Usually a virus will inject malicious code to
executables or source files in one write system call, and once
this call is disturbed, the virus will be affected. Therefore, the
Crashed ratio for viruses is higher than those of other types of
malware.

At threshold 10%, Flooders were more sensitive to non-
intrusive strategies than intrusive strategies, with the ratio of
Succeeded execution decreased from 41% to 18%, while other
types of malware did not change so much. Since the goal
of Flooders is to send a great number of packets in a very
short time, the advantages of non-intrusive strategies such as
delaying and decreasing process priorities affected Flooders
more.

Spyware had the lowest ratio of Hampered execution for
different thresholds and strategies.

C. Behavior Comparison

Table III compares the execution of malware and benign
software at the system call level in the uncertain environment.
Modern software invoked more than twice the number of
system calls monitored than malware, even with the exis-
tence of Flooders, which usually largely increased the average
number of system calls invoked. For benign software the
number of system calls perturbed or silenced was only half of
those for malware, mainly because of the effectiveness of the
corruption protection mechanism introduced in Section III-D.
Benign software had a larger number of connection attempts
and read/write operation monitored than malware. However, a
smaller fraction of benign software system calls was perturbed
in the uncertain environment.

D. Case Study: Advanced Persistent Threat (APT)

In this section we show the evaluation of the interference
strategies with an APT attack. We simulated a watering hole
attack similar to the Black Vine APT from Symantec [18]. This
attack has three main components: a Trojan, a backdoor and
a keylogger. First, the attacker sends a spear-phishing e-mail
to a user with a link for downloading the Trojan encryption
tool. If the user clicks on the link and later uses the Trojan
tool to encrypt a file, the tool downloads and executes a
backdoor from a C&C server while encrypting the requested
file. Then, the backdoor copies the directory structure and
the ssh host key from the user’s machine into a file and
sends it to the C&C server. After the backdoor executes, the
attacker deletes any traces of the infection without affecting
the Trojan’s encryption/decryption functionality. The attacker
will also install a keylogger to obtain root privileges. Next, the
backdoor runs a script that uploads sensitive data to the C&C
server.

The Trojan is written in C using libgcrypt for encryption
and decryption. It uses the curl library for downloading the
backdoor from the Internet. In our simulation we used the
logkeys keylogger from [19]. The backdoor script uses scp for
sending the data to the C&C server.

APT in the Uncertain Environment: in the standard
environment, only 85 system calls in the interference set were
captured for the simulated Black Vine, in which 52 were
connection related calls with 132,254 buffer bytes read or
written. Compared to the standard environment, the uncertain
environment with a threshold of 10% caused a loss of 4%
and 5% of the system calls with intrusive and non-intrusive
strategies, respectively. With a 50% threshold, 71% and 76% of
the system calls were lost, respectively. This sharp increase on
system call loss was caused by early termination of some APT
functionalities, e.g., a failure of sys_open would prevent
the invocation of sys_read and sys_write. Threshold
50% also caused a great increase on connection loss and
byte loss, compared with the numbers we found for threshold
10%. With intrusive strategies at threshold 10%, the number of
bytes monitored increased compared with that in the standard
environment, and this can be explained by the APT retry-on-
fail mechanism. When an incomplete write is detected, the
APT would try to write the buffer bytes again. When the
threshold increased from 10% to 50%, the retry mechanism
failed to write the original number of bytes.

5



threshold = 50% threshold = 10%
Intrusive Non-intrusive Intrusive Non-intrusiveMalware

Category Succ Crash Hamper Succ Crash Hamper Succ Crash Hamper Succ Crash Hamper
Spyware 27% 67% 7% 40% 40% 20% 53% 27% 20% 60% 13% 27%
Viruses 24% 48% 28% 24% 40% 36% 24% 44% 32% 28% 36% 36%
Worm 21% 36% 43% 21% 57% 21% 29% 50% 21% 21% 29% 50%
Trojan 17% 63% 21% 29% 50% 21% 46% 29% 25% 38% 25% 38%

Flooders 9% 59% 32% 9% 50% 41% 41% 14% 45% 18% 36% 45%
All 19% 55% 26% 24% 45% 29% 38% 32% 30% 32% 29% 39%

Intrusive Non-intrusive Intrusive Non-intrusiveSoftware
Category Succ Crash Hamper Succ Crash Hamper Succ Crash Hamper Succ Crash Hamper

Text Editors 0 73% 27% 33% 33% 33% 53% 20% 27% 73% 20% 7%
Compilers 18% 55% 27% 36% 18% 45% 55% 27% 18% 73% 18% 9%

Network Tools 38% 56% 6% 50% 31% 19% 56% 19% 25% 56% 31% 13%
Scientific Tools 33% 63% 3% 40% 43% 17% 53% 30% 17% 60% 20% 20%

Others 82% 7% 11% 79% 7% 14% 86% 7% 7% 86% 4% 11%
All 41% 47% 12% 51% 27% 22% 63% 20% 17% 70% 17% 13%

TABLE II: Execution for different types of malware and benign software under intrusive and non-intrusive strategies in the uncertain
environment. We used Succ, Crash and Hamper for the ratios of Succeeded, Crashed and Hampered execution outcomes.

Malware
Category

Number of
syscalls

monitored

Percentage of
syscalls

perturbed

Percentage of
syscalls
silenced

Number of
connection-related

syscalls
monitored

Percentage of
connection-related

syscalls
perturbed

Number of
buffer-related

syscalls
monitored

Percentage of
buffer-related

syscalls
perturbed

Flooders 930.50 9.74% 3.39% 626.64 10.13% 91.18 6.58%
Spyware 50.73 2.89% 1.05% 4.67 7.14% 26.13 3.06%
Trojan 523.80 8.09% 2.85% 396.53 9.52% 182.67 7.14%
Viruses 423.44 5.02% 1.66% 211.75 9.56% 15.32 4.96%
Worms 68880.64 0.05% 0.02% 332.56 9.86% 43.79 8.97%

All 9992.49 0.41% 0.14% 266.16 9.87% 77.78 6.83%

Software
Category

Number of
syscalls

monitored

Percentage of
syscalls

perturbed

Percentage of
syscalls
silenced

Number of
connection-related

syscalls
monitored

Percentage of
connection-related

syscalls
perturbed

Number of
buffer-related

syscalls
monitored

Percentage of
buffer-related

syscalls
perturbed

Scientific Tools 2071.59 1.13% 0.34% 4.00 0.00% 1878.28 0.46%
Compilers 167303.36 0.04% 0.01% 4.00 0.00% 164418.73 0.00%

Network Tools 515.50 2.85% 1.01% 106.43 10.99% 206.38 1.54%
Others 566.31 0.54% 0.19% 2.00 0.00% 394.77 0.19%

Text Editors 6693.20 0.42% 0.14% 3404.00 0.04% 4377.93 0.40%
All 20863.74 0.10% 0.03% 1283.64 0.40% 20023.82 0.03%

TABLE III: Comparison between malware and benchmark software on system call perturbation under the uncertain environment (with Non-
intrusive strategies at threshold 10%).

Environment
Number of

syscalls
monitored

Percentage
of syscalls

lost

Number of
connection-related

syscalls
monitored

Percentage of
connection-related

syscalls
lost

Number of
buffer-related

bytes
monitored

Percentage of
buffer-related

bytes
lost

None 85 0% 52 0% 132254 0%
Intrusive (10%) 82 4% 49 6% 145200 9%
Intrusive (50%) 25 71% 16 69% 5905 96%
Non-intrusive (10%) 81 5% 48 8% 120366 9%
Non-intrusive (50%) 20 76% 11 79% 5963 95%

TABLE IV: Execution details of the Black Vine APT in the standard and uncertain environment. Under the uncertain environment, the
experiment was carried out with intrusive and non-intrusive strategies for the 10% and 50% thresholds.

V. DISCUSSION

As we discussed in Section II, a resourceful and motivated
adversary can bypass any protection mechanism. Even though
the uncertain environment is designed to rate-limit stealthy
malware, it can still be eluded by attacks. For example,
highly fault-tolerant malware will be resilient to the uncertain
environment.

There are some trade-offs in selecting an interference
strategy. Intrusive strategies are more aggressive, and will
affect software running in the uncertain environment more.
For an organization with high security demands and less
tolerance for non-approved software, intrusive strategies will
offer more protection. However, our approach is not suitable
for organizations that do not control software running in their
perimeter.

Strategy Process Delay is different from just suspending
software execution. A suspended execution stops suspicious

software from running and will not generate data for DL
analysis—this does not address the challenge of false posi-
tive. Process Delay, on the other hand, slows down software
execution, thus potentially buying time for deep analysis and
allowing for the accurate classification of borderline cases.
Also, suspension of execution can be detected by malware just
by checking wall clock time. If malware comes to this real-
ization, it can infer it is being monitored and avoid behaving
maliciously for some time to avoid detection.

The worst case scenario for software in CHAMELEON
would be to keep getting a borderline classification from ML
detectors, and end up running in the uncertain environment all
the time. One possibility to address such corner cases is for
the ML detector raise the borderline threshold or the system
administrator change the uncertainty level.

Although this approach was implemented for Linux (to
allow the release of the open source code), it can also be

6



implemented in other operating systems, such as Windows,
which is a popular target of malware attacks.

Finally, we are aware that the degree of uncertainty is not
a one-size-fits-all solution—we expect an administrator to dial
in the level of uncertainty to the needs of the organization and
applications.

VI. RELATED WORK

Our work intersects the areas of malware detection, soft-
ware diversity, and deception. This section summarizes how
they have been used in software design and highlights under-
studied areas.

Malware Detection: There are extensive literature dating
to the 1990s on detection of intrusions and malware. Mal-
ware detection techniques can be signature-based [3], [4] or
behavior-based [20]–[22].

Signature-based approaches match bytes and instructions
from known malware to the unknown program under anal-
ysis. These techniques are accurate, but they can be evaded
when attackers use polymorphism and metamorphism to create
malware variants; these variants have the same behavior but
have different byte signatures. Further, these approaches cannot
detect zero-day malware and have a practical detection rate
ranging from 25% to 50% [5].

Behavior-based techniques, which can be static or dynamic,
analyze program behavior and attempt to detect events, in-
structions or resource access that are indicative of malware.
Behavioral solutions based on static analysis [21] analyze the
source code of malware and benign applications in an attempt
to extract their unique behavior in high level specifications.
Most of the work on dynamic behavior-based malware detec-
tion [20], [22] are based on seminal work by Forrest et al. [20].
System call-based malware detectors suffer, however, from
high positive rates due to the diverse nature of system calls
invoked by applications. This challenge has worsened as
programs are becoming increasingly diverse [22].

Some approaches analyze the data flow of a program
to extract malware behavior. Panorama [23], for example,
performs system-level taint-tracking to discover how malware
leaks sensitive data. Martignoni et al. [24] leveraged hierar-
chical behavioral graphs to infer high-level behavior of low-
level events. The approach traces the execution of a program,
performing data-flow analysis to discover relevant actions such
as proxying, data leaking and key stroke logging. Ether [25]
improved on tracing granularity on single instructions and sys-
tem calls via hardware virtualization extensions. Ye et al. [26]
proposed a semi-parametric classification model for combining
file content and file relation information to improve the perfor-
mance of file sample classification. More recently, Bromium
[5] proposed the use of virtualization on a per-process basis
to isolate every process from the system and from each other.
While this certainly advances the level of granularity offered
by traditional sandboxes, it has some inconveniences for the
user (e.g., it creates obstacles to inter-process communication)
and cannot guarantee complete perimeter protection (e.g., a
keylogger still can record credentials).

CHAMELEON’s goal is to provide an environment where
possible malware can be rate-limited, while time-consuming
deep analysis is underway.

Diversity: The ability to diversify behavior within a system
is an essential building block for unpredictability. Diversifying
components within the software stack can improve overall ro-
bustness. Researchers have studied building diverse computer
systems. Forrest et al. [27] proposed guidelines and advocated
the use of randomized compilation techniques, which moti-
vated later work in this area [28]. She and her colleagues
[29] also showed that code exhibits evolutionary characteristics
similar to those seen in the biological world. A program, like
a biological organism, has the potential to mutate, but can still
function normally [29].

Several projects mitigate buffer overflows and other mem-
ory errors by randomizing system call mappings, global li-
brary entry points, stack placement, stack direction, and heap
placement—often in conjunction with running multiple ver-
sions in parallel to detect divergence [30].

Deception: To a limited extent, deception has been an
implicit technique for cyber warfare and defense, but is under-
studied as a fundamental abstraction for secure systems. Hon-
eypots and honeynets [31] are systems designed to look like
production systems in order to deceive intruders into attacking
the systems or networks so that the defenders can learn
new techniques. Several technologies for providing deception
have been studied. Software decoys are agents that protect
objects from unauthorized access [32]. The goal is to create
a belief in the attacker’s mind that the defended systems
are not worth attacking or that the attack was successful.
Red-teaming experiments at Sandia tested the effectiveness
of network deception on attackers working in groups [33].
The deception mechanisms at the network level successfully
delayed attackers for a few hours. Almeshekah and Spafford
[34] further investigated the adversaries’ biases and proposed
a model to integrate deception-based mechanisms in computer
systems. In all these cases, the fictional systems are predictable
to some degree; they act as real systems given the attacker’s
inputs. True unpredictability requires randomness at a level that
would cause the attacker to collect inconsistent results. This
observation leads to the notion of inconsistent deception [35],
a model of deception that challenges the cornerstone of pro-
jecting false reality with internal consistency. Sun et al. [36],
[37] also argued for the value of unpredictability and deception
as OS features.

In this paper we explored non-corruptive unpredictable
interferences to create an uncertain environment for software
being deep analyzed after an initial borderline classification.

VII. CONCLUSIONS

In this work we presented CHAMELEON, a novel Linux
framework that introduced uncertainty as an OS built-in feature
to rate-limit the execution of possible malware that received
a borderline classification by traditional ML detectors, while
a second performance expensive deep-learning detector is
operating. CHAMELEON’s protection target are organizations,
where it is a common practice to whitelist software to run in the
organization perimeter. CHAMELEON offers two environments
for software running in the system: (i) standard, which works
according to the OS specification and (ii) uncertain, for any
software that receives a borderline classification by traditional
ML-based detectors. In the uncertain environment software
experiences a set of perturbations, which create obstacles for
their execution, while deep-learning analysis is underway.

7



We evaluated CHAMELEON with 113 common applications
and a set of 100 malware samples for Linux from various
categories. Our results showed that a threshold of 10% caused
various levels of disruption to 30% of the analyzed software.
Malware was affected more with intrusive strategies caused
62% and non-intrusive strategies caused 68% of the malware
to fail to accomplish their tasks.

Besides effectively supporting the combination of the best
of traditional ML and emerging DL methods and providing
a “safety net” for failures of standard intrusion detection
systems, CHAMELEON improves system security through (i)
making systems diverse by design, (ii) increasing attackers’
work factor, and (iii) decreasing the success probability and
speed of attacks. The idea of making systems less predictable
is audacious, nonetheless, our results indicate that an uncertain
system can be feasible for raising an effective barrier against
sophisticated and stealthy malware. The degree of uncertainty
is not a one-size-fits-all solution—we expect an administrator
to dial in the level of uncertainty to the needs of the organi-
zation and applications. Finally, we define success of software
execution in the uncertain environment as benign software
tolerating uncertainty and users obtaining useful results from
benign software in the system.

VIII. ACKNOWLEDGMENT

We thank the DSC reviewers for their insightful comments.
This research is supported by NSF grant CNS-1464801, CNS-
1228839, CNS-1161541, DGE-1303211, ACI-1229576, CNS-
1624782, VMWare and Florida Cyber Security grants.

REFERENCES
[1] T. Wrightson, Advanced Persistent Threat Hacking: The Art and Science

of Hacking Any Organization, 1st ed. McGraw-Hill Education, 2014.
[2] “Email Attacks: This Time It’s Personal.” [Online].

Available: http://itknowledgeexchange.techtarget.com/security-detail/
cisco-report-email-attacks-this-time-its-personal/

[3] S. Kumar and E. H. Spafford, “An application of pattern matching in
intrusion detection,” 1994.

[4] G. Vigna and R. A. Kemmerer, “Netstat: A network-based intrusion
detection approach,” ser. ACSAC ’98, 1998.

[5] “Bromium end point protection.” [Online]. Available: https://www.
bromium.com/

[6] “Modern malware exposed.” [Online]. Available: http://www.nle.com/
literature/FireEye modern malware exposed.pdf

[7] “The modern malware review.” [Online].
Available: http://media.paloaltonetworks.com/documents/
The-Modern-Malware-Review-March-2013.pdf

[8] C.-C. Tsai, B. Jain, N. A. Abdul, and D. E. Porter, “A study of
modern linux api usage and compatibility: What to support when you’re
supporting,” in Eurosys, 2016.

[9] “Security-enhanced linux.” [Online]. Available: http://www.nsa.gov/
research/selinux/

[10] “Gnu project.” [Online]. Available: http://www.gnu.org/software/
software.html

[11] “SPEC CPU 2006 https://www.spec.org/cpu2006/.”
[12] “The phoronix test suite http://www.phoronix-test-suite.com/.”
[13] “THC: the hacker’s choice.” [Online]. Available: https://www.thc.org/
[14] “Virusshare.” [Online]. Available: https://virusshare.com/
[15] “Gcov.” [Online]. Available: https://gcc.gnu.org/onlinedocs/gcc/Gcov.

html
[16] “EMMA: a free java code coverage tool.” [Online]. Available:

http://emma.sourceforge.net/

[17] “Coverage.py https://github.com/msabramo/coverage.py.”
[18] “The black vine cyberespionage group.” [Online]. Available:

http://www.symantec.com/content/en/us/enterprise/media/security
response/whitepapers/the-black-vine-cyberespionage-group.pdf

[19] “Logkeys ubuntu.” [Online]. Available: http://packages.ubuntu.com/
precise/admin/logkeys

[20] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff., “A sense
of self for Unix processes,” in Proceedings of the IEEE Symposium on
Security and Privacy, 1996, pp. 120–128.

[21] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantics-aware malware detection,” in Proceedings of the 2005 IEEE
Symposium on Security and Privacy, ser. SP ’05, 2005.

[22] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: Using system-centric models for malware protection,” in
Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, ser. CCS ’10, 2010, pp. 399–412.

[23] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing System-wide Information Flow for Malware Detection and
Analysis,” ACM CCS 07, pp. 116–127, November 2007.

[24] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell, “A
layered architecture for detecting malicious behaviors,” in Proceedings
of the 11th International Symposium on Recent Advances in Intrusion
Detection, ser. RAID ’08, 2008, pp. 78–97.

[25] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware
analysis via hardware virtualization extensions,” in Proceedings of the
15th ACM Conference on Computer and Communications Security,
ser. CCS ’08. New York, NY, USA: ACM, 2008, pp. 51–62. [Online].
Available: http://doi.acm.org/10.1145/1455770.1455779

[26] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and
M. Abdulhayoglu, “Combining file content and file relations for cloud
based malware detection,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’11. New York, NY, USA: ACM, 2011, pp. 222–230.
[Online]. Available: http://doi.acm.org/10.1145/2020408.2020448

[27] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer
systems,” in Proceedings of the 6th Workshop on Hot Topics in
Operating Systems (HotOS-VI), 1997.

[28] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in IEEE Security and Privacy Symposium, 2014,
pp. 276–291.

[29] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest, “Software mu-
tational robustness,” Genetic Programmable and Evolvable Machines,
vol. 15, no. 3, 2014.

[30] M. Chew and D. Song, “Mitigating buffer overflows by operating
system randomization,” UC, Berkeley, Tech. Rep., 2002.

[31] L. Spitzner, Honeypots: Tracking Hackers. Addison Wesley Reading.
[32] N. R. J. Michael, M. Auguston, D. Drusinsky, H. Rothstein, and

T. Wingfield, “Phase II Report on Intelligent Software Decoys: Counter-
intelligence and Security Countermeasures ,” Technical Report, Naval
Postgraduate School, Monterey, CA, 2004.

[33] F. Cohen, I. Marin, J. Sappington, C. Stewart, and E. Thomas,
“ Red Teaming Experiments with Deception Technologies ,”
IA Newsletter, 2001. [Online]. Available: \url{http://all.net/journal/
deception/experiments/experiments.html}

[34] M. H. Almeshekah and E. H. Spafford, “Planning and integrating
deception into computer security defenses,” in New Security Paradigms
Workshop (NSPW), 2014.

[35] V. Neagoe and M. Bishop, “Inconsistency in deception for defense,” in
New Security Paradigms Workshop (NSPW), 2007, pp. 31–38.

[36] R. Sun, D. E. Porter, D. Oliveira, and M. Bishop, “The case for less
preditable operating system behavior,” in Proceedings of the USENIX
Workshop on Hot Topics in Operating Systems (HotOS), 2015.

[37] R. Sun, A. Lee, A. Chen, D. E. Porter, M. Bishop, and D. Oliveira,
“Bear: A framework for understanding application sensitivity to os (mis)
behavior,” in Software Reliability Engineering (ISSRE), 2016 IEEE 27th
International Symposium on. IEEE, 2016, pp. 388–399.

8




