Title
PRODUCTION AND DECAY OF *(1820)*

Permalink
https://escholarship.org/uc/item/92h5v1x8

Authors
Smith, Gerald A.
Lindsey, James S.
Button-Shafer, Janice
et al.

Publication Date
1964-11-19
University of California

Ernest O. Lawrence Radiation Laboratory

PRODUCTION AND DECAY OF $\Xi^*(1820)$

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PRODUCTION AND DECAY OF $\Xi^*(1820)$

Gerald A. Smith, James S. Lindsey, Janice Button-Shafer, and Joseph J. Murray

Lawrence Radiation Laboratory
University of California
Berkeley, California

November 30, 1964

ERRATUM

For footnote 7 substitute the following, so that it reads:

7. N. Byers and S. Fenster, Phys. Rev. Letters 11, 52 (1963). The formalism of Prof. Charles Zemach (Department of Physics, University of California, private communication) as well as an extension of the Byers-Fenster treatment can be applied to the decay process $\Xi^*(1820) \rightarrow \Xi^*(1530) + \pi$. Large background and statistical limitations (with K^* effects removed) make conclusions difficult; however, results are found to be consistent with the $D_{3/2}$ (or $F_{5/2}$, etc.) possibility indicated by the analysis of other decay channels discussed in the text.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
AEC Contract No. W-7405-eng-48

PRODUCTION AND DECAY OF $^8\pi(1820)$

Gerald A. Smith, James S. Lindsey, Janice Button-Shafer, and Joseph J. Murray

November 19, 1964
Production and Decay of $\Xi^*(1820)$

Gerald A. Smith, James S. Lindsey, Janice Button-Shafer, and Joseph J. Murray

Lawrence Radiation Laboratory
University of California
Berkeley, California

November 19, 1964

In a previous Letter we presented evidence for the existence of a $S=-2$ baryon resonant state produced in K^-, p collisions at incident momenta of 2.45 to 2.70 GeV/c. The mass of the state was reported to be 1810 ± 10 MeV with a full width of $\Gamma \sim 70$ MeV. Based on the observation of decay of this state into $\Lambda^0 K^-$, it was concluded that the isospin is one-half. Subsequently, the Amsterdam-Paris-Saclay group (APS), analyzing K^-, p interactions at 3 GeV/c in the 84-cm Saclay hydrogen bubble chamber, reported a significant enhancement in their $\Lambda^0 K^-$ mass distributions at a mass of 1820 ± 7 MeV and interpreted this as confirmation of the Berkeley report. However, the APS group pointed out certain differences between their data and the Berkeley data related to the existence of alternate decay modes of the resonance. The purpose of this Letter is three-fold: (1) to report our final data, in some cases a factor of two to three greater in statistics, establishing the best parameters of the resonance; (2) to relate these results to those of the APS group; and (3) to present our results on the spin and parity of the state based on the Byers-Fenster method of analysis of the angular decay and polarization distributions of the particle.

Production of $\Xi^*(1820)$

In Fig. 1 we present our data on the $\Lambda^0 K\bar{K}$ final states. The Dalitz plot contains one point per event for each of the $\Lambda^0 K^0 \bar{K}^0$ and $\Lambda^0 K^+ \bar{K}^-$ final
The data are an admixture of events from 2.45-, 2.55-, 2.63-, and 2.70-BeV/c incident momenta. Although the $\phi^0(1020)$ band on the plot is the most striking feature of the data, a broad vertical band from $M^2(\Lambda\bar{K}) \approx 3.20$ BeV2 (1790 MeV) to $M^2(\Lambda\bar{K}) \approx 3.40$ BeV2 (1845 MeV) is observed. This effect is more clearly demonstrated on the mass projections. Both the $\Lambda (K^0$ and $\bar{K}^0)$ and ΛK^- mass projections show a clear peak centered near 1820 MeV with an apparent width of $\Gamma \approx 60$ MeV. In each of the mass projections, events in the $\phi^0(1020)$ band have been removed. Although the $\Lambda K^0\bar{K}^0$ events are not useful in establishing the strangeness of the resonance because of the indistinguishability of the K^0 and \bar{K}^0, the ΛK^- enhancement unambiguously establishes the strangeness to be -2. Either enhancement is sufficient to establish the isospin to be $1/2$. The combined data give a mass of 1817 ± 7 MeV.

Alternate decay modes of the $\Xi^*(1820)$ consistent with the established quantum numbers of $\Lambda\bar{K}$ would include configurations of the type (1) $\Lambda\bar{K}$ + pions, (2) $\Sigma\bar{K}$ (+ pions), and (3) $\Xi\pi$ (+ pions). Reactions including (1) and (2), although sometimes weak statistically, show no enhancements near 1820 MeV. Turning to (3), we present data relevant to the $\Xi^*(1820)$ in Fig. 2. We confine our attention to final states including $\Xi K\pi\pi$ in Fig. 2(a) and $\Xi K\pi$ in Fig. 2(b, c). The 4 body events are observed to fall mainly into four classes: $\Xi^*(1530)K\pi$, $\Xi^*(1530)K^{*}(890)$, $\Xi\pi K^*(890)$, and $\Xi K\pi\pi$. Figure 2(a) shows the combined $\Xi^*(1530)\pi$ and $\Xi\pi\pi$ mass distribution indicating those events that also include a $K^*(890)$. Having subtracted the $K^*(890)$ events (shaded), we observe an enhancement at ≈ 1820 MeV. Clearly this enhancement is not statistically strong enough to independently establish the $\Xi^*(1820)$ resonance, but in light of previous $\Lambda\bar{K}$ distributions, the simplest interpretation of the enhancement is an alternate decay mode of the $\Xi^*(1820)$. The three final states discussed
here $\Xi \pi^0 K^0 \pi^+ \pi^-$, $\Xi^- K^+ \pi^+ \pi^-$, and $\Xi^- K^0 \pi^+ \pi^0$—are the only 4-body final states including a Ξ which can be unambiguously fitted kinematically. In Fig. 2(b, c) we have plotted the $\Xi \pi$ mass distributions for the $\Xi^- K^+ \pi^0$ and $\Xi^- K^0 \pi^+$ final states. Events that also include a $K^*(890)$ are shaded. The $\kappa(726)$ appears not to play a significant role in these data. In each of the distributions there is a significant enhancement of events near 1820 MeV. We note that in both cases the enhancement appears to be somewhat broader (~ 100 MeV) than observed in the $\Lambda \bar{K}$ case. However, as is common in the case of broad resonances our interpretation of the background has influenced a determination of the resonance width, and this plus perhaps statistical fluctuations within the peaks themselves, may explain this effect.

Table I summarizes the reactions presented here and gives important cross sections and decay rates for the production and decay of $\Xi^*(1820)$. Based on these numbers, we find that the relative rates of $\Xi^*(1820)$ decay are $(\Lambda^0 K^-): (\Xi^- \pi): (\Xi^*(1530) \pi)^0$: $\Xi \pi \pi: 11.4 \pm 2.6 : 10.8 \pm 2.7 : 3.0 \pm 1.5 : > 1.1 \mu b$. These cross sections are exclusive of events that may be a $\phi(1020)$ or $K^*(890)$. Because our knowledge of the path length for $\Lambda^0 K^+ K^-$ is approximate, our cross section for $(\Lambda^0 K^-)$ may be systematically in error by $\pm 15\%$. The $\Lambda K \pi$, ΣK, and $\Sigma K \pi$ modes apparently play no significant role in the decay of $\Xi^*(1820)$. To obtain the total charge-independent cross section for $\Xi \pi$ and $\Xi^*(1530) \pi$, we have assumed an isospin of 1/2 for both $\Xi^*(1820) \pi$ and $\Xi^*(1530) \pi$. No straightforward correction for unobserved $\Xi \pi \pi$ modes is available, thus we quote only a lower limit.

In conclusion, in comparison with the APS group's results, we note that our cross section of $11.4 \pm 2.6 \mu b$ for $\Lambda \bar{K}$ agrees well with their value of $12 \pm 5 \mu b$ at 3 BeV/c. Our value of $2.9 \pm 1.5 \mu b$ for $\Xi^*(1530) \pi$ also agrees with
the APS value of $< 6.0 \pm 2.5 \mu b$. However, we do disagree on the strength of the $\Xi\pi$ mode, obtaining $10.8 \pm 2.7 \mu b$, compared with $< 1.2 \pm 0.5 \mu b$ for the APS group. This disagreement may result from (1) statistics — our sample includes 737 $\Xi^- K^0 \pi^+$ events compared to 129 for the APS group, (2) in our analysis, an overgenerous estimate of the $\Xi\pi$ contribution over the background, or (3) our possible observation of an energy-dependent distortion of the decay amplitudes. Lastly, we point out enhancements in the $\Lambda^0 (K^0$ and \bar{K}^0) and $\Xi^- K^0$ mass distributions at 1705 MeV [Figs. 1 and 2(c)]. The possible existence of yet another Ξ^* state with this mass will be pursued in future experiments.

Spin and Parity of $\Xi^*(1820)$

A resonance of spin J can be completely described in its initial spin state by $1/2(2J + 1)^2 - 1$ independent parameters; these can be determined experimentally from the angular distribution of decay and from the angular dependence of each of the decay fermion's polarization components. The complexity of these distributions determines the minimum J value that can be assigned to the resonance. The intrinsic parity of the resonance relative to the decay fermion determines the orbital angular momentum permitted for the final state; the particular l wave ($J + 1/2$ or $J - 1/2$) has no effect on the distributions of longitudinal and transverse components of polarization except determination of algebraic signs in the latter.

The $\Xi^*(1820) \to \Xi^- \pi^+$ and $\Lambda\bar{K}^0$ decays have been analyzed by applying the Byers-Fenster formalism.\(^7\) Initial spin-state parameters such as $t_{10} = \langle S_z \rangle [J(J+1)]^{-1/2}$ and $t_{20} = \langle 3S_z^2 - S^2 \rangle$ were evaluated from decay distributions. These were used to form χ^2's testing spin and parity:
\[\chi^2_J = \sum_{L>2J} \sum_M t_{LM} G^{-1}_{LM,L'M'} t_{L'M'} \]

\[\chi^2_P = \sum_{\text{odd } L=1}^{2J} \sum_M (t_{LM}^{\parallel} - t_{LM}^{\perp}) H^{-1}_{LM,L'M'} (t_{L'M'}^{\parallel} - t_{L'M'}^{\perp}) \].

Here \(G \) and \(H \) are the appropriate error matrices, and \(t^{\parallel} \) and \(t^{\perp} \) are obtained from coefficients of longitudinal and transverse polarization components, respectively.

Results on spin and parity are given in Table II. It can be seen that the resonant (plus background) events require a spin greater than 1/2 in all channels, but do not require a spin greater than 3/2 except in the \(\Delta \bar{K}^0 \) channel (where the small number of events with \(\phi \) subtracted could be responsible for large values of spin \(\chi^2 \)). The resonant events in all channels give better \(\chi^2 \) values for \(3/2^- \) than for \(3/2^+ \) parity. The background events also require a "spin" greater than 1/2, but perhaps not so firmly as do the resonant events; parity discrimination for the background is almost nonexistent, with slightly lower \(\chi^2 \) values for \(3/2^+ \). The evidence here is exceedingly weak because of the large background in the \(\Xi^*\) (1820) decay channels, but may point to \(D_{3/2}^- \) as the state of the \(\Xi^*\) (1820). (We assume the \(\Xi \) and \(\Lambda \) parities to be the same.)

The authors wish to acknowledge the skillful contributions of the bubble chamber and scanning and measuring groups. Special thanks go to Mrs. Paul Grannis and Mr. William Donovan for their aid with data reduction. We also acknowledge the continuing support of Professor Luis W. Alvarez.
† Work done under the auspices of the United States–Atomic Energy Commission.

1. G. A. Smith, J. S. Lindsey, J. J. Murray, J. B. Shafer,
A. Barbaro-Galtieri, O. I. Dahl, P. Eberhard, W. E. Humphrey,

2. J. Badier, M. Demoulin, J. Goldberg, B. P. Gregory, P. Krejbich,
C. Pelletier, M. Ville, R. Barloutaud, A. Leveque, C. Louedec,
J. Meyer, P. Schlein, A. Verglas, E. S. Gelsema, J. Hoogland,
J. C. Kluyver, A. G. Tenner, paper presented at the International

3. The $\Lambda^0 K^0 \bar{\Lambda}^0$ events are derived from zero-prong, two-vee and zero-
prong, three-vee topologies where a lambda or K^0_1 is observed as a
vee (i.e., $\Lambda^0 K^0_1$, $K^0_1 K^0_1$, or $\Lambda^0 K^0_1 K^0_1$ observed). $\Lambda K^+ K^-$ events come
from two-prong, one-vee events.

4. Reference 1 indicates the basic characteristics of the $\Xi K \pi \pi$ final states
and therefore they are not discussed here.

5. Three other 4-body final states are possible: $\Xi^- K^+ \pi^0 \pi^0$, $\Xi^0 K^0 \pi^0 \pi^0$,
and $\Xi^0 K^0 \pi^- \pi^0$. These cannot be fitted directly, due to the presence of
two neutral pions. Of the three reactions used in the analysis, the
$\Xi^- K^+ \pi^- \pi^-$ and $\Xi^- K^0 \pi^+ \pi^-$ events chosen always include at least one vee,
and the $\Xi^0 K^0 \pi^+ \pi^-$ events are required to have both a visible lambda and
K^0_1.

6. Two other 3-body final states are possible: $\Xi^0 K^+ \pi^-$ and $\Xi^0 K^0 \pi^0$. The
latter is not directly fitted, and the former may be fitted but is highly
ambiguous with interpretations involving an incident negative pion.
in the beam. Beam contamination of negative pions is estimated at
\(\sim 10\% \).

Table I. Experimental production and decay rates of Ξ^* (1820) for 3- and 4-body final states at incident K^{-} momenta of 2.45, 2.55, 2.63, and 2.70 BeV/c. Cross sections are based on a total path length of 4.5×10^8 cm (approximately 2/3 of this for $\Sigma^0\Lambda^0K^+K^-$ and $\Lambda^0K^+K^-\pi^0$).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>No. observed</th>
<th>No. corrected for neutral decay</th>
<th>σ (µb)</th>
<th>$%\Xi^*$ (1820)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda^0K^0\bar{K}^0$</td>
<td>341 ($127\phi \rightarrow K^0\bar{K}^0$)</td>
<td>811</td>
<td>51.9</td>
<td>15</td>
</tr>
<tr>
<td>$\Delta^0K^+K^-$</td>
<td>357</td>
<td>535</td>
<td>~51.3</td>
<td>7</td>
</tr>
<tr>
<td>$\Xi^-K^+\pi^0$</td>
<td>253</td>
<td>379</td>
<td>24.3</td>
<td>9</td>
</tr>
<tr>
<td>$\Xi^-K^0\pi^+$</td>
<td>485</td>
<td>624</td>
<td>39.9</td>
<td>7</td>
</tr>
<tr>
<td>$\Xi^0K^+\pi^-$</td>
<td>Uncertain</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Xi^0K^0\pi^0$</td>
<td>Not analyzed</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Sigma^0K^0\bar{K}^0$</td>
<td>Only $\Sigma^0K^0\bar{K}^0$ analyzed</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Sigma^0K^+K^-$</td>
<td>54</td>
<td>81</td>
<td>~ 7.8</td>
<td></td>
</tr>
<tr>
<td>$\Sigma^-K^+\bar{K}^0$</td>
<td>36</td>
<td>108</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>$\Sigma^+K^0\bar{K}^-$</td>
<td>45</td>
<td>45</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>$\Lambda^0K^0\bar{K}^-\pi^+$</td>
<td>12</td>
<td>54</td>
<td>3.5</td>
<td>~ 2</td>
</tr>
<tr>
<td>$\Lambda^0K^+\bar{K}^0\pi^-$</td>
<td>8</td>
<td>36</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>$\Lambda^0K^+K^-\pi^0$</td>
<td>31</td>
<td>47</td>
<td>~ 4.5</td>
<td></td>
</tr>
<tr>
<td>$\Lambda^0K^0\bar{K}^-\pi^0$</td>
<td>4</td>
<td>54</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>$\Xi^-K^+\pi^+\pi^-$</td>
<td>61</td>
<td>92</td>
<td>5.9</td>
<td>$8\Xi^* (1530)\pi$</td>
</tr>
<tr>
<td>$\Xi^-K^0\pi^+\pi^0$</td>
<td>60</td>
<td>180</td>
<td>11.5</td>
<td>$12\Xi\pi\pi$</td>
</tr>
<tr>
<td>$\Xi^0K^0\pi^+\pi^-$</td>
<td>34</td>
<td>153</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>$\Xi^-K^+\pi^0\pi^0$</td>
<td>Not analyzed</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Xi^0K^+\pi^-\pi^0$</td>
<td>Not analyzed</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Xi^0K^0\pi^0\pi^0$</td>
<td>Not analyzed</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Sigma KK\pi$</td>
<td>Not analyzed</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

a Non-ϕ, K^* (890) only
Table II. Spin-parity results

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Mass band</th>
<th>No. of events</th>
<th>Spin</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\chi^2(1/2))</td>
<td>(\chi^2(3/2))</td>
</tr>
<tr>
<td>(\Xi^-\pi^0)</td>
<td>1775-1925</td>
<td>81</td>
<td>64</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1775-1925(^a)</td>
<td>29</td>
<td>848</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Background(^b)</td>
<td>48</td>
<td>174</td>
<td>24</td>
</tr>
<tr>
<td>(\Xi^-\pi^+)</td>
<td>1775-1925</td>
<td>116</td>
<td>103</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1775-1925(^a)</td>
<td>29</td>
<td>126</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Background(^c)</td>
<td>40</td>
<td>29</td>
<td>17</td>
</tr>
<tr>
<td>(\Lambda K^-)</td>
<td>1775-1850(^d)</td>
<td>38</td>
<td>298</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Background(^e)</td>
<td>83</td>
<td>446</td>
<td>16</td>
</tr>
<tr>
<td>(\Lambda\bar{K}^0)</td>
<td>1775-1850(^d)</td>
<td>33</td>
<td>520</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Background(^e)</td>
<td>33</td>
<td>346</td>
<td>31</td>
</tr>
</tbody>
</table>

\(^a\) Lower half (\(K^*\) and low-mass \(K\pi \)) of the \(\Xi^* \) (1820) band removed. This is necessary to remove \(K^* \) (890) events and simultaneously avoid distortion of \(\Xi^* \) decay distributions.

\(^b\) Events with a \(\Xi\pi \) mass of 1575-1675, 1725-1775, and 1925-2000 MeV included. The 1675-1725 region is avoided due to possible existence of resonance at 1705 MeV. (\(K^* \) and low-mass \(K\pi \) events could not be removed because of limited statistics.)

\(^c\) Events with a \(\Xi\pi \) mass of 1575-1775 and 1925-2000 MeV included, with \(K^* \) and low-mass \(K\pi \) events removed.

\(^d\) Narrow portion of the \(\Lambda\bar{K} \) band containing overlapping \(\phi \) events removed.

\(^e\) Events with \(\Lambda\bar{K} \) mass of 1725-1775 and 1850-1925 MeV included, with \(\phi \) events deleted in \(\Lambda\bar{K}^0 \) but not in \(\Lambda^0 K^- \) (because of statistical limitations).
Figure Legends

Fig. 1. Dalitz plot and mass projections for the reactions $\Lambda^0K^0\bar{K}^0$ (341 events) and $\Lambda^0K^+K^-$ (357 events). On the Dalitz plot, one $\Lambda\bar{K}^0$ (or ΛK^0) point per event is plotted, whereas on the projection, both $\Lambda\bar{K}^0$ and ΛK^0 values are plotted. Events with a ϕ [$1000 \leq M(K\bar{K}) \leq 1040$ MeV] are not included in the projections. The envelopes on the Dalitz plot are for incident momenta of 2.45 and 2.70 BeV/c.

Fig. 2. (a) Ξ^* (1530)π and $\Xi\pi\pi$ mass projection for $\Xi^0K^0\pi^+\pi^-$, $\Xi^-K^+\pi^+\pi^-$, and $\Xi^-K^0\pi^+\pi^0$ reactions. Shaded events also include a K^* [$860 \leq M(K\pi) \leq 920$ MeV] for all $I_Z = \pm 1/2$ $K\pi$ combinations. The curve is our best estimate of the background for the non-K^* events. (b, c) $\Xi\pi$ mass projections for the reactions $\Xi^-K^0\pi^+$ and $\Xi^-K^+\pi^0$. Shaded events also include a K^* [$850 \leq M(K\pi) \leq 950$ MeV]. The curves are our best estimates of the background for all data.
Fig. 1.
Fig. 2.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.