A Steatite “Owl” Effigy from San Diego County, California

RUTH MUSSER

In the winter 1978 issue of the Journal of California Anthropology, Hudson (1978:262-265) discussed an unusual stone effigy from San Clemente Island, which after a comparison with other effigies from that island he concluded to be a Burrowing Owl (Athene cunicularia hypogaea). Concurrently, as this report appeared in print, the subject of a special exhibit on display at Riverside Municipal Museum in Riverside, California, was an incised, mottled red steatite tablet. Incised lines on the tablet and two holes drilled through the tablet create the appearance of a face suggestive of an owl.

Curiously, the opposite sides of the tablet (see Figs. 1 and 2) do not represent normal dorsal and ventral views of the zoomorph. Instead, both sides appear to be ventral (or front) views of an owl of undetermined species. In addition, it will be noted that the incisions on the side represented by Fig. 1 appear to be random in delivery, while the other side (Fig. 2) is characterized by geometrical cross-hatching. Nevertheless, the seemingly random incisions on Fig. 1 still produce an abstraction characterized by similar morphological features to those produced on the side represented by Fig. 2. From both perspectives, a neckline appears obvious and can be compared with that of the Burrowing Owl described by Hudson (1978). While a beak is prominent in Fig. 1, it is the cross-hatching that gives the illusion of a beak on the opposite side of the tablet (Fig. 2).

The side represented by Fig. 1 is covered with an irregular network of scoring that suggests no apparent pattern, except for the

Fig. 1. Steatite effigy from Mason Valley, San Diego County, California. Dorsal side with random incision marks. Courtesy of Riverside Municipal Museum. Photo by Ralph Howard.

Fig. 2. Steatite effigy shown from ventral side with cross-hatching incisions. Courtesy of Riverside Municipal Museum. Photo by Ralph Howard.
strong suggestion of a beak and neckline. Several long prominent lines radiate outward from the beak to the bottom of the figure. A large incision also occurs at the right "eye" of the "owl" and extends along the right side of the "neck" about one-third of the length of the tablet. A smaller scar also begins at the same point in the right "eye" and extends about one-sixth of the distance toward the bottom of the figure. One or both of these scars may be damage caused by a plow or other instrument.

In Fig. 2, a primary ovular outline is scored around the perimeter of the tablet. Parallel incisions were then made from the oval outward to the edge of the table, creating an aura effect. A "neckline" also appears to have been incised about one-third of the way down from the top of the tablet beneath other perforations and within the primary outline. The neckline consists of three similar incisions that curve upward. Below the neckline, the "body" of the effigy is decorated with vertical, horizontal, and cross-hatch marks of various depths. Cross-hatching is also apparent above the "neckline," but to a lesser degree than that which appears below it.

Chris Moser, Curator of Anthropology at Riverside Municipal Museum, informed me that the specimen was turned over to the museum in 1966 by a group of collectors who were working on a cremation site in Mason Valley, San Diego County, California. They reported that the object was a surface find. The area in which the effigy was discovered borders the Yuha Desert and Anza Borrego Desert. Over the years, various unusual steatite objects have been found in these two regions (Harry Lawton, personal communication 1981). Most of these objects are in private collections of desert residents. Lawton has in his possession a photograph of an oblong steatite object with cross-hatching that create the resemblance of an ear of corn. Unfortunately, most of the stray collectors living in the region between the Anza Borrego Desert and the international border usually are unwilling to part with such objects even for scientific study. Whether owl effigies are typical of this region of the desert and how common other steatite objects may be remains unknown.

The "owl" effigy is characterized by physical dimensions similar to those of steatite tablets found on Santa Catalina and described by Hoover (1973). The Mason Valley tablet measures 1.5 cm. in thickness with a maximum length of 17.5 cm. and a maximum width of 13.5 cm. The "eyes" of the tablet (1.2 cm. in diameter) were drilled using a method similar to that described by Hoover (1973). Perforations in incised steatite tablets from Santa Catalina were biconically drilled for obvious suspension and then the perforations were reamed out to create a "modified hour-glass cross section." The relative size of the perforations in relation to the entire specimen are comparable to those of the Santa Catalina species. The primary difference is that the effigy discovered in Mason Valley has two perforations while those reported for Santa Catalina have only one (Hoover 1973). In addition, the entire specimen is clearly purposefully shaped as are those incised tablets on display in the Catalina Museum (Hoover 1973). The design elements of the Mason Valley tablet also include cross-hatching as do those of steatite tablets from Santa Catalina. Another similarity is that the weight of both the Mason Valley tablet and those described by Hoover (1973) would seem to preclude their use as pendants, although they appear to have been designed for suspension.

While we cannot at present relate the effigy found in Mason Valley to a specific function, and it would be unwise to speculate on its possible ritual significance, several observations should be made. First, early Spanish explorers reported that various items were suspended on stone or wooden grave markers as offerings among certain California groups (Hoover 1973; Schumacher 1875). The owl is
also considered to be a death omen or symbol among certain groups of Yuman linguistic stock and there are widespread ideas of the Burrowing Owl as a curing doctor among peoples of Shoshonean stock (Hudson 1973). Both of these linguistic areas border the region where the Mason Valley effigy was found. The concept of the owl as relating to illness or death or to healing is also widespread among other southern California Indian groups and is discussed by Hudson (1978), Gayton and Newman (1940:80), Gayton (1948:23, 69), Boscana (1933:32), Harrington (1933:112, 151, and fn. 29 and 78). Harrington (n.d.) also discusses owls and their relationship to illness in a few brief unpublished notes on the Serrano Indians. He refers to having watched a group of boys kill a Great Horned Owl and says that the word in Serrano for a large owl is "mught" and in Ventureño the word for a large owl is "muhu." Harrington reports that the large owl or "mught" speaks only in Serrano and Ventureño, saying in Serrano "taqepa'" or as he translates into Spanish "va morrir uno" (one is going to die). He does not record the equivalent saying in Ventureño. The owl uses a similar expression to predict death in Ventureño. In addition, the owl may also predict various illnesses such as smallpox or measles by saying "mikits." Harrington's notes on the Serrano are not specific enough in their brief comments about owls to determine the particular type of owl responsible for death or illness.

Hudson (1978) suggested that the "owl effigy from San Clemente may have [been used] as a sacred talisman, by which an individual could exercise supernatural power by his special relationship with a dream helper." We can only speculate that the owl tablet found in Mason Valley may have served some such similar purpose—that it may have served as a sacred talisman that could effect supernatural powers. The fact that the tablet was found in association with a cremation site (how close to the site museum records do not indicate) may be of some significance in interpreting its function.

While the source of the steatite from which this specimen is made has not been determined, it is possible that it was made from local San Diego County outcrops. Alternatively, it could have been made from sources elsewhere, such as on Santa Catalina Island. Currently, I am working with Nelson Leonard III, a steatite specialist, in the hope of pinpointing the source of the specimen.

REFERENCES

Boscana, Geronimo

Gayton, Anna H.

Gayton, Anna H., and Stanley S. Newman

Harrington, John Peabody

Radiocarbon Dating of Pinyon Nut Exploitation in Eastern California

ALAN P. GARFINKEL
ROGER A. COOK

Recently obtained radiocarbon analyses of the charred parts of pinyon pine cones and seeds from the Sherwin Grade site, Mono County, California, (CA-Mno-584) are of significance to the controversy concerning the proposition that regular use of pinyon resources initiated in the Owens Valley region between A.D. 600 and A.D. 1000 (Bettinger 1976, 1977a, 1977b; McGuire and Garfinkel 1976; Garfinkel and Cook 1979).

Numerous samples of charred plant material were retrieved during the excavation of CA-Mno-584 located above the Sherwin Grade between Bishop and Mammoth adjacent to Rock Creek at an elevation of 6,900 ft. One of these samples was previously reported (Garfinkel and Cook 1979:50) and was part of a pinyon cone roasting feature found in unit 1-5-Ad at a depth of 30-40 cm. It was dated at 455 ± 140 radiocarbon years (UCR 365):A.D. 1495.

Three other samples of charred pinyon pine remains were available for dating and were retrieved from excavation levels previously interpreted as antedating A.D. 500 (Garfinkel and Cook 1979:75). It was believed that age determinations of these samples might contribute significantly to the ultimate resolution of the argument concerning the age for the initial exploitation of pinyon in the Owens Valley region. Through the good graces of Dr. R. E. Taylor of the Radiocarbon Dating Laboratory at the University of California, Riverside, these samples were analyzed without cost.

Table 1 shows the dates obtained on samples with their accompanying proveniences: the samples are further described below.

The three samples of charred plant material were retrieved directly from the midden during the screening process and were not found in association with any formalized features. Charcoal and charred plant remains were found in most units to a depth of 80 cm. Although several excavation units revealed artifactual remains to a depth of 1.5 m. or greater (to 2.5 m.), only two samples of charred plant material were retrieved below the 70-80 cm. level.

Natural or cultural processes could result in the deposition of these plant remains within the site. Pinyon pines are not found directly on the site today. The nearest pinyon pines are situated quite close to the site upslope and approximately 200 m. to the west and north. Although the vegetation community surrounding the site, Pinyon-Juniper Woodland, does not characteristically support burns with any regularity, lightning fires are known to occur...