Title
Confirmation of the Younger Dryas boundary (YDB) data at Murray Springs, AZ

Permalink
https://escholarship.org/uc/item/9297r4z1

Author
Firestone, Richard B

Publication Date
2011-09-07
Confirmation of the Younger Dryas boundary (YDB) data at Murray Springs, AZ

We are pleased that Haynes et al. (1) have verified our discovery of a 12.9-ka peak in magnetic grains from the Clovis-age surface (YDB) at the Murray Springs site (2) that is even higher (8.2 g/kg) than we reported (2.6 g/kg), consistent with variable deposition. Haynes et al. (1) also reported much larger microsphere concentrations in the YDB, up to 37,000/kg, compared with 109/kg that we found in bulk sediment. Their elemental analysis of magnetic grains is similar to ours with comparable concentrations (Table 1). They also found microspheres and magnetic grains with Ti concentrations as high as 5.1%, which is much higher than crustal abundance (0.38%) or typical meteoric values (<0.06%) (3), just as we did. This composition counters the argument of Pinter and Ishman (4) that YDB microspheres are typical meteoric ablation products.

We are puzzled by the conclusion of Haynes et al. (1) that they “failed to find iridium or radiation anomalies.” We reported radiation levels in the Murray Springs YDB ≈20% higher than background (2), and Haynes et al. (1) also detected radiation peaks at four Clovis excavations that were 23–68% above background in or near the YDB. They reported extremely high concentrations of Ir ranging from 31 to 64 ppb in two magnetic fractions from across the YDB. Their values are as much as 34 times higher than we reported but within the range of values at other YDB sites and >1,000 times terrestrial abundance (0.021 ppb) (3). These Ir measurements contradict those of Paquay et al. (5), who failed to observe large Ir anomalies at Murray Springs.

Haynes et al. (1) measured 72 ppb Ir in Curry Draw streambed magnetic grains, which they assumed were background material, although this value is much higher than terrestrial abundance and remarkably similar to their Murray Springs YDB values. It seems that the sample may be Ir-rich YDB material that was redeposited during streamed erosion. The low Ir values for Tucson roof particles are most likely anthropogenic terrestrial material, which Haynes et al. (1) concede. Our interpretations may differ, but the data of Haynes et al. (1) confirm our findings and are a useful contribution to the YDB debate.

Richard B. Firestone1, Allen West2, and Ted E. Bunch2

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720; 2Geoscience Consulting, Dewey, AZ 85632; and 3Department of Geology, Northern Arizona University, Flagstaff, AZ 86011


Author contributions: R.B.F. and A.W. designed research; R.B.F., A.W., and T.E.B. performed research; R.B.F., A.W., and T.E.B. analyzed data; and R.B.F. wrote the paper.

The authors declare no conflict of interest.

1To whom correspondence should be addressed. E-mail: rfb@lbl.gov.

This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Table 1. Comparison of Murray Springs analyses

<table>
<thead>
<tr>
<th></th>
<th>Haynes et al. (1)</th>
<th>Firestone et al. (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26MS07</td>
<td>3-5MS07</td>
</tr>
<tr>
<td>Fe, %</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>Ti, %</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Ni</td>
<td>67</td>
<td>28</td>
</tr>
<tr>
<td>La</td>
<td>38</td>
<td>347</td>
</tr>
<tr>
<td>Nd</td>
<td>27</td>
<td>225</td>
</tr>
<tr>
<td>Sm</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Eu</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gd</td>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>Tb</td>
<td>0.4</td>
<td>5</td>
</tr>
<tr>
<td>Yb</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Lu</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>U</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Concentrations in ppm.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.