Title
Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra

Permalink
https://escholarship.org/uc/item/92b511mq

Journal
Global change biology, 22(10)

Authors
Vaughn, LJS
Conrad, ME
Bill, M
et al.

Publication Date
2016-10-01

DOI
10.1111/gcb.13281

Peer reviewed
Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra

Lydia J. S. Vaughn, Mark E. Conrad, Markus Bill, Margaret S. Torn

First published: 15 March 2016
https://doi.org/10.1111/gcb.13281

Abstract

Arctic wetlands are currently net sources of atmospheric CH_4. Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH_4 emissions and gross CH_4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH_4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH_4 and CO_2 fluxes, concentrations and stable isotope compositions of CH_4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH_4 emissions, a different primary methanogenic pathway, and greater CH_4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH_4 flux decreased from 64 nmol m^{-2} s^{-1} in intact polygons to 7 nmol m^{-2} s^{-1} in degraded polygons, and stable isotope signatures of CH_4 and DIC showed that acetate cleavage dominated CH_4 production in low-centered polygons, while CO_2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH_4 emissions.

Introduction

The high-latitude permafrost region plays an important role in the global carbon budget. Historically, this region's soils have been a large net source of atmospheric CH_4, and future CH_4 emissions under climate change remain uncertain. (McGuire et al., 2009, 2012; Mastepanov et al., 2013). Arctic CH_4 emissions are difficult to accurately measure, model, and predict, as complex controls on CH_4 processes generate highly variable CH_4 emissions in both space and time (Whalen & Reeburgh, 1992; Bridgham et al., 2013; Olefeldt et al., 2013). Current estimates of high-latitude CH_4 emissions range widely from 9 to 35 Tg CH_4 yr^{-1} (McGuire et al., 2012), and while most models predict emissions will increase with climate change and associated permafrost degradation (Koven et al., 2011; Schuur et al., 2013; Lawrence et al., 2015), the magnitude and geographic distribution of this change depend on numerous ecological variables such as soil moisture, water table position, thaw depth, temperature, microbial community, and vegetation composition, stature, and productivity (Wagner et al., 2003; Von Fischer et al., 2010; Sturtevant et al., 2012; Tagesson et al., 2012; Mastepanov et al., 2013; Olefeldt et al., 2013). Together, these variables control a suite of processes determining net CH_4 emissions: CH_4 production by methanogenic archaea, CH_4 oxidation by methanotrophic bacteria, and CH_4 transport to the atmosphere (Chanton, 2005; Chanton et al., 2005).
A number of field studies have assessed CH₄ emissions across stages of permafrost degradation, finding that thaw-induced subsidence can increase CH₄ emissions and alter methanogenic pathways (Wickland et al., 2006; Olefeldt et al., 2013; Hodgkins et al., 2014; Johnston et al., 2014; McCalley et al., 2014), with strong correlations between net CH₄ emissions and specific microbial processes (Mondav et al., 2014). These studies underscore the importance of gross metabolic processes as controls on net CH₄ flux and the responsiveness or sensitivity of these processes to thaw-induced changes. Critically, in all of these studies, permafrost thaw increased inundation and active layer thickness due to thermokarst subsidence. In many landscapes, however, permafrost thaw can reduce inundation, as loss of subsurface ice creates drainage channels, redistributing water away from wetlands (Fortier et al., 2007; Godin et al., 2014). Such soil drying and reductions in high-latitude wetland area are predicted to be key controls on future Arctic CH₄ emissions (Riordan et al., 2006; Bohn et al., 2007; Avis et al., 2011; Koven et al., 2011), but few field studies have measured CH₄ emissions and their biogeochemical controls along wet-to-dry gradients of permafrost degradation.

Using a wet-to-dry permafrost degradation gradient, this study evaluates gross CH₄ processes and net CH₄ emissions across stages of drainage and geomorphic succession. In ice-wedge polygon tundra in Barrow, Alaska, we combine stable isotope depth profiles with surface flux measurements to investigate process-level controls on surface CH₄ emissions. We ask (1) how do CH₄ production and consumption processes vary across geomorphic and temporal gradients, and (2) how do these subsurface CH₄ processes relate to surface greenhouse gas fluxes? This study makes use of two geomorphic gradients and one temporal gradient: an ice-wedge thaw gradient spanning low-centered to flat-centered and high-centered polygons, a finer scale gradient of individual polygon features (centers, rims, and troughs), and a seasonal gradient from July–October.

Covering ~250 000 km² throughout the Arctic (Donner et al., 2007), polygon tundra is characterized by ice-wedge polygons, microtopographic features ~10–30 m in diameter that are separated by lower-lying, often wet or inundated channels called troughs. These polygons may be classified as low-centered polygons, which have low, wet centers bordered by raised, relatively dry rims; high-centered polygons, with high, well-drained centers and no clear rim delineation; or flat-centered polygons, with intermediate relief between high-centered and low-centered polygons. Polygons form from the growth and thaw of subsurface ice formations known as ice wedges. During earlier polygon successional stages, ice wedges underlie the troughs of low-centered polygons (Brown, 1967), impeding drainage and causing soil uplift through their annual growth and expansion (Drew & Tedrow, 1962). If these primary ice wedges thaw, erosion of polygon rims can drain the centers of low-centered polygons, leading to the growth of secondary ice wedges and formation of high-centered polygons (Drew & Tedrow, 1962; Billings & Peterson, 1980; MacKay, 2000; Huryn & Hobbie, 2012; Ping et al., 2015). This form of permafrost degradation produces drier equilibrium landscapes, which in the near term are not necessarily accompanied by increased active layer thickness. Between low-centered and high-centered polygons, differences in drainage and subsurface ice properties create strong thermal, hydrological, and geochemical gradients (Liljedahl et al., 2012; Hubbard et al., 2013; Newman et al., 2015; Wainwright et al., 2015).

Succession from low-centered to high-centered polygons has accelerated in Alaska, where thermokarst development over the past three decades has greatly outpaced the historical background landscape succession
rate (Jorgenson et al., 2006). Such changes in soil moisture and inundation have large implications for CH₄ emissions. Previous research in polygon-dominated landscapes has found lower CH₄ emissions with decreased soil moisture (Rhew et al., 2007; Von Fischer & Hedin, 2007; Von Fischer et al., 2010), less inundated area (Sturtevant et al., 2012), and lower water table position (Kutzbach et al., 2004). A more limited set of studies evaluating CH₄ emissions has treated polygon types as distinct geomorphic units, finding higher CH₄ fluxes from low-centered than high-centered polygons (Sachs et al., 2010; Wainwright et al., 2015). No studies to our knowledge, however, have related net CH₄ emissions to gross metabolic CH₄ processes across a range of polygon features.

To investigate CH₄ production, oxidation, and net emissions, this study combines surface trace gas flux measurements with concentrations and stable isotope measurements of CH₄ and co-occurring CO₂. While net CH₄ fluxes are straightforward to measure, the component processes of CH₄ production and oxidation (hereafter referred to as gross processes) cannot be directly observed in situ without an added tracer or inhibitor (Frenzel & Bosse, 1996; Von Fischer & Hedin, 2007). The stable isotope compositions of CH₄ provide an indirect approach, as these gross processes fractionate carbon and hydrogen isotopes in characteristic ways. Isotope discrimination during methanogenesis produces CH₄ that is highly depleted in ¹³C and ²H, whereas CH₄ oxidation enriches the residual CH₄ in the heavier isotopes (Whiticar et al., 1986; Chanton et al., 2005; Hornibrook & Aravena, 2010). Stable isotope analyses have been used to assess CH₄ production pathways (Hornibrook et al., 1997; Conrad, 2005), fractional and absolute CH₄ production and oxidation rates (Liptay et al., 1998; Chanton & Liptay, 2000), CH₄:CO₂ production ratios (Corbett et al., 2013, 2015), and CH₄ transport through hollow plant tissues (Chanton, 2005; Hornibrook, 2009).

Future high-latitude CH₄ emissions will depend largely on changes in wetland area (Bohn et al., 2007; Avis et al., 2011; Koven et al., 2011). Field studies are needed to evaluate CH₄ emissions as landscapes become drier or wetter due to thaw, subsidence, and drainage. This study integrates measurements of net CH₄ fluxes and gross CH₄ production and oxidation along a wet-to-dry permafrost degradation gradient in Arctic polygon tundra. Together, this information can be used to identify mechanistic changes underlying net emissions outcomes and identify critical positions in the landscape such as particular polygon features that may disproportionally influence the response of landscape-scale CH₄ fluxes to permafrost degradation.

Materials and methods

Site

The Barrow Environmental Observatory (BEO) is located ~6 km east of Barrow, AK (71.3°N, 156.5°W). At the northern tip of Alaska’s Arctic coastal plain, Barrow has a maritime climate characterized by long, dry winters and short, moist, cool summers, with a mean annual air temperature of ~12 °C and mean annual precipitation of 106 mm. Continuous ice-rich permafrost extends to >400 m (Hinkel & Nelson, 2003), overlain by a shallow active layer whose depth varies spatially and interannually from approximately 20 to 60 cm. In and around the BEO, a region of interstitial tundra among thaw lakes and drained thaw lake basins, the land surface has low topographic relief reaching a maximum elevation of ~5 m (Brown et al., 1980; Hubbard et al., 2013), with ~65%
of the ground surface organized into ice-wedge polygons (Brown et al., 1980; Lara et al., 2014). Soils in the region are primarily Typic Aquiturbels (53%), Typic Histoturbels (22%), and Typic Aquorthels (8.6%) (Bockheim et al., 1999), formed from late Pleistocene-aged sediments of the Gubik Formation (Black, 1964), with low sulfate and nitrate concentrations and abundant iron (Herndon et al., 2015a; Newman et al., 2015). Vegetation cover, height and dominant species vary between polygon types and microtopographic features (Billings & Peterson, 1980; Minke et al., 2009). The most abundant vascular plant species include the wet tundra graminoids Carex aquatilis, Eriophorum species, and Dupontia fisheri. Mosses and lichens cover much of the land surface as well, along with limited shrub, forb, and dry tundra graminoid species (Brown et al., 1980; Villarreal et al., 2012).

Field measurements and sample collection

For sample collection and field measurements, we selected seven ice-wedge polygons covering a gradient of microtopographic features and subsurface ice properties. We divided these polygons into two categories: (1) low-centered polygons (LC polygons, n = 3), with inundated, low-lying centers, large, intact ice wedges, and ice-rich permafrost; and (2) flat/high-centered polygons (FHC polygons, n = 4), with flat- to high-center relief, smaller, more degraded ice wedges, and lower permafrost ice contents (Hubbard et al., 2013). Within each polygon, we established three 1 × 1 m plots, in the polygon's center, rim, and trough, totaling 21 plots. If a FHC polygon lacked a clearly raised rim, we placed the rim plot at the upper limit of the slope between the raised center and the trough. This sampling scheme was thus organized at three levels of spatial resolution: two polygon types (LC polygon and FHC polygon); three polygon positions (center, rim, and trough); and six polygon features, defined as type × position (center, rim, and trough of each polygon type).

From each of these plots, we measured CH₄ flux and ecosystem respiration (Rₑₑ), soil moisture, soil temperature, and concentrations and δ¹³C of soil pore space CH₄ and CO₂. We measured fluxes of CO₂ and CH₄ on July 10–12, August 7–16, September 4–7, and October 2–4, 2013, using opaque static chambers (25 cm diameter, 15–20 cm height). Chambers were tall enough to enclose vegetation and were vented according to Xu et al. (2006) to minimize pressure excursions due to the Venturi effect. In inundated plots, we used a floating chamber whose base extended 4 cm below the water surface. In all other plots, chambers were seated on PVC bases extending ~15 cm below the soil surface. To minimize disturbance, we installed these bases in June 2013 and left them in place throughout the sampling season. For each flux measurement, we seated the chamber in a 3-cm-deep, water-filled trench in the base's top rim to create an airtight seal. Using a Los Gatos Research, Inc. (LGR) portable Greenhouse Gas Analyzer, we recorded CO₂ and CH₄ concentrations within the chamber over 4–8 min and calculated the flux rate of each gas from the slope of the linear portion of the concentration vs. time curve. As chambers were opaque with no light penetration, measured CO₂ fluxes were equivalent to Rₑₑ. Soil moisture and soil temperature were recorded concurrently with each greenhouse gas flux measurement. We measured volumetric water content in the top 10 cm of soil or standing water with a MiniTrase time domain reflectometer (Soilmoisture Equipment Corp.) and soil temperature at 10 cm depth with a thermistor probe. As vegetation and inundation status varied between plots, depths of moisture and temperature measurements were determined from the top of the moss layer, bare soil, or water surface.
On August 7–11, 2012, July 12–14, 2013, August 10–16, 2013, September 3–8, 2013, and October 2–5, 2013, we collected soil pore water or gas from depths of 10 cm, 20 cm, and the full depth of the thawed layer, approximately 2 cm above the frozen layer. When thaw depth was 20 cm or less, we collected samples from only two depths. Samples were collected using ¼″ diameter stainless steel probes inserted in the plots during August 2012 and June 2013, sealed with airtight caps, and left in place throughout the sampling season to reduce disturbance from repeated insertion and removal. At each sampling time, we removed the cap, connected ¼″ inner diameter tubing to the probe, and used a peristaltic pump to draw subsurface water or gas through the tubing into a 60-mL syringe. To minimize sample contamination, we assessed tubing and connections for leaks and fully purged the system with soil gas or water before attaching a sampling syringe. If the sampling probe became clogged by thick vegetation or wet soil, we removed the probe, cleaned it, and reinserted it ~10 cm from the previous insertion point. We filtered water samples in the field through 0.1 μm syringe filters and injected them directly into evacuated glass vials sealed with 14 mm-thick chlorobutyl septa (Bellco Glass, Inc., Vineland, NJ, USA). In cases where syringes contained a mixture of water and gas, we collected and analyzed both sample types. When transferring samples from syringes to vials, precautions were taken to prevent any loss of headspace gas; samples were isolated from the atmosphere using syringe stopcocks and in-line syringe filters, and needles were slowly removed from vials after injection to allow septa to properly to reseal. Samples were stored at 4 °C for up to 1 month in Barrow and then transported to Berkeley, CA, for analysis. Vials and septa were tested for loss or exchange of headspace gas over this period.

Laboratory analyses and isotope calculations

All isotope and concentration analyses were conducted at the Center for Isotope Geochemistry (CIG) at Lawrence Berkeley National Laboratory, Berkeley, CA. We measured carbon isotope ratios of dissolved inorganic carbon (DIC) in water samples and CO₂ in gas samples using a variation on the technique outlined in Torn et al. (2003). We report carbon isotope ratios in parts per thousand (‰) using the conventional δ-notation relative to Vienna PeeDee Belemnite (VPDB), where \(\delta^{13}C = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \) and \(R \) is the abundance ratio of the light to heavy isotope. The carbon isotope ratios of DIC or CO₂, are accurate to ±0.33‰ (1σ) based upon repeated analyses of the laboratory standards.

Carbon isotope ratios of higher concentration CH₄, samples (>300 ppmv) were measured using a trace gas ultra system interfaced to a Delta V Plus mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). CH₄ was chromatographically separated from other gases in the trace gas ultra system using an HP-molesieve fused-silica capillary column (30 m × 0.320 mm). The CH₄ was then combusted to CO₂ at 1000 °C in a capillary ceramic tube loaded with Ni, Cu, and Pt wires, dried, and transferred to the IRMS for the carbon isotope measurements. The reproducibility of measured CH₄, \(\delta^{13}C \) values using this method is estimated to be ± 0.16‰ (1σ) based on repeated analyses of an in-house laboratory standard. The \(\delta^{13}C \) values of lower concentration CH₄, samples were analyzed using the trace gas preconcentration system interfaced with a Micromass mass spectrometer as described in Torn et al. (2003). Up to 60 mL of gas was injected into the trace gas where CO₂ and water vapor were chemically stripped from the gas before combusting the CH₄ at 1000 °C and cryogenically preconcentrating the resulting CO₂ prior to analysis in the mass spectrometer. The reproducibility of these analyses is ±0.3‰ (1σ). \(\delta^{13}C \) measurements of CH₄, DIC, and CO₂, were corrected for 3–5‰ systematic
offsets between the measured δ¹³C values of in-house standards and their known isotopic compositions, calibrated with external standards.

Concentrations of CH₄ and CO₂ in gas samples were determined using a 2014 Shimadzu GC. Approximately 4.5 mL of gas headspace from sample vials was flushed through a 1 mL stainless steel loop. The two gases were then isolated on a HayeSep-D packed column (4 m × 1/8”) and quantified with a flame ionization detector. For water samples, we used Henry’s law with measured headspace pressures and water volumes to convert headspace CH₄ concentrations to dissolved CH₄ concentrations. DIC concentrations were calculated from IRMS results, using known sample aliquot volumes and calibrated mass 44 (CO₂) peak areas.

We determined the dominant CH₄ production pathway in each soil profile using two stable isotope abundance metrics. We performed these analyses on the subset of total samples that were collected as water from the full depth of the thawed soil, where CH₄ isotopic compositions were unlikely to have been affected by oxidation, thus representing the values of CH₄ at the time of production. First, acetate cleavage and CO₂ reduction each yield CH₄ whose δ¹³C values fall within characteristic ranges (Whiticar et al., 1986; Hornibrook & Aravena, 2010). CH₄ produced by acetate cleavage typically has δ¹³C values between −65 and −50‰, whereas CH₄ from CO₂ reduction has δ¹³C values between −110 and −60‰. Second, the apparent fractionation factor (αDIC-CH₄) is a measure of the isotope separation between CH₄ and co-occurring DIC (or CO₂) (Hines et al., 2008, Whiticar et al., 1986; Chanton et al., 2006):

\[
α_{DIC-CH₄} = \frac{δ^{13}C - DIC + 1000}{δ^{13}C - CH₄ + 1000}
\]

αDIC-CH₄ is termed apparent fractionation because it is not the fractionation factor for an individual process, but rather a composite metric describing kinetic fractionation during CO₂ reduction and acetate cleavage (Conrad, 2005) and equilibrium fractionation between carbonate species (Mook et al., 1974). αDIC-CH₄ values vary along a continuum between environments where CH₄ is derived entirely from acetate cleavage and those where CH₄ is entirely a product of CO₂ reduction. Measured fractionation factors range from 1.007 to 1.027 for acetate cleavage and from 1.031 to 1.077 for CO₂ reduction (Conrad, 2005), so αDIC-CH₄ values increase with increased importance of CO₂ reduction.

Statistical analyses

We analyzed CH₄ flux, Rₑₑ, and deep pore water δ¹³C-CH₄ individually using linear mixed-effects models. We selected models based on Akaike information criterion (AIC) values with backward elimination of random and fixed effects, using significance cutoffs of P < 0.1 and P < 0.05 for random and fixed effects, respectively. P-values for random effects were assessed with likelihood ratio tests, and fixed-effect P-values were determined using F-tests based on Satterthwaite’s approximation for denominator degrees of freedom. We calculated variance inflation factors, using a cutoff of 10 to avoid multicollinearity. Following fixed-effect selection, we tested all possible two-way interactions and then performed pairwise comparisons between individual positions, features, or months with Tukey’s honest significant difference test, using degrees of freedom from Satterthwaite’s approximation. All models included polygon and individual profile as possible random effects. For CH₄ flux and Rₑₑ, models, possible fixed effects included polygon type, position, sampling month, top 10 cm
soil moisture, and soil temperature at 10 cm depth. For the model of δ¹³C-CH₄, possible fixed effects were polygon type, position, and month. We conducted all analyses in R version 3.1.0 ‘Spring Dance’ (October 4, 2014), using the packages LME4 (Bates et al., 2014) for linear mixed-effects modeling, lmerTest (Kuznetsova et al., 2014) for significance testing and model selection, and multcomp (Hothorn et al., 2008) for pairwise comparisons.

Because CH₄ fluxes, Rₑₒᶜₑ measurements, and soil temperature measurements had skewed distributions, we log-transformed these variables for all statistical analyses. Model estimates and associated P-values reflect these transformed data. In all figures, however, we present nontransformed data to ease visual interpretation.

Results

CH₄ flux and ecosystem respiration

Surface CH₄ flux displayed clear patterns among polygon types and sampling dates (Fig. 1a, Table 1). When observations were averaged across the July–October 2013 season for each polygon type, mean CH₄ fluxes were 6.8 nmol m⁻² s⁻¹ from FHC polygons and 64 nmol m⁻² s⁻¹ from LC polygons. Averaged across all locations, mean CH₄ fluxes peaked in August, increasing from 37 to 45 nmol m⁻² s⁻¹ from July to August, and then decreased to 25 nmol m⁻² s⁻¹ in September and 18 nmol m⁻² s⁻¹ in October. LC polygons strongly influenced this temporal trend, their CH₄ flux dropping from 85 nmol m⁻² s⁻¹ in July and August to 39 nmol m⁻² s⁻¹ in October. During this period, FHC polygons’ CH₄ flux decreased from only 15 to 3 nmol m⁻² s⁻¹. To identify important predictors of CH₄ flux, we generated a suite of models including all possible combinations of predictor variables: polygon type, position, soil temperature at 10 cm depth, soil moisture from 0 to 10 cm depth, and/or sampling month. We then compared these models' AIC values to select the optimal model. The final model (AIC = 194.4) included polygon type (P < 0.001), position (P < 0.01), soil temperature (P < 0.01), and the interactions between type and position (P < 0.001), type and temperature (P < 0.01), and temperature and position (P < 0.01) as predictor variables (Table 2). Based on AIC values, neither soil moisture nor sampling month was included in the final model. With a significance cutoff of P < 0.05, CH₄ emissions were significantly different between all but three pairs of polygon features (Table 3). These three exceptions were FHC polygon centers and rims (0.51 and 0.54 nmol m⁻² s⁻¹), LC polygon centers and troughs (88 and 87 nmol m⁻² s⁻¹), and LC polygon rims and FHC polygon troughs (17 and 20 nmol m⁻² s⁻¹). Soil temperature, a significant predictor of CH₄ flux, peaked at the time of peak emissions: July in LC polygons and August in FHC polygons (Figs 1 and S1).
Greenhouse gas emissions, classified by polygon type, position, and measurement month. (a) Net CH$_4$ flux in nmol CH$_4$ m$^{-2}$ s$^{-1}$ and (b) ecosystem respiration in μmol CO$_2$ m$^{-2}$ s$^{-1}$ were measured from each feature of 4 flat/high-centered (FHC) and 3 low-centered (LC) polygons. Standard errors were calculated from field replicates.

Table 1. Mean surface greenhouse gas fluxes and deep pore water δ13CH$_4$, averaged across all sampling dates for each polygon type and feature. Flux measurements were made from opaque static chambers in July, August, and September 2013 from 3 low-centered and 4 flat/high-centered polygons. δ13CH$_4$ values were measured from water samples collected from the frost table in August 2012 and July–October 2013.

<table>
<thead>
<tr>
<th>Polygon type</th>
<th>Feature</th>
<th>CH$_4$ flux (nmol m$^{-2}$ s$^{-1}$)</th>
<th>CO$_2$ flux (μmol m$^{-2}$ s$^{-1}$)</th>
<th>δ13CH$_4$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>n</td>
</tr>
<tr>
<td>Low-centered</td>
<td>LC center</td>
<td>88.4</td>
<td>46</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>LC rim</td>
<td>17.4</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>LC trough</td>
<td>87.0</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>All LC positions</td>
<td>64.3</td>
<td>52</td>
<td>36</td>
</tr>
<tr>
<td>Flat/high-centered</td>
<td>FHC center</td>
<td>0.505</td>
<td>1.0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>FHC rim</td>
<td>0.538</td>
<td>0.95</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>FHC trough</td>
<td>19.6</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>All FHC positions</td>
<td>6.75</td>
<td>14</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 2. Fixed effects included in linear mixed-effects models for CH$_4$ flux, CO$_2$ flux, and deep pore water δ13CH$_4$. Optimal models were chosen based on AIC values.
Table 3. Results of Tukey's honest significant difference test for linear mixed-effects models predicting CH$_4$ flux, CO$_2$ flux, and δ13CH$_4$. Each row summarizes a test for differences between two levels of a categorical predictor variable, with P-values < 0.05 indicating significant differences. P-values were calculated using Satterthwaite's approximation for degrees of freedom.

| Model | Fixed effect | DF | F value | Pr > |t| |
|------------------|-------------------------------------|------|---------|-------|-----------|
| CH$_4$ flux (AIC = 168.8) | Polygon type | 56.782 | 54.819 | 6.894e-10** |
| | log$_{10}$(temperature) | 56.405 | 10.729 | 0.001807** |
| | Position | 51.832 | 6.052 | 0.004342** |
| | Type × position | 21.902 | 15.157 | 7.377e-05*** |
| | Type × log$_{10}$(temperature) | 56.180 | 8.634 | 0.004778** |
| | Position × log$_{10}$(temperature) | 56.926 | 5.763 | 0.005256** |
| CO$_2$ flux (AIC = 175.0) | Month | 64.041 | 28.946 | 5.997e-12*** |
| δ13CH$_4$ (AIC = 369.0) | Polygon type | 18.515 | 71.717 | 8.694e-08** |
| | Position | 19.038 | 2.536 | 0.1056001 |
| | Month | 40.126 | 8.906 | 3.034e-05*** |
| | Type × position | 18.529 | 9.856 | 0.0012151** |
| | Month × position | 39.756 | 4.216 | 0.0009954*** |
Table 1: Comparing CO₂ fluxes and \(^{6}\text{CH}_4\) values across different sampling months and locations.

| Model | Predictor variable | Contrasted levels | t value | Pr > |t| |
|-------------|--------------------|---------------------------------|---------|------|---|
| CO₂ flux | Sampling month | August 2013–July 2013 | 1.714 | 0.3251 |
| | Sampling month | September 2013–July 2013 | −2.482 | 0.0727 |
| | Sampling month | October 2013–July 2013 | −7.007 | <0.001***|
| | Sampling month | September 2013–August 2013 | −4.196 | <0.001***|
| | Sampling month | October 2013–August 2013 | −8.739 | <0.001***|
| | Sampling month | October 2013–September 2013 | −4.499 | <0.001***|
| \(^{6}\text{CH}_4\) | Position | Rim–center | 0.427 | 0.90493 |
| | Position | Trough–center | 3.706 | 0.00515** |
| | Position | Trough–rim | 3.365 | 0.01031* |
| | Sampling month | July 2013–August 2012 | 4.253 | 0.00116***|
| | Sampling month | August 2013–August 2012 | 3.407 | 0.01236* |
| | Sampling month | September 2013–August 2012 | 2.979 | 0.03674* |
| | Sampling month | October 2013–August 2012 | 2.846 | 0.05068 |
| | Sampling month | August 2013–July 2013 | −1.389 | 0.63596 |
| | Sampling month | September 2013–August 2013 | −1.178 | 0.76153 |
| | Sampling month | October 2013–July 2013 | −1.431 | 0.60908 |
| | Sampling month | September 2013–August 2013 | −0.012 | 1.00000 |
| | Sampling month | October 2013–August 2013 | −0.231 | 0.99934 |
| | Sampling month | October 2013–September 2013 | −0.190 | 0.99969 |

- Significance codes: 0 ***0.001 **0.01 *0.05 .1.

R\(_{\text{eco}}\) varied temporally, but did not vary significantly among locations (Fig. 1b, Table 1). The optimal model predicting R\(_{\text{eco}}\) (AIC = 175) included only sampling month (P < 0.001) as a significant fixed effect (Table 2). The highest R\(_{\text{eco}}\) fluxes were measured in July and August (1.1 and 1.5 μmol m\(^{-2}\) s\(^{-1}\), not significantly different), then decreased between August and September to 0.71 μmol m\(^{-2}\) s\(^{-1}\) (P < 0.001), and decreased further from September to October to 0.44 μmol m\(^{-2}\) s\(^{-1}\) (P < 0.001) (Table 3). Notably, FHC polygon troughs had high R\(_{\text{eco}}\) in July relative to other sampling months and polygon features (Fig. 1b).
Dissolved gas concentrations

For all polygon features, CH\textsubscript{4} concentrations increased with depth in the soil to high concentrations at the frost table (Fig. 2a). These deep CH\textsubscript{4} concentrations were highest in features with saturated or inundated surface soils: LC polygon centers and troughs of both polygon types. Even in FHC polygon centers and rims, however, where net surface CH\textsubscript{4} emissions were near zero, deep CH\textsubscript{4} concentrations were >100 μM. Particularly in polygon rims and troughs, between-type differences in surface CH\textsubscript{4} fluxes were not mirrored by deep CH\textsubscript{4} concentrations. Instead, patterns in surface flux corresponded more closely with concentrations at 10 and 20 cm. Of the six polygon features examined, the two with lowest net CH\textsubscript{4} fluxes – centers and rims of FHC polygons – had average 10 cm CH\textsubscript{4} concentrations only slightly greater than zero, at 1.3 and 1.0 μM, respectively. Among the remaining four features, the two with highest CH\textsubscript{4} flux – centers and troughs of LC polygons – had high CH\textsubscript{4} concentrations at all depths. Between LC polygon rims and FHC polygon troughs, which had intermediate CH\textsubscript{4} flux rates, LC polygon rims had both higher CH\textsubscript{4} emissions and higher 20 cm CH\textsubscript{4} concentrations. The apparent disconnect between deep dissolved CH\textsubscript{4} and surface emissions suggests that three possible mechanisms underlie differences in net CH\textsubscript{4} fluxes: (1) different CH\textsubscript{4} production rates in shallow soil, (2) different CH\textsubscript{4} transport rates from deep soils to the atmosphere, and/or (3) different oxidation rates in shallow soils.

Figure 2

Concentration depth profiles of (a) dissolved CH\textsubscript{4} and (b) DIC in soil pore water. Results are classified by polygon type, position, and depth from the soil surface. Mean concentrations and standard errors include water samples collected in August 2012 and monthly from July–October 2013 from 4 flat/high-centered and 3 low-centered polygons. Data presented here include water samples only and do not include gas samples.
DIC concentrations varied less than did those of dissolved CH$_4$ (Fig. 2b). DIC sources may include in situ CO$_2$ production by root respiration, aerobic or anaerobic respiration, fermentation, or methanogenesis, or transport to the sampling location by diffusion or advection. DIC sinks are primarily diffusion or advection in soil pore water or CH$_4$ production via CO$_2$ reduction. Mean DIC concentrations generally increased with depth, but in FHC polygon centers, LC polygon centers, and LC polygon rims, the highest DIC concentrations were measured at 20 cm, indicating higher CO$_2$ production at 20 cm than at the frost table.

Methane production pathways

13C abundances in CH$_4$ and DIC from deep pore water were used to compare CH$_4$ production pathways among polygon types and positions (Fig. 3), following published approaches (Whiticar et al., 1986; Hornibrook et al., 1997; Conrad, 2005; Hornibrook & Aravena, 2010). Because these samples were collected from deep, saturated soils with limited oxygen availability (Lipson et al., 2012), their δ^{13}C values reflect CH$_4$ at the time of production, without isotopic fractionation due to bacterial aerobic CH$_4$ oxidation. Similarly, we assumed anaerobic CH$_4$ oxidation had a negligible effect on measured CH$_4$ isotopes. While anaerobic CH$_4$ oxidation has been demonstrated in terrestrial soils, concurrent CH$_4$ production is thought to proceed far more rapidly, particularly in highly methanogenic soils (Blazewicz et al., 2012; Gupta et al., 2013). Additionally, we assumed measured δ^{13}C values of CH$_4$ were not affected by kinetic fractionation during transport through the soil profile. Ebullition and advection through plant aerenchyma tissues are nonfractionating processes, but isotopic fractionation may occur during diffusive transport through plants (Popp et al., 1999; Chanton, 2005; Hornibrook, 2009). It is possible that such fractionation may have occurred, isotopically enriching residual soil CH$_4$. However, studies have shown that this fractionation occurs primarily within the plant tissues themselves, creating a δ^{13}C gradient between heavier CH$_4$ within plant aerenchyma and lighter CH$_4$ emitted from plant tissues to the atmosphere (Chanton et al., 1992a,b; Tyler et al., 1997), with little effect on soil pore space δ^{13}C-CH$_4$.

![Figure 3](Open in figure viewer PowerPoint)

δ^{13}C of CH$_4$ in water samples collected from the frost table. Data are classified by polygon type and position and include all sampling dates from August 2012 and July–October 2013. Box plots indicate median and first and third quartiles, with whiskers extending to the farthest values within 1.5 times the upper and lower quartiles. Outliers beyond this range are shown as points.
Including all sampling dates, deep pore water δ^{13}C-CH$_4$ values were 17‰ enriched from LC polygons relative to FHC polygons ($P << 0.001$), and significant interactions were found between polygon type and position ($P < 0.01$) and between position and sampling month ($P < 0.001$). Between-type differences in δ^{13}C-CH$_4$ were most pronounced for centers and least pronounced for troughs (Table 2), and δ^{13}C-CH$_4$ was significantly higher in all 2013 months relative to August 2012, but did not change significantly over the 2013 season (Table 3).

Including all sampling dates, 12 of 12 samples from LC polygon centers (mean δ^{13}C-CH$_4$ = $-52.3‰$) and 8 of 10 samples from LC polygon troughs (mean δ^{13}C-CH$_4$ = $-59.1‰$) had δ^{13}C-CH$_4$ values within the range characteristic of acetate cleavage, −65 to −50‰ (Table 1) (Whiticar et al., 1986; Hornibrook & Aravena, 2010). In contrast, 10 of 10 samples from FHC polygon centers (mean δ^{13}C-CH$_4$ = $-79.8‰$), 8 of 8 samples from FHC polygon rims (mean δ^{13}C-CH$_4$ = $-79.7‰$), and 6 of 8 samples from FHC troughs (mean δ^{13}C-CH$_4$ = $-68.3‰$) had δ^{13}C-CH$_4$ values within the range typical of CO$_2$ reduction, −110 to −60‰ in an ecosystem with C$_3$ vegetation. δ^{13}C-CH$_4$ values from LC polygon rims (mean δ^{13}C-CH$_4$ = $-61.3‰$) were divided among the plausible ranges of both pathways, with six samples between −50 and −65‰ and 4 samples below −65‰, with both methanogenic processes likely operating concurrently (Whiticar, 1999).

The difference in δ^{13}C between co-occurring CH$_4$ and DIC, referred to as the apparent fractionation factor, $\alpha_{DIC-CH4}$, provides an additional line of evidence that the dominant methanogenic pathways differed between polygon types. As shown in cross-plots of δ^{13}C-DIC vs. δ^{13}C-CH$_4$ (Fig. 4), $\alpha_{DIC-CH4}$ values displayed the same patterns as δ^{13}C-CH$_4$, with acetate cleavage more important in LC than in FHC polygons. $\alpha_{DIC-CH4}$ values from polygon centers and rims showed clear separation between LC and FHC polygons, with values clustering around 1.07 for FHC polygons and around 1.04–1.05 for LC polygons. Troughs displayed some clustering of $\alpha_{DIC-CH4}$ values for each polygon type, but this separation between $\alpha_{DIC-CH4}$ ranges of LC and FHC polygons was smaller than in centers and rims.
Cross-plots showing δ¹³C-DIC and δ¹³C-CH₄ of individual soil pore water or gas samples. Dark triangles are flat/high-centered (FHC) polygons, and light circles are low-centered (LC) polygons. Dashed diagonal lines show equal fractionation between CH₄ and co-occurring DIC, with the fractionation factor (α) decreasing from top left to bottom right of each panel.

Figure 4

Apparent fractionation factors between CH₄ and CO₂ below 1.055 are generally thought to indicate acetate cleavage, while values above 1.065 result from CO₂ reduction (Conrad, 2005). In this analysis, δ¹³C was measured from bulk DIC rather than CO₂. Because of equilibrium isotopic fractionation between dissolved CO₂ and bicarbonate (Mook et al., 1974), our calculated αDIC-CH₄ values may thus be slightly higher than values calculated from δ¹³C-CO₂. At the acidic pH range typical of this study site (Zona et al., 2011), H₂CO₃ is the dominant carbonate species, so we would expect only small ¹³C differences between CO₂ and total DIC. Even so, we conducted an empirical sensitivity analysis to assess the potential for carbonate equilibrium fractionation to influence αDIC-CH₄. We measured both δ¹³C-DIC and vial headspace δ¹³C-CO₂ from a subset of deep pore water samples, finding that isotope separation ranged from 0.2 to 5.7‰. To account for the maximum possible influence on αDIC-CH₄, we applied a 5.7‰ correction to δ¹³C-DIC values to generate a conservative uncertainty band, which decreased calculated αDIC-CH₄ values by 0.0065. Including this range of error, αDIC-CH₄ values above 1.059 can be interpreted to indicate CO₂ reduction. With these considerations, we still found acetate cleavage...
dominated all LC polygon features. CO₂ reduction dominated in FHC polygons features, with acetate cleavage more important in FHC polygon troughs than in other FHC polygon features.

δ¹³C depth profiles

Depth profiles of δ¹³C-CH₄ displayed spatial patterns similar to those of surface fluxes (Fig. 5). δ¹³C abundance in pore space CH₄ increased toward the soil surface in four of the six polygon features, a depth trend that would be expected from CH₄ oxidation in shallow soil layers. Among these four features, the difference in mean δ¹³C-CH₄ between 10 cm and the frost table was greatest in FHC polygon rims (Δδ¹³C = 18.4‰) and FHC polygon centers (Δδ¹³C = 13.1‰), where surface CH₄ flux rates were lowest. By comparison, LC polygon rims and FHC polygon troughs had both lower surface CH₄ fluxes and lower δ¹³C-CH₄ depth gradients (Δδ¹³C = 7.9 and 5.5‰, respectively). The only two features that did not display this δ¹³C-CH₄ depth gradient were those with the highest surface CH₄ fluxes: LC polygon centers and LC polygon troughs. There, the highest δ¹³C-CH₄ values occurred at 20 cm depth. We note that these two features were inundated at all times, with mean water depths of 8.0 ± 2.1 and 6.7 ± 1.6 cm, respectively (data not shown), so their 10 cm samples were collected near the sediment surface or from standing water.

![Figure 5](Open in figure viewer)

Depth profiles of δ¹³CH₄ within the soil pore space. Data are classified by polygon type, position, and depth from the soil surface. Shallow samples were collected from 10 cm below the surface, and deep samples were collected from the frost table. The middle depth increment includes samples collected from 20 cm below the surface if total thaw depth was >20 cm. If a soil profile's thaw depth was ≤20 cm, any sample deeper than 10 cm was classified as deep.

Discussion

High-latitude soils are a large source of atmospheric CH₄, (Whalen & Reeburgh, 1992; McGuire et al., 2012; Mastepanov et al., 2013). Current Earth system models project that Arctic tundra CH₄ emissions will increase...
with climate change (Koven et al., 2011; Lawrence et al., 2015; Schuur et al., 2015). However, landscape-scale processes may influence CH₄ emissions in ways that these models are only beginning to represent. To better understand the relationship between landscape change and CH₄ dynamics, we combined measurements of surface CH₄ flux with subsurface CH₄ concentration and δ¹³C profiles to assess (1) how CH₄ production and consumption processes vary with permafrost degradation and microtopography, and (2) how these subsurface processes relate to net CH₄ and CO₂ fluxes. Beyond confirming that CH₄ fluxes from wetter, LC polygons are higher than from drier, FHC polygons, we found that the dominant CH₄ production pathway differed between polygons types, with acetate cleavage more important in high-production locations. In addition, CH₄ emissions decreased with permafrost degradation, beyond the degree that would be expected from moisture changes alone.

CH₄ fluxes were on average ~10 times higher from LC polygons than from FHC polygons (Table 1). While soil moisture (Fig. S2) mirrored the positive moisture–CH₄ relationship that has been documented in Arctic polygon tundra (Sachs et al., 2010; Kim, 2015), other tundra types (Torn & Chapin, 1993; Christensen et al., 1995; McCalley et al., 2014), and thermokarst landscapes (Walter et al., 2007; Desyatkin et al., 2009), the differences in CH₄ flux between polygon types were greater than variations in moisture or temperature alone could explain. Specifically, we found that polygon type, geomorphic position, and soil temperature were the only significant main effects in our optimal model of CH₄ flux (Table 2). Soil moisture did not emerge as a significant predictor variable, but this result does not imply that soil moisture and CH₄ flux were unrelated. Instead, the predictor variables polygon type and position accounted for soil moisture information, along with additional explanatory power that modified the soil moisture–CH₄ flux relationship. Pairwise comparisons between positions within the two polygon types highlight the kind of unexpected feature-level differences that underlie this model result (Table 3). Rims from LC vs. FHC polygons had a 30-fold difference in mean surface CH₄ flux, in spite of comparable temperatures, thaw depths, and moisture contents (Figs S1 and S2). Similarly, FHC polygon troughs had only ~20% the CH₄ emissions of LC polygon troughs, with nearly equal soil moisture. In contrast to CH₄ flux, we found that surface CO₂ flux, equivalent to Rₑₒₑ, depended primarily on sampling month, a variable that captures temporal changes in temperature, plant productivity, and microbial community. The Rₑₒₑ model did not find polygon type or position to be significant predictor variables, indicating that carbon availability and turnover did not map strongly to microtopography or permafrost degradation and thus cannot account for observed CH₄ flux variations.

The dominant CH₄ production pathway differed between high- and low-emission areas. Based on δ¹³C values, CH₄ production in locations with high surface emissions (e.g., LC polygons and FHC troughs) occurred primarily by acetate cleavage, whereas production in areas with low emissions (FHC polygons) was dominated by CO₂ reduction (Fig. 3, Table 2). The relationship between surface CH₄ flux and deep pore water δ¹³C values held not only between polygon types but also among positions within each polygon type. We observed the highest and lowest δ¹³C values in features with the greatest and least CH₄ emissions, respectively (LC polygon centers and troughs vs. FHC polygon centers and rims).

This analysis assumes that measured δ¹³C values reflect in situ production, with most sampled CH₄ produced in the soil column, not imported by lateral transport. Supporting evidence includes low flow rates
(Liljedahl et al., 2012) relative to in situ cycling rates within LC polygons and low CH₄ concentrations in the runoff of FHC polygon centers.

In addition to our observed relationship between surface CH₄, flux rates and subsurface δ¹³C-CH₄ values, several lines of evidence suggest that acetate cleavage is correlated with higher production rates. Acetate cleavage dominates methanogenesis when organic matter is abundant and surface fluxes are high (Galand et al., 2010; Hershey et al., 2014), whereas CO₂ reduction is more important in systems with low organic matter inputs, abundant terminal electron acceptors, and low surface flux rates, such as sulfate-rich marine sediments (Oremland & Taylor, 1978; Crill & Martens, 1983; Whiticar et al., 1986). Similarly, laboratory incubations of high-latitude soils have found higher rates of CH₄ production when acetate cleavage rather than CO₂ reduction dominates (Kotsyurbenko et al., 2007; Liebner et al., 2015). Moreover, theoretical reaction stoichiometries also predict acetate cleavage will dominate CH₄ production unless electron flow to methanogens is limited by competition or biochemical inhibition (Conrad, 1999; Ye et al., 2012; Bridgham et al., 2013). Applied to our results, this relationship between CH₄ production rate, CH₄ flux, and δ¹³C-CH₄ suggests that CH₄ production rate was an important control on surface CH₄ flux. In locations with high surface CH₄ emissions and less negative δ¹³C-CH₄ values such as LC polygon centers and troughs, CH₄ was produced rapidly via acetate cleavage. In FHC polygon centers and rims, acetate oxidation using dissolved oxygen, iron (III), or sulfate may have limited acetate availability to methanogens, leading to low rates of methanogenesis by CO₂ reduction. Thus, we infer that a direct control on net CH₄ emissions, CH₄ production rate, maps predictably to polygonal tundra features.

Previous studies have noted that as much as 90% of CH₄ production is oxidized in the soil profile (King, 1992; Le Mer & Roger, 2001), so biotic oxidation can be an important determinant of surface CH₄ flux rates. Based on subsurface CH₄ concentrations, flux rates, and δ¹³C-CH₄ depth profiles (e.g., Figs 3 and 5), we find that oxidation plays an important role in some but not all geomorphic positions, with the greatest degree of oxidation in FHC polygon centers and rims and the least influence of oxidation in LC polygon centers and troughs. Deep subsurface CH₄ concentrations indicate that substantial methanogenesis occurred at all locations, even those with minimal net surface emissions. Mediating the relationship between this subsurface production and surface emissions, steep depth profiles of δ¹³C-CH₄ show that CH₄ oxidation attenuated this gross production in low-emission sites.

While other studies have used δ¹³C-CH₄ depth profiles to derive quantitative estimates of CH₄ oxidation, we chose to use this dataset to infer qualitative differences in CH₄ oxidation (Fig. 5). If the δ¹³C-CH₄ of production and the oxidation fractionation factor were known or assumed, δ¹³C-CH₄ depth profiles could be used to quantitatively calculate fractional CH₄ oxidation (Liptay et al., 1998; Popp et al., 1999; Corbett et al., 2013). In high-latitude wetlands, however, methanogenic pathway and thus its isotopic signature can change with depth, due to shifts in substrate availability, temperature, and pH (Hornibrook et al., 1997; Popp et al., 1999; Hornibrook & Aravena, 2010). Further, documented fractionation factors for CH₄ oxidation range from 1.003 to 1.031, varying by 0.011 within tundra soils alone (King et al., 1989; Happell et al., 1994; Chanton et al., 2005).

Synthesizing isotope, flux, and moisture data, two clear regimes emerge relating soil moisture, CH₄ production, and CH₄ oxidation to net CH₄ emissions (Fig. S3). First, hydrologically isolated features with persistently low soil
moisture, FHC polygon centers and rims, were dominated by CO₂ reduction and had steep δ¹³C-CH₄ depth gradients, indicating that both low production and high oxidation contributed to low surface emissions. Second, persistently inundated features, LC polygon centers and troughs, were dominated by acetate cleavage with small or negative δ¹³C-CH₄ depth gradients. There, high CH₄ production and low CH₄ oxidation yielded high surface emissions. The two remaining features, FHC polygon troughs and LC polygon rims, do not fit clearly into either of these regimes. With roughly equal surface CH₄ emissions but clear soil moisture differences, these features had notable differences in CH₄ production and CH₄ oxidation. Specifically, LC polygon rims had higher deep δ¹³C-CH₄ values and steeper δ¹³C-CH₄ profiles than did FHC polygon troughs, indicating higher rates of both production and oxidation. With comparable, moderate CH₄ fluxes but different soil moisture contents and subsurface processes, these are key locations in the landscape where models based on soil moisture might produce the wrong results, highlighting the importance of other upstream controls on CH₄ production and oxidation.

The two proximate controls on surface CH₄ flux – subsurface CH₄ production and oxidation – are influenced by upstream controls that link landscape processes to microbial activity. Two such upstream controls stand out as particularly important for the relationship between permafrost degradation and CH₄ emissions. First, vegetation influences CH₄ production and oxidation through substrate availability, gas transport, and its influence on subsurface pH, temperature, active layer depth, and other factors (Popp et al., 1999; Chanton, 2005), as seen in a positive relationship between surface CH₄ flux and sedge cover or vegetation stature in wet tundra (Schimel, 1995; Ström et al., 2003; Von Fischer et al., 2010; Olefeldt et al., 2013). Based on vegetation surveys adjacent to our plots (Table S1), we find the same qualitative relationship between surface CH₄ emissions and plant community composition or canopy height. In particular, percent cover of Carex aquatilis, a sedge with aerenchyma known to transport CH₄ (Popp et al., 1999; Ström et al., 2003; Chanton, 2005), has a spatial pattern matching our stable isotope and surface flux measurements. Carex cover and vegetation canopy height are high in LC polygon centers and troughs, intermediate in LC polygon rims and FHC polygon troughs, and low in FHC polygon centers and rims. The observed transition to lower-stature, less Carex-dominated vegetation across the permafrost degradation gradient suggests that vegetation changes may play an important role in determining the response of CH₄ emissions to future warming-induced landscape changes.

A second upstream control, soil oxygen status, simultaneously controls substrate availability to methanogens (Chapin et al., 2011), electron acceptor oxidation state (Cappellen & Wang, 1996), and CH₄ consumption rate (Mancinelli, 1995). In unsaturated soils such as FHC polygon centers and rims, oxygen is readily available, inhibiting CH₄ production and promoting oxidation. In saturated soils, the abundance of dissolved oxygen and other electron accepting species depends on the combined influence of hydrology and geochemistry (Fiedler et al., 2004; Herndon et al., 2015b). Differences in hydrology and redox-active geochemical species between microtopographic features (Newman et al., 2015) correspond to the CH₄ process differences we observed. Important redox indicators, pore water dissolved oxygen (DO) and sulfate concentrations are higher in high-centered polygon centers and troughs than in any low-centered polygon feature (Newman et al., 2015), and modeled runoff rates from high-centered polygons are nearly twice as high as from...
low-centered polygons (Liljedahl et al., 2012). These geochemical and hydrological factors may explain the low CH₄ emissions from FHC troughs relative to other saturated or inundated features. Higher flow into high-centered polygon troughs likely imports DO, which is used to oxidize organic substances, iron, and CH₄ produced at depth where more favorable electron acceptors are depleted. (Iron in particular has been shown to be an important redox control on CH₄ production at this site (Herndon et al., 2015; Miller et al., 2015), whereas sulfate is less likely to play an important role in anaerobic decomposition at this site because it is present only in low abundance.) Thus, we hypothesize that through its influence on redox, hydrology is an important control on CH₄ production and oxidation, leading to differences in CH₄ emissions among saturated polygon features.

We have shown that CH₄ production, CH₄ oxidation, and net CH₄ emissions depend not only on soil moisture and temperature, but also on microtopographic position along a permafrost degradation gradient. Importantly, redox status and vegetation can vary among sites of similar inundation, influencing substrate availability to methanogens and CH₄ availability to methanotrophs. Indeed, as thermokarst affects hydrology and geochemistry through physical subsidence, it also influences vegetation, with rapid changes in species dominance following drainage and subsidence events (Camill et al., 2001; Christensen et al., 2004; Schuur et al., 2007). In addition, soil carbon chemistry and stocks vary among polygon types and features (Ping et al., 1998; Bockheim et al., 1999; Minke et al., 2009; Zona et al., 2011), as thaw-induced erosion redistributes stocks and alters conditions for organic matter accumulation (Anthony et al., 2014; Godin et al., 2014).

The geomorphic consequences of permafrost degradation depend on the quantity and organization of subsurface ice (Ulrich et al., 2014), overall topography (Czudek & Demek, 1970; Schuur et al., 2007; Godin et al., 2014), and other site-specific properties (Jorgenson et al., 2013). In some instances, permafrost thaw creates lakes or wetlands (Christensen et al., 2004; Wickland et al., 2006; Sannel & Kuhry, 2011; Johnston et al., 2014; Klapstein et al., 2014; Natali et al., 2015), but in other instances it drains these features (Yoshikawa & Hinzman, 2003; Smith, 2005; Schuur et al., 2007). The former of these two outcomes has received more attention with respect to CH₄ emissions, but both have important – and different – implications. Whereas research in other Arctic tundra types has found increased CH₄ emissions with permafrost thaw due to increased inundation following subsidence (Wickland et al., 2006; Johnston et al., 2014; McCalley et al., 2014; Natali et al., 2015), we report opposite trends in both CH₄ flux and water status. Overall, the influence of warming on local CH₄ emissions will depend strongly on the interaction between temperature and hydrology. This interaction may change with time; short-term thaw-driven CH₄ flux increases may be followed by longer-term drainage and drying. Given uncertainties regarding polygon succession processes (Ellis et al., 2008), we cannot predict the degree to which climate warming and permafrost thaw will shift low-centered polygon terrain to drained, flat-centered and/or high-centered polygons. It is known, however, that such a directional change is possible, shifting polygon landscapes to drier, more high-centered equilibria. This change has recently been observed (Jorgenson et al., 2006; Fortier et al., 2007; Godin et al., 2014), suggesting that continued warming should drive more such landscape transitions. To illustrate the potential magnitude of such changes, if 25% of our study site area's low-centered polygons transitioned to flat-centered and high-centered
polygons, a change consistent with projected changes in Alaska (Jorgenson et al., 2006), our results imply a 19% decrease in local CH₄ emissions.

In conclusion, our results demonstrate a local reduction in CH₄ emissions with permafrost degradation, counter to most published studies. We find that CH₄ production and surface flux depend categorically on polygon type, even after accounting for soil moisture differences. These findings show that changes in Arctic CH₄ emissions will be site-specific in sign and magnitude, depending on local geochemistry, topography, and patterns of subsidence. Changes in subsurface ice influence hydrological flows, geochemical redistribution, and physical soil carbon uplift, which in turn affect microbial community and activity as well as vegetation, substrate quantity, accessibility, and chemistry, and electron acceptor availability (Christensen et al., 2004; Fiedler et al., 2004; Fortier et al., 2007; Lantz et al., 2009; Hodgkins et al., 2014; McCalley et al., 2014). These processes control CH₄ emissions directly and indirectly, yet are rarely explicit in conceptual frameworks for sampling and understanding CH₄ fluxes or in numerical models that represent them. Despite common predictions for increased Arctic CH₄ emissions, this study documents a landscape-scale mechanism by which the widespread permafrost thaw predicted throughout the Arctic could result in localized decreases in CH₄ emissions.

Acknowledgments

The Next-Generation Ecosystem Experiments in the Arctic (NGEE Arctic) project is supported by the Biological and Environmental Research program in the U.S. Department of Energy (DOE) Office of Science. We thank Stan Wullschleger for guidance, Bryan Curtis, Oriana Chafe, and Melanie Hahn for field assistance, and the Ukpeagvik Inupiat Corporation for logistical support.

References

