Title
HP-67 CALCULATOR PROGRAMS FOR THERMODYNAMIC DATA AND PHASE DIAGRAM CALCULATIONS

Permalink
https://escholarship.org/uc/item/9317g4d6

Author
Brewer, Leo

Publication Date
2010-08-26
HP-67 CALCULATOR PROGRAMS FOR
THERMODYNAMIC DATA AND PHASE DIAGRAM CALCULATIONS

Leo Brewer

May 25, 1978

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy, $6.00 Domestic; $12.00 Foreign
Microfiche, $3.00 Domestic; $4.50 Foreign
HP-67 CALCULATOR PROGRAMS
FOR THERMODYNAMIC DATA AND PHASE DIAGRAM CALCULATIONS
by
Leo Brewer
Materials and Molecular Research Division, Lawrence Berkeley Laboratory
Department of Chemistry, University of California
Berkeley, California 94720

*This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.

If you wish to purchase a copy of this report (either hard copy or microfiche), please address your request to:
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
U.S.A.
Ask for this report as LBL-5485.
Introduction

Thermodynamic data and phase equilibria are greatly needed to meet current materials problems. Specific design criteria often require rather unique combinations of materials. Of the many combinations that might be of interest, data are available for only a small fraction. Useful combinations are often overlooked or great expense is incurred because an unnecessarily large number of combinations must be tested. The calculation of thermodynamic data and phase diagrams, even when no experimental data exist, is possible using spectroscopic levels of the gaseous atoms and chemical bonding theory (1-11). This was demonstrated for a large number of transition metal binary and multicomponent systems for which little or no data were available (2). Because of limitations of space for the large number of binary and multicomponent systems presented, projections of phase diagrams along the temperature axis were presented yielding only maximum extent of phase boundaries at the optimum temperatures although the text did discuss temperatures coefficients of the boundaries. The results of the calculations as a function of temperature will be presented in detail in subsequent publications.

The present report is a supplement to a tabulation of the thermodynamic and phase data for the 100 binary systems of Mo with the elements from H to Lr. The calculations of thermodynamic data and phase equilibria were carried out from 5000 K to low temperatures at which attainment of phase equilibria would not be practical. The results of these calculations are to be published as a special issue of the Atomic Energy Review, a publication of the International Atomic Energy Agency, Vienna. As only the results of the calculations are presented in the Atomic Energy Review issue, the present report is being used to present the methods of calculation used.

The thermodynamics involved is rather straightforward and the reader is referred to any of the advanced thermodynamic texts, e.g. Ref. (12), for derivations of the thermodynamic relations. The procedures for using chemical bonding theory to provide estimates of thermodynamic data have been outlined in previous publications (1-12).
The calculations were largely carried out using an HP-65 programmable calculator and the programs have been tabulated (13). In this report, those programs have been put in form for use with the HP-67 calculator which allows for a great reduction in the number of programs required to carry out the calculations.

It is difficult in a compendium of calculation procedures of this type to present topics in a coherent manner, but an effort has been made to assemble programs into related groups. As the equations which serve as the basis for the calculations are discussed in detail in Ref.(13), the discussion of the background equations will be limited in this report.
CHAPTER I

Data Fitting Using the Chebyshev Polynomials

A. Least-Square Fitting Using Chebyshev Orthogonal Polynomials

The Chebyshev (Tschebycheff) polynomials, \(T_n(x) = \cos(n \cos^{-1}x) \), are orthogonal over the continuous interval \(0 \leq x \leq 1 \) and they have been shown to be the most economical polynomial for expressing \(f(x) \) as a polynomial series with the minimum number of terms for a given accuracy.

The Chebyshev polynomial can be modified to \(C_n(x) \) which is orthogonal for discrete integer values of the variable, \(x \), from 0 to \(N \) with

\[
C_0 = 1 \quad \text{and} \quad C_n = n! \Delta^n \left[\frac{x}{n} \right] = \sum_{m=0}^{n} (-1)^m \frac{(n+m)!}{(n-m)!m!} \left(\frac{x}{n} \right)^m \frac{x!}{(N-m)!(N-x)!}.
\]

The recurrence relation is

\[
C_{n+1} = [(2n+1)(N-2x)C_n - n(N+n+1)C_{n-1}]/(n+1)(N-n)
\]

\[
C_0 = 1,
\]

\[
C_1 = 1 - 2x/N,
\]

\[
C_2 = 1 + 6x(N-x)/N(N-1)
\]

For \(N = 7 \), for example,

\[
C_0 = 1, \quad C_1 = 1 - \frac{2}{7}x, \quad C_2 = 1 - \frac{6}{7}x + \frac{5}{7}x^2, \quad C_3 = 1 - \frac{6}{7}x + \frac{10}{7}x^2 - \frac{15}{7}x^3.
\]

The Chebyshev polynomials for discrete integer values are particularly useful for least square fitting of experimental data. Because of the orthogonality, cross terms are zero in the matrix used to solve the set of linear equations obtained by setting the partial derivatives of the squares of the deviations equal to zero.

Thus, the coefficients of \(f(x) = c_0 C_0(x) + c_1 C_1(x) + c_2 C_2(x) + c_3 C_3(x) + \ldots \) are readily calculated without solution of a matrix by the relation

\[
c_n = (f,C_n)/(C_n C_n)
\]

where

\[
(f,C_n) = \sum_{x=0}^{N} f(x)C_n(x) \quad \text{and} \quad (C_n,C_n) = \sum_{x=0}^{N} [C_n(x)]^2 = \frac{(N+n+1)(N-n)!}{(2n+1)(N!)^2}.
\]

For \(N+1 \) values of \(f(x) \) at \(N \) evenly spaced intervals of \(x \), the values of \(C_n(x) \) to be multiplied by \(f(x) \) are evaluated by the following program.
The integer \bar{x}, which range from 0 to N, are related to x by $\bar{x} = (x-x_i)/I = x/I - r$, where x_i is the initial value of x and I is the interval spacing of x.

The values of $C_n(\bar{x})$ are stored in the registers starting with $C_1(1)$, $C_2(1)$, ..., $C_{n_{\text{max}}}(1)$, $C_1(2)$, $C_2(2)$, ..., $C_{n_{\text{max}}}(2)$, $C_1(3)$, In each cycle of calculations of $C_n(x)$, n is incremented until $C_{n_{\text{max}}}(x)$ has been calculated, then x is incremented and the cycle started again at $n = 1$. The calculation stops when x exceed $N/2$, as the second half of the values of $C_n(x)$ are the same as the first half except for change of sign for odd values of n. For $n' = 3$, there is sufficient storage to calculate the $C_n(x)$ values up to $N = 15$. For $n' = 4$, the maximum is $N = 11$. However, if storage is to be provided for subsequent (f, C_n) calculations, the maximum N values for $n' = 3$ and 4 are 13 and 9, respectively.

n', the maximum value of n or the order of the polynomial used for fitting, is keyed in first. With N evenly spaced intervals of x, the number of data points to be treated, $N+1$, is keyed in next.

Directions:
(1) Insert tape Cheb C_n
(2) $n' \uparrow N+1$ A 24 displayed at end of calculation

The values of $C_n(\bar{x})$ calculated in the order of increasing n for each value of \bar{x} and in order of increasing \bar{x} are stored in the registers in reverse order from index number 24 to 7. If it is desired to examine the $C_n(\bar{x})$ values, R/S following the calculations of step 2 will display 24 $C_1(1)$, 23 $C_2(1)$, 22 $C_3(1)$, 21 $C_1(2)$, etc. Only the contents of registers with non-zero values are displayed. When no non-zero values remain, 6 followed by 24 will be displayed (See Ref. 23).
If it is desired to preserve the $C_n(x)$ values for future (f,C_n) calculations, key f W/DATA and insert data card. Values of $C_n(x)$ are also tabulated for several values of N and n in Ref. (13) and could be keyed in for calculation of (f,C_n) values by Prgm. Cheb (f,C_n).

Prgm. Cheb C_n

(2)

```
FLBLA 1 - STO5 hR+ 1 - STO6 2 5 hSTI 0 STO4
FLBLO RCL5 2 ÷ RCL4 1 + gx>y GTO2 STO4
1 STO3 RCL4 2 X RCL5 ÷ CHS 1 +
FDSZ STO(i)
FLBL1 RCL4 2 X RCL5 - X RCL3 2 X
+ X hx>y RCL3 X RCL5 1 + RCL3
r FDSZ STO(i) RCL6 RCL3 1 + gx>y GTO0 STO3
hR+ hR+ fISZ(i) RCL(i) hx>y fDSZ GTO1
FLBL2 2 STO5 gLBLfe RCL5 fINT STO4 2 4 hSTI
hRTN 6 STO6 fLBLC RCL(i) fx#0 GTOD FDSZ GTOC FLBLD
hRCI DSPO hPSE RCL(i) gx=y GTOfe DSP2 f-x- FDSZ GTOC 112
```

<table>
<thead>
<tr>
<th>R</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>I</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=1</td>
<td></td>
<td>N</td>
<td>n'-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>to</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n'-1 int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Values of $C_n(x)$ are stored in reverse order from E to A, 89 to 80, and 9 to 7.

Test:

(2) $n'=3 \uparrow$ No. of data pts. = 14 A, 24 after 40 sec.

```
R/S 24, $C_1(1) = 0.85; 23, C_2(1) = 0.54; 22, C_3(1) = 0.08;
21, $C_1(2) = 0.69; 20, C_2(2) = 0.15; 19, C_3(2) = -0.46;
18, $C_1(3) = 0.54; 17, C_2(3) = -0.15; 16, C_3(3) = -0.69;
15, $C_1(4) = 0.38; 14, C_2(4) = -0.38; 13, C_3(4) = -0.66;
12, $C_1(5) = 0.23; 11, C_2(5) = -0.54; 10, C_3(5) = -0.47;
9, $C_1(6) = 0.08; 8, C_2(6) = -0.62; 7, C_3(6) = -0.17; 6, 24.
```
The least square fit to the starting data with terms ranging in \(n \) up to the maximum value, \(n' \), yields the equation \(f(x) = \sum_{m=0}^{n} \frac{(f, C_n)}{(C_n, C_n)} C_n(x) \), which has the advantage over equations fit by other least-square procedures in not weighting the different powers unequally. Unless weighting factors are added, all points will have equal weight. The equation can be expanded in powers of \(x \) by substitution of

\[
C_n(x) = \sum_{m' = 0}^{n} (-1)^{m'} \frac{(n+m')!}{(n-m')!} \frac{1}{(m')!} \frac{1}{(N-m')!} \frac{1}{N!} x^{N-m}.
\]

Each \(C_n(x) \) will provide \(n \) terms in powers of \(x \) ranging from \((x)^0 \) to \((x)^{m'} \). Substitution of \(x = x^I - r \) will then convert each term to \(m' \) terms in \(x^m \) ranging from \(x^0 \) to \(x^{m'} \). The final equation will be a polynomial

\[
f(x) = \sum_{m=0}^{n} a_m x^m.
\]

Each of these coefficients relate to the original \((f, C_n)\) terms by \(a_m = \sum_{m'=m}^{n} b_{mn} f(C_n) \). For \(n' = 3 \), there will be ten \(b_{mn} \) coefficients. For \(n' = 4 \), there will be fifteen \(b_{mn} \) coefficients to be evaluated, multiplied by the appropriate \((f, C_n)\) values and summed to obtain the \(a_m \) values.

The \(b_{mn} \) coefficients are evaluated by the equation

\[
b_{mn} = \frac{1}{(C_n, C_n)} \frac{1}{(-I)^m} \sum_{m'=m}^{n} A_{m' n} R_{m' m}
\]

where \((C_n, C_n) = \frac{(N+n+1)!}{(N-n)!} \) and \(A_{m' n} = \frac{(n+m')!}{(n-m')!} \frac{(N-m)!}{(m')! (m!)^2 N!} \).

Thus \(b_{mn} = \frac{(2m)!}{(n!)(2N)!} \frac{(2m)!}{(-m)!^2 (C_n, C_n)} \) for \(m = n \).

For \(m = n-l \), \(b_{n-l, n} = (b_{nn}) (-ln)(N/2 + r) \).

For \(m = 0 \), \(R_{m' 0} = r(r+1) \ldots (r + m' - 1) \) and \(b_{on} = \frac{1}{(C_n, C_n)} \sum_{m=0}^{n} A_{m' n} R_{m' 0} \).

For \(m' = m+1 \), \(R_{m' m} = m' r + \frac{1}{2} m'(m'-1) \).

For \(m = 1, m' = 3 \), \(R_{m' m} = 3r^2 + 6r + 2 \).

For \(m = 1, m' = 4 \), \(R_{m' m} = 2(2r^3 + 9r^2 + 11r + 3) \).

For \(m = 2, m' = 4 \), \(R_{m' m} = 6r^2 + 18r + 11 \).
Values of \(b_{00}, b_{01}, b_{11}, b_{02}, b_{12}, b_{22}, b_{03}, b_{13}, b_{23}, \) and \(b_{33} \) are tabulated for \(n=3 \) and \(N = 4, 7 \) and \(8, \) and 9 and equations as a function of \(N \) are given in Table I-5 of Ref. (13).

When values of \(f(x) \) are given for \(x \) values that are evenly spaced at \(N \) intervals of magnitude 1 starting with an initial value \(x_1 \), Prgm. Cheb\((f,C_n)\) will convert to variable \(\bar{x} = x/I - x_1/I = x/I - r \) with \(\bar{x} \) varying by integral values from 0 to \(N \) and then will least-square fit \(f(\bar{x}) \) to a Chebyshev polynomial of order \(n' \) using the \(b_{mn} \) coefficients of Prgm. Cheb \(C_n \) corresponding to \(n' \) and \(N \) as discussed in Ref. (13). If followed by Prgm. Cheb-a, the Chebyshev polynomial is expressed as \(f(x) = \sum_{n=0}^{N} a_n x^n \) upon insertion of \(I \) and \(r = x_1/I \). The following program is designed for \(n' = 3 \), but can be adapted to \(n' = 4 \). \(i \frac{N}{2} \) is integer value of \(\frac{N}{2} \).

Directions:

1. Insert Cheb \((f,C_n)\) Prgm.
2. Insert Cheb \(C_n \) Data Tape for \(n' = 3 \) and appropriate \(N \)
3. \(f(0) \) B \(f(0) \)
4. \(f(1) \) R/S \(f(1) \)
 \(f(2) \) R/S \(f(2) \)
 \(\vdots \) \(\vdots \)
5. When \(N \) odd, \(f(\frac{N}{2})C_3(\frac{N}{2}) \); otherwise \(\frac{N}{2} \)
 - \(f(\frac{N}{2}-1) \)
 - \(f(\frac{N}{2}) \)
 - \(f(\frac{N}{2}+1) \)
 - \(f(\frac{N}{2}+2) \)
 \(\vdots \)
6. \(f(N-1) \) R/S \(-f(N-1) \)
7. \(f(N) \) E \((f,C_0) \)
 \((f,C_1) \)
 \((f,C_2) \)
 \((f,C_3) \)

Start at step 3 for each new set of data with same \(N \). Step 5 must be keyed before starting again at step 3. For different \(N \) start at step 2.
(2) Insert Cheb C_n Data tape for $n'=3$ and $N+1=4$ data points.

(3) 4B; 15 R/S; 40 R/S; 85 R/S; 156 R/S; 259 R/S; after each of these steps, the input number used in the calculation is displayed; 400 R/S - 67.133; 585 R/S; 820 R/S; 1111 R/S; 1464 R/S; 1885 R/S; 2380 R/S; after each of these steps, the negative of the input number is displayed;

(5) 2955 E 12159, -7483, 2632, -408.

Prgm. Cheb(f, C_n)

<table>
<thead>
<tr>
<th>gLBL0</th>
<th>RCL5</th>
<th>fINT</th>
<th>STO4</th>
<th>2</th>
<th>hSTI</th>
<th>hRTN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>fLBL0</td>
<td>STO0</td>
<td>STO1</td>
<td>STO2</td>
<td>STO3</td>
<td>hRTN</td>
</tr>
<tr>
<td>(4)</td>
<td>fLBL0</td>
<td>STO0</td>
<td>STO1</td>
<td>STO2</td>
<td>STO3</td>
<td>hRTN</td>
</tr>
<tr>
<td>(5)</td>
<td>fLBL0</td>
<td>STO0</td>
<td>STO1</td>
<td>STO2</td>
<td>STO3</td>
<td>hRTN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fLBL1</th>
<th>fLBL2</th>
<th>fLBL3</th>
<th>fLBL4</th>
<th>fLBL5</th>
<th>fLBL6</th>
<th>fLBL7</th>
<th>fLBL8</th>
<th>fLBL9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx</td>
<td>RCL(i)</td>
<td>fDSZ</td>
<td>X</td>
<td>hRTN</td>
<td></td>
<td>hRTN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hR+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>h</th>
<th>5</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f, C_0)</td>
<td>(f, C_1)</td>
<td>(f, C_2)</td>
<td>(f, C_3)</td>
<td>x</td>
<td>$\frac{N}{2}$</td>
<td>C_n</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>

$C_n(x)$ values in E to A, 89 to 0, and P9 to 7.

Directions:

(1) Insert Cheb-a tape

(2) Insert (f, C_0) to (f, C_3) in registers 0-3 if not carried over from Prgm. Cheb.(f, C_n).

(3) I \rightarrow r A

(4a) SST

(4b) SST

(4c) SST

(5) x B \rightarrow $f(x)$; E \rightarrow $f(x+1)$; E \rightarrow $f(x+2)$, etc.

Display
a0

NOTE: After step 4c, the a_n values can be reviewed by keying another SST which will flash the four a_n values in the order a0 to a3. The (f, C_n) values are retained in R0-3 and step 3 can be repeated after $N/2$ STO 5; for example, if incorrect values of I or r are used.
(2) 12159 ST00, 7483 CHS ST01; 2632 ST02; 408 CHS ST03; 6.5, ST05;
(3) 200 + 1.5 A 0.625; (4) SST 0.00375; SST -1.25×10^{-5} ST1.25×10^{-7}
(5) 300 B 4; E15, E40, E85; 1500 B 400, E585, E820.

The three programs Cheb-C_{n}, Cheb-(f,C_{n}), and Cheb-a can be combined in several ways. There is enough space on one tape to combine the first two programs for a total of 204 memory steps if the 8 steps of gLBLfe are not duplicated; thus there would be no need to put the C_{n}(x) values on a data tape. However, if N+1, the number of data points, is frequently used, it would save time to have stored the C_{n}(x) values on a tape rather than to recalculate each time. If a data tape is used for the C_{n}(x) values, a portion of Prgm. Cheb-a can be added to the end of Prgm. Cheb-(f,C_{n}).
This would provide enough space for the following additions for calculation of \(df(x)/dx \) and \(\int_0^x f(x)dx \) upon keying \(xC \) and \(xD \), respectively, or following \(xB \) with \(R/S \) to obtain \(df(x)/dx \) and another \(R/S \) to obtain the integral.

\[
\begin{array}{cccccccc}
\text{fLBLC} & \uparrow & \uparrow & \text{RCL9} & 3 & X & X & \text{RCL8} & 2 \\
\text{X} & + & \text{X} & \text{RCL7} & + & \text{hRTN} & \text{hRTN} \\
\text{fLBLD} & \uparrow & \uparrow & \text{RCL9} & 4 & : & \text{X} & \text{RCL8} & 3 & : \\
+ & \text{X} & \text{RCL7} & 2 & : & + & \text{X} & \text{RCL6} & + & \text{X} \\
\text{hRTN}
\end{array}
\]

It is unusual to have thermodynamic data of sufficient accuracy to warrant more than the four constant fit of Prgm. Cheb-a. Prgm. Cheb-C\(_n\) already can accommodate quartic or higher power fits. Prgm. Cheb-(\(f,C_n \)) and Cheb-a could be expanded to a quartic fit if desired.

For most applications of Prgms. Cheb C\(_n\), Cheb(\(f,C_n \)), and Cheb-a, the same number of data points, \(N+1 \), would not be repeatedly used and there would be no need to store the constants from the Cheb C\(_n\) calculations. Then Cheb C\(_n\) and Cheb(\(f,C_n \)) would be combined on the same tape and the instructions would be simplified to the following:

Directions:

1. Insert Cheb C\(_n\)-Cheb(\(f,C_n \)) tape
2. \(n'=3+ N+1 \) A
3. \(f(0) \) B
4. \(f(1) \) R/S
5. \(f(2) \) R/S
6. \(f(3) \) R/S
7. \(f(4) \) R/S
8. \(f(N-1) \) R/S
9. \(f(N) \) E
10. Insert Cheb-a tape
11. \(I \uparrow r A \)
12. \(SST \) SST SST
13. \(x \ B \) \(+f(x) \); \(E \rightarrow f(x+1) \); \(E \rightarrow f(x+2I) \), etc.

TEST: (Continuation of Prgm. Cheb C\(_n\) test at top of pg. 8)

1. \(10+1A1 \); (8) \(SST .1, SST .01, SST .001 \); (9) \(10 \ B \) \(l, E15, E40 \).
Fitting of Experimental Data by An Analytical Function

Two types of operations will be considered. The first type requires a very accurate fit in a limited range of x for interpolation purposes, with no smoothing of the data. The second type smooths the data to fit some predetermined functional form by a least-square procedure. The first type will be discussed first and illustrated with some examples.

A. Interpolation Fit to $f(x) = \sum a_n x^n$

Program Interp. GK fits four (x,y) pairs with the x values at evenly spaced intervals of magnitude I to a cubic polynomial, or any three pairs to a quadratic equation, or any two pairs to a linear equation, which can be used for interpolation purposes. The calculations are outlined in Ref.(13). In addition, the program is specifically designed to accept values of $-(G^0 - H^\text{std})/RT$ or $-(G^0 - H^\text{std})/T$ for each of the reactants and products of a chemical reaction at two, three or four temperatures and fit the resulting $-(\Delta G^0 - \Delta H^\text{std})/RT$ values to an interpolation equation which can then be combined with ΔH^std or $\Delta H^\text{std}/R$ for the reaction to calculate $\ln K$ or K, the equilibrium constant of the reaction, at desired temperatures.

Directions:
(1) Insert tape Interp.GK

<table>
<thead>
<tr>
<th>2 Pt. Fit</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2a) $y_1 \uparrow y_2$</td>
<td>$y_1 - y_2$</td>
</tr>
<tr>
<td>(3a) $x_1 \uparrow x_2$</td>
<td>a_0</td>
</tr>
<tr>
<td>(4a) SST</td>
<td>a_1</td>
</tr>
<tr>
<td>(5) $x \ E$</td>
<td>y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Pt. Fit</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2b) $y_1 \uparrow y_2 \uparrow y_3$</td>
<td>$y_1 - y_2$</td>
</tr>
<tr>
<td>(3b) $x_1 \uparrow x_2 \uparrow x_3$</td>
<td>a_0</td>
</tr>
<tr>
<td>(4b) SST SST</td>
<td>a_1, a_2</td>
</tr>
<tr>
<td>(5) $x \ E$</td>
<td>y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Pt. Fit</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2c) $y_1 \uparrow y_2 \uparrow y_3 \uparrow y_4$</td>
<td>$I^3 a_3$</td>
</tr>
<tr>
<td>(3c) $I \uparrow x_1$</td>
<td>a_0</td>
</tr>
<tr>
<td>(4c) SST SST SST</td>
<td>a_1, a_2, a_3</td>
</tr>
<tr>
<td>(5) $x \ E$</td>
<td>y</td>
</tr>
</tbody>
</table>
For the reaction \(aA + bB = mM + nN + oO \), the values of \(g = \frac{-\Delta G^\circ}{RT} \) (a positive number) for the reactants and products are keyed in as follows:

(a) f c to initiate a complete set of data
(b) \(g_A \uparrow aX \quad g_B \uparrow bX \quad \text{D} \quad 0.00 \)
(c) \(g_M \uparrow mX \quad g_N \uparrow nX \quad g_O \uparrow oX \quad \text{R/S} \quad -\frac{(\Delta G^\circ - \Delta H^\circ_{\text{Std}})}{RT}, \quad 0.00 \)

Steps b and c are repeated at each temperature. If only one mole of a reactant or product appears in the equation, e.g. \(n=1 \), omit \(nX \) and merely key \(g_N \uparrow \). After the values at each of the temperatures have been entered, the following steps are carried out depending upon whether a 2, 3 or 4 pt. fit is desired.

(d) f a

(e1) For 4 pt. fit: key C and then continue with steps 3c, 4c, and 5.
(e2) For 3 pt. fit: key f b
(e3) B
Continue with steps 3b, 4b, and 5.
(e4) For 2 pt. fit: key f b twice.
(e5) A
Continue with steps 3a, 4a, and 5.

After the values of \(-\frac{(\Delta G^\circ - \Delta H^\circ_{\text{Std}})}{RT}\) have been fit to either a linear, quadratic or cubic equation for interpolation purposes, the following steps yield values of \(\ln K \) or \(K \).

(6) \(-\Delta H^\circ_{\text{Std}}/R\) STO 6
(7) T f d
(8) SST

NOTE 1: A new set of data cannot be treated unless step d has been carried out followed by step a. The program will accommodate an equation with three different products or four products if there is only one mole of the last product value entered. There can be two different reactants or three if there is only one mole of the last reactant value entered. However, any number of products and reactants can be accommodated if \(+ \) is keyed in after the second reactant entry and every subsequent one and if \(+ \) is keyed in after the third product entry and every subsequent one.
NOTE 2: The program can be used for \(-\frac{\Delta G^\circ}{-\Delta H^\circ_{\text{Std}}}/T\) and \(-\Delta H^\circ_{\text{Std}}\) as well as for the dimensionless quantities used to illustrate the displays, but step 7 will display \(R \ln K\) instead of \(\ln K\) and it must be divided by \(R\) before obtaining \(K\) by step 8. \(R\) in appropriate units can be stored in register D for use with step 7 or RCL D STO:0 STO:1 STO:2 STO:3 will convert the equation for \(-\frac{(\Delta G^\circ-\Delta H^\circ_{\text{Std}})}{RT}\) to the dimensionless \(-\frac{(\Delta G^\circ-\Delta H^\circ_{\text{Std}})/RT}{\text{form}}\) so that it is unnecessary to divide by \(R\) each time step 7 is carried out. Of course, the appropriate \(-\Delta H^\circ_{\text{Std}}\) or \(-\Delta H^\circ_{\text{Std}}/R\) must be used.

NOTE 3: The values of \(\frac{(\Delta G^\circ-\Delta H^\circ_{\text{Std}})}{RT}\) obtained at each temperature are stored in the secondary registers starting with 80 during the calculations following step d. Thus, a set of values at four temperatures is available for repeat fits using two, three or four of the temperatures. For each fit, after the first, key **fP**S and go to step d and then continue with either step e4, e3, or e2 depending upon which fit is desired. Step d returns the values to the secondary registers and they are available for repeated use. Although the program will not fit more than values for four temperatures at a time, steps a-c can be carried out repeatedly for up to ten temperatures. Any two, three, or four of these values can be recalled and stored in the stack as one would do to initiate steps 2a, 2b, or 2c. After **fP**S to safeguard the values for future use, one would then proceed with steps 2 to 4 for the particular fit chosen. Also as discussed in Note 4, this procedure requires keying of **hSFO** if steps a to c are to be used again. Steps a to c can also be used to evaluate \(-\Delta H^\circ_{\text{Std}}/R\) of the reaction from the enthalpies of formation of the reactants and products. One should use **fP**S appropriately to insure that values of \(-\frac{(\Delta G^\circ-\Delta H^\circ_{\text{Std}})}{RT}\) or values of \(a_n\) that are wanted for subsequent calculations are not erased by the \(\Delta H\) calculations.

NOTE 4: Flag 0 is used to control the index numbers that regulate the storing of values during steps a to c. The program sets FO when inserted and subsequent operation of the program maintain FO in the proper set or cleared position as needed. However, if the use of steps a to c is not subsequently followed by step d, the next operation of steps a to c will not start storage in RO but will store beyond the last registers used.

Test:

(2b) 1.978 \(\uparrow\) 2.536 \(\uparrow\) 3.25 B \(-0.558\);

(3b) 0.3 \(\uparrow\) 0.4 \(\uparrow\) 0.5 R/S 1.240;

(4b) SST 0.120 SST 7.800; (5) 0.4 E 2.536;

(2c) 1.552 \(\uparrow\) 1.978 \(\uparrow\) 2.536 \(\uparrow\) 3.25 C 0.004;

(3c) 0.1 \(\uparrow\) 0.2 R/S 1.000

(4c) SST 2.000 SST 3.000 SST 4.000; (5) 0.4 E 2.536

cont'd.
C(gr) + 2Cl₂(g) = CCl₄(g) (a) fₑ 0.00

500 (b₁) 1.16 + 49.85 + 2 X D 0.00; (c₁) 68.1 R/S - 32.76, 0
1000 (b₂) 2.78 + 55.43 + 2 X D 0.00; (c₂) 81.31 R/S - 32.33, 0
1500 (b₃) 4.19 + 58.85 + 2 X D 0.00; (c₃) 90.01 R/S - 31.88, 0
2000 (b₄) 5.38 + 61.34 + 2 X D 0.00; (c₄) 96.53 R/S - 31.53, 0

K

(d) fₐ - 31.530; (e₄) C - 0.020; (3c) 500 + 500 R/S - 33.050;
(h₄c) SST 3.60×10⁻¹¹ SST 5.20×10⁻⁷ SST - 1.60×10⁻¹⁰; (5) EEX 3 E - 32.330;
1.98719 STOD, -Δₜₜ₀ R = 25×10⁻³ RCLD = 12581 STO6

RCLD 1.98719 STO÷0 STO÷1 STO÷2 STO÷3

(7) 500 fₑ 8.570 (8) SST 5858
 750 fₑ 0.392 1.479
 1500 fₑ -7.656 4.73×10⁻⁴
 2000 fₑ -9.576 6.94×10⁻⁵

fₑ*S fₑ - 31.530; fₑ - 31.880; (2b) E - 0.430; (3b) 500 + EEX 3
1500 R/S - 33.170; (4b) SST 8.0×10⁻⁴ SST 4.0×10⁻⁸;

RCLD 1.98719 STO÷0 STO÷1 STO÷2

(7) 500 fₑ 8.676 5858
 750 fₑ 0.395 1.485
 1500 fₑ -7.656 4.73×10⁻⁴

fₑ*S fₑ - 31.530; fₑ - 31.880 fₑ - 32.330; (2a) A - 0.403;
(3a) 500 + EEX 3 R/S - 33.190; (4a) SST 8.6×10⁻⁴ (5) EEX 3 E - 32.330;

RCLD 1.98719 STO÷0 STO÷1

(7) 750 fₑ 0.397 1.487
 1500 fₑ -7.666 4.69×10⁻⁴
Prgm. Interp.GK

(d) gLBLfa RCL0 RCL1 RCL2 RCL3 fP2S hSF0 hRTN

(e,f) gLBLfb hR+ hRTN

(2a) fLBLA STO4 0 STO2 STO3 hR+ hRTN

(3a) STO5 STO3 STO1 RCL5 X CHS RCL4 + STOO

(4a) hRTN RCL1

(2b) fLBLB hXSTY STO5 STO4 STO3 STO0 hR+ hRTN

(3b) STO9 STO8 STO7 RCL8 RCL7 RCL6 X RCL9 RCL8

RCLA RCLA + STO2 RCL8 E CHS

(4b) RCL4 + STOO hRTN RCL1 RCL2

(2c) fBLBC hR+ STOC STO7 hR+ hLSTx - STO5 hR+

hLSTx STO4 RCL7 3 RCL4 + RCL5 -

(3c) STOB hR+ STOA 3 hYR X RCL5 RCL4 2 X - 2

STO1 hRTN hRTN hRTN

(4c) RCL1 RCL2 RCL3

(7,8) gLBLfd E RCL6 hR+ hRTN hRTN

(5) fLBLF hR+ hR+ hR+ RCL3 X RCL2 ++ X RCL1

hRTN

(6) hRTN

2 pt. R 0 1 2 3 4 5

(2a-4a) a0 a1 0 0 y2 x2

3 pt. R 0 1 2 3 4 5 6 7 8 9

(2b-4b) 0 a1 a2 0 y2 y3-y2 x1 x2 x3

A B

x3-x2 x2+x3

4 pt. R 0 1 2 3 4 5 7

(2c-4c) a0 a1 a2 a3 y2-y1 y3-y2 y4-y1

A B C

I x1 y1

R 0 to 3 4 5 6 7 8 9

Each an is y2 or used ΔH^0^Std/R x1 or 0 0

in Ra y2-y1 y3-y1 or x2 or x3

RS 0-3 store -(ΔG^2^ - ΔH^0^ Std)/RT for 2 to 4 temperatures in order of increasing temperature.
B. Least-Square Fitting of Data to an Analytical Function

Least-square fitting of data to an equation \(y = f(x) \) is not a routine process but requires careful consideration of the variations of errors in \(y \) as a function of \(x \). For example, if it were desired to obtain the values of \(c \) and \(d \) in the expression \(y = cx^2 + dx^3 \) that best represent a set of data, one could least-square a variety of functions of \(y \). The use of the unweighted function would tend to heavily weight values of \(y \) at large \(x \). As just one alternative example, one could least-square \(y/x^2 = c + dx \) and obtain, in general, quite different values of \(c \) and \(d \) that would correspond to more heavy weighting of values of \(y \) at low \(x \) than for the previous procedure.

One should carefully consider the magnitude of errors in \(y \) as a function of \(x \) before selecting the appropriate procedure. One should apply appropriate weighting to off-set any bias of the least-square procedure as well as to attempt to correct for systematic errors. The first example will be the fitting of a set of data \((x, y)\) to a three constant equation, \(y = a + b f_1(x) + c f_2(x) \). To minimize \([y-a-bf_1(x)-cf_2(x)]^2 \), one takes partial derivatives with respect to \(a \), \(b \), and \(c \) and sets them equal to zero to obtain

\[
\begin{align*}
\Sigma f_1(x)a + \Sigma f_1(x)f_2(x)b + \Sigma f_2(x)c &= Ey \\
\Sigma f_1(x)b + \Sigma [f_1(x)]^2b + \Sigma f_1(x)f_2(x)c &= Eyf_1(x) \\
\Sigma f_2(x)a + \Sigma f_1(x)f_2(x)b + \Sigma [f_2(x)]^2c &= Eyf_2(x)
\end{align*}
\]

where the sums are over the \(i \) values of \(x \).

Directions:

1. Insert tape LSf(x)
2. GTO f d W/PROM, Key in \(f_1(x) \), SST SST, Key in \(f_2(x) \), RUN
3. A
4. \(x_i \) B \{ repeat 4 & 5 for all \(i \)
5. \(y_i \) R/S
6. R/S
7. SST SST
8. x C

Display

\(f_1(x) \)
\(y_i f_2(x_i) \)
\(a \)
\(b, c \)
\(y \)

NOTE: Return to step 3 for each new set of data. To add more data after step 7, RCL3 STOX5 and start at step 4 again.
Test:
\(f_1(x) = \ln x, \quad f_2(x) = x^{-1} \)

(2) W/PRGM f LN SST SST h 1/x RUN; (3) A

(4') 1 B 0.000; (5') 20.0 R/S 20.000

(4'') 10 B 2.303; (5'') 15.605 R/S 1.561

(4'''') EXX2 B 4.605; (5'''') 19.310 R/S 0.193

(6) R/S 10.000; (7) SST 2.000 SST 10.000 (8) 10 C 15.605

Prgm. LST(x)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>fLELA</td>
<td>fCLREG</td>
<td>fP+G</td>
<td>fCLREG</td>
<td>hRTN</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>fLELB</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>fLEL1</td>
<td>STO+5</td>
<td>X</td>
<td>STO+6</td>
<td>hR↑</td>
<td>hLSTx</td>
<td>X</td>
<td>STO+7</td>
<td>hRTN</td>
</tr>
<tr>
<td>(6)</td>
<td>RCLG+</td>
<td>STO1</td>
<td>hR↑</td>
<td>STO2</td>
<td>fP+G</td>
<td>RCL9</td>
<td>RCL7</td>
<td>RCL5</td>
<td>fP+G</td>
</tr>
<tr>
<td></td>
<td>STO8</td>
<td>hR↑</td>
<td>STO9</td>
<td>hR↑</td>
<td>STO4</td>
<td>hR↑</td>
<td>STO3</td>
<td>RCL1</td>
<td>gx²</td>
</tr>
<tr>
<td></td>
<td>STO÷5</td>
<td>RCL8</td>
<td>hR↑</td>
<td>STO4</td>
<td>RCL2</td>
<td>RCL3</td>
<td>hR↑</td>
<td>RCL5</td>
<td>hR↑</td>
</tr>
<tr>
<td></td>
<td>STO9</td>
<td>RCL6</td>
<td>RCL7</td>
<td>RCL5</td>
<td>RCL2</td>
<td>X</td>
<td>hR↑</td>
<td>RCL1</td>
<td>gx²</td>
</tr>
<tr>
<td></td>
<td>RCL1</td>
<td>X</td>
<td>hR↑</td>
<td>STO0</td>
<td>RCL4</td>
<td>RCL9</td>
<td>X</td>
<td>RCL8</td>
<td>gx²</td>
</tr>
<tr>
<td></td>
<td>STOB</td>
<td>RCL4</td>
<td>X</td>
<td>RCL6</td>
<td>hR↑</td>
<td>X</td>
<td>RCL1</td>
<td>RCL5</td>
<td>hR↑</td>
</tr>
<tr>
<td></td>
<td>RCL1</td>
<td>X</td>
<td>hR↑</td>
<td>RCLB</td>
<td>hR↑</td>
<td>RCL3</td>
<td>hR↑</td>
<td>RCL5</td>
<td>hR↑</td>
</tr>
<tr>
<td></td>
<td>STOA</td>
<td>hRTN</td>
<td>RCLB</td>
<td>RCLC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>fLELC</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RCLC</td>
<td>X</td>
<td>hR↑</td>
<td>RCLC</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gLBLfd</td>
<td>[]</td>
<td>hRTN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gLBLfe</td>
<td>[]</td>
<td>hRTN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R 0 1 2 3 4 5 6 7 8 9

*5 q = \frac{1}{1-xf_1(x)} - xf_1(x) = xf_1(x) / i - xf_2(x)**
Linear Regression

For a simple linear regression to fit a set of \((x,y)\) to \(f(y) = bf(x) + a\), the following program is adapted from program Stat 1-22 of the HP-65 User's Library (18). \(f(x)\) may be \(1/x\) and \(f(y)\) may be \(\ln y\) or more complicated functions. In the equations for the coefficient of determination and for the standard errors, \(f(x)\) will be taken as \(x\) and \(f(y)\) will be taken as \(y\). The coefficient of determination is given by

\[
r^2 = \frac{[\Sigma xy - (\Sigma x \Sigma y)/i]^2}{[\Sigma x^2 - (\Sigma x)^2/i][\Sigma y^2 - (\Sigma y)^2/i]}
\]

The standard error estimate of \(y\) on \(x\) is given by

\[
s_{y \cdot x} = \left[\frac{\Sigma (y - \hat{y})^2}{i - 2} \right]^{\frac{1}{2}} = \left[\frac{\Sigma y^2 - a \Sigma y - b \Sigma xy}{i - 2} \right]^{\frac{1}{2}}.
\]

The standard error of \(a\) is given by

\[
s_a = s_{y \cdot x} \left[\frac{\Sigma x^2}{i \Sigma x^2 - (\Sigma x)^2} \right]^{\frac{1}{2}}.
\]

The standard error of \(b\) is given by

\[
s_b = s_{y \cdot x} [\Sigma x^2 - (\Sigma x)^2/i]^{\frac{1}{2}}.
\]

Directions:

(1) Insert tape LR

(2) Key GTO FB W/PRGM, key \(f(x)\) SST SST, key \(f(y)\) SST SST, key \(f^{-1}(y)\) RUN. If \(f(x) = x\) or \(f(y) = y\), nothing need be keyed in for \(f(x)\) or for \(f(y)\) and \(f^{-1}(y)\).

(3) \(fa\)

(4) \(x_1 \uparrow y_1\) E

\(x_2 \uparrow y_2\) E

\(\vdots\)

\(x_n \uparrow y_n\) E

(5) A

SST

(6) B

(7) xC

(8) D

R/S

SST

1

2

\(\hat{y}\)

\(s_{y \cdot x}\)

\(s_a\)

\(s_b\)
NOTE 1: For data at regular intervals, after fLBLB add hLSTx $f^{-1}(x)I + hxxy$ and after fLBLC add hRTN $I + f(x)$ to x.
Step 4 is changed to $x_1 \rightarrow y_1 E, y_2 E, y_3 E \ldots y_n E$ and step(5) is changed to $x_1 \rightarrow f(x) + y_1, C + y_2, C + y_3 \ldots C + y_n$.

Prgm. LR

<table>
<thead>
<tr>
<th>fLBLB</th>
<th>$f'd$</th>
<th>hxyy</th>
<th>fb</th>
<th>Σ^+</th>
<th>hRTN</th>
</tr>
</thead>
<tbody>
<tr>
<td>fLBLA</td>
<td>rCLREG</td>
<td>fPx</td>
<td>hRTN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fLBLA</td>
<td>fPx</td>
<td>RCL#</td>
<td>RCL6</td>
<td>RCL4</td>
<td>RCL6</td>
</tr>
<tr>
<td>fLBLA</td>
<td>RCL5</td>
<td>RCL4</td>
<td>gx^2</td>
<td>RCL9</td>
<td>\div</td>
</tr>
<tr>
<td>fLBLA</td>
<td>fx</td>
<td>RCLB</td>
<td>X</td>
<td>\div</td>
<td>hRTN</td>
</tr>
<tr>
<td>fLBLB</td>
<td>RCLB</td>
<td>RCLC</td>
<td>X</td>
<td>fPx</td>
<td>RCL7</td>
</tr>
<tr>
<td>fLBLB</td>
<td>\div</td>
<td>fPx</td>
<td>hRTN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fLBLC</td>
<td>fb</td>
<td>RCLB</td>
<td>X</td>
<td>RCLA</td>
<td>\div</td>
</tr>
<tr>
<td>fLBLD</td>
<td>fPx</td>
<td>RCL7</td>
<td>RCL6</td>
<td>RCL4</td>
<td>X</td>
</tr>
<tr>
<td>RCL5</td>
<td>RCL9</td>
<td>2</td>
<td>\div</td>
<td>f/\sqrt{x}</td>
<td>hRTN</td>
</tr>
<tr>
<td>RCLD</td>
<td>f/\sqrt{x}</td>
<td>\div</td>
<td>hxyy</td>
<td>hRTN</td>
<td>hxyy</td>
</tr>
<tr>
<td>gLBLb</td>
<td>[f(x)]</td>
<td>hRTN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gLBLd</td>
<td>[f(y)]</td>
<td>hRTN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fLBL0</td>
<td>$f^{-1}(y)$</td>
<td>hRTN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma f(x)$</td>
<td>$\Sigma (f(x))^2$</td>
<td>$\Sigma (f(y))^2$</td>
<td>$\Sigma f(x)f(y)$</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>$\Sigma f(x)f(y)-(\Sigma f(x)\Sigma f(y))/i$</td>
<td>$\Sigma (f(x))^2-(\Sigma f(x))^2/i$</td>
<td></td>
</tr>
</tbody>
</table>

Test:

(2) GTO fb W/PRGM hL/x SST SST fLNX SST SST geX RUN
(3) f_a (4) 1300 $\uparrow 1.47 \times 10^{-2}$ E1, 1400 $\uparrow 2.63 \times 10^{-2}$ E2, 1500 $\uparrow 4.5 \times 10^{-2}$ E3, 1600 $\uparrow 6.96 \times 10^{-2}$ E
(5) A, $a=4.112$ SST, $b = -10835$ (6) B 0.9998
(7) 1300 C 1.466 $\times 10^{-2}$, 1600 C 6.99 $\times 10^{-2}$
(8) D, $s_{lny}1/x = 0.0124$; R/S $s_a = 0.08$; SST $s_b = 745$.
Least-Square Fit of \(f(y) = a f_1(x) + b f_2(x) + c f_3(x) \)

Prgm. \(LSf_1 f_2 f_3 \) is an extension of Prgm. \(LSf(x) \).

\[
\begin{align*}
a &= \frac{(AEyf_1 - qEf_1 f_2 + rEf_1 f_3)}{D} \\
b &= \frac{(qEf_1^2 - BEyf_1 + sEf_1 f_3)}{D} \\
c &= \frac{(-rEf_1^2 - sEf_1 f_2 + CEyf_1)}{D}
\end{align*}
\]

where

\[
\begin{align*}
A &= \Sigma f_2^2 f_3^2 - (Ef_2 f_3)^2 \\
B &= \Sigma f_1 f_2^2 f_3^2 - Ef_1 f_3 Ef_2 f_3 \\
C &= \Sigma f_1 f_2^2 f_2 f_3 - Ef_1 f_3 Ef_2^2 \\
D &= AEf_1^2 - BEf_1 f_2 + CEf_1 f_3 \\
q &= \Sigma yf_1 Ef_3^2 - Ef_3 yf_2 f_3 \\
r &= \Sigma yf_2 Ef_2 f_3 - Ef_3 yf_2^2 \\
s &= \Sigma yf_3 Ef_1 f_2 - Ef_2 Ef_1 f_3
\end{align*}
\]

If \(f_1, f_2, \) and \(f_3 \) are not functions of \(x \) directly but are functions \(f(x') \) of \(x' = f'(x) \), the program provides for conversion of \(x \) to \(x' \). For example, if a solidus or liquidus curve is to be expressed as a function of \(T_{MP-T} \) rather than \(T \), \(f'(x) \) would be keyed in as \(T_{MP-CHS} \). After insertion of a set of data, additional data can be added after steps (5)-(7); follow with steps (5)-(6) for new values of \(a, b, \) and \(c \).

Directions:

1. Insert tape \(LSf_1 f_2 f_3(x) \)

2. Key GTO \(fa \ W/PRGM \), key in \(f'(x) \) SST SST SST, key in \(f_1(x) \) SST SST, key in \(f_2(x) \) SST SST, key in \(f_3(x) \) SST SST, key in \(f(y) \) SST SST, key in \(f^{-1}(y) \) RUN. If any \(f(x) = x \) or \(f(y) = y \), key in nothing for that function.

3. \(A \) (before a set of data to clear registers)

4. \(x_i \uparrow y_i \ B \) repeat for all \(i \).

5. \(C \)

6. SST SST

7. \(x \ D \)

8. \((x_1-100) \ STOE E \ + \ y_1, \ E \ + \ y_2, \) etc for \(x \) at 100 intervals.
(3) fLBLA fCLREG fP7S fCLREG hRTN

(4) fLBLB rd STOA hr+ fa STOB RCLA X
STO+1 hr+ → fb STOC RCLA X STO+2 hr+ fLBC RCLB Σ+ hr+ hr+ fc STOD RCLA X STO+3
RCLC RCLD fP7S Σ+ fP7S hLSTx RCLB X STO+0 hRTN

Rd fLBLa f'(x) ↑ ↑ f'(x) hRTN

(5) fLBLC fP7S RCL5 RCL8 fP7S STO9 hr+ STO6 RCL7 RCL5
X RCL8 gx^2 → STOA RCL9 RCL5 X RCL0 RCL8
X → STOB RCL9 RCL8 X RCL0 RCL7 X →
STOC RCL0 X RCL6 RCLA X + RCLD RCL9 RCL X
- STOD RCL2 RCL8 X RCL3 RCL7 X - STOE
RCL0 X RCL2 RCL5 X RCL3 RCL8 X - hSTT
RCL9 X - RCLDA RCLL X + RCLD T STOA
RCL3 RCL9 X RCL2 RCL0 X - STO4 RCL0 X
RCLB RCLL X - hRTN RCL6 X + RCLD ;
STOB RCLC RCL1 X RCL4 RCL9 X - RCLC RCL6

(6) X - RCLD ; STOC RCLA hRTN RCLB RCLC 164t f(x)

(7) fLBLE RCLC EEX a STOE fLBLD fa RCLLA X
STO4 hr+ ↑ fb RCLB X STO+4 HR+ ↑ fc
RCLC X STO+4 RCL4 fc hRTN 190t f(x)

P 0 1 2 3 4 5 6 7 8 9
E(1) f(3) E(2) f(2) E3 f(3)

S 5 7 8 9
E(1) f(2) E2 f(2) E2 f(2)

Reg. A B C D E I
f(y) f1(x) f2(x) f3(x)
A B C D
a b c r q

TEST:

(2) GTO fa w/PRGM 3 EEX 3 - CHS SST SST SST SST SST gx^2 SST SST 3 h y^x
SST SST h 1/x SST SST h 1/x RUN

(3) A (4) 1800 + 2.2894x10^{-4} B 2.07x10^{12}; 1900 + 2.7465x10^{-12} B 1.46x10^{12};
2EEX 3 + 3.333x10^{-4} B 1x10^{-12}; 2100 + 4.1x10^{-4} B 6.56x10^{-11}; 2200
5.1235x10^{-4} B 4.1x10^{11}

(5) C, 0.992 (6) SST 1.016x10^{-3} SST 9.92x10^{-7}; (7) 2200 D 5.1235x10^{-4};
1800 D 2.2894x10^{-4} (8) 1700 STOE E 2.2894x10^{-4} E 2.746x10^{-4};
3.333x10^{-4} E 4.100x10^{-4} E 5.1235x10^{-4}.
The common practice of high precision fitting of experimental data with a power series with a large number of terms is not followed here. The experimental error inherent in most data do not warrant high precision fits and the use of a large number of terms that work against one another makes it impossible to assign physical significance to any term. When the data have been made available at even intervals, the use of orthogonal functions such as the Chebyshev polynomials of Chapter 1 to fit \(f(y) = \sum_{n} a_n f(x)^n \) offers many advantages. The orthogonality makes the solution of matrices simple and a change in the number of terms does not change the coefficients of the earlier terms. However, there are often theoretical reasons to expect a better fit with a mixture of functions such as \(\ln x \) with powers of \(x \) as well as inverse powers of \(x \). Then \(f(y) = a + bf_1(x) + cf_2(x) \) or \(f(y) = af_1(x) + bf_2(x) + cf_3(x) \) can be fit using the previous programs. The next section describes ways of using additional functions without increasing the number of independent parameters.

Fit of Data to Equations with More Than Three Constants

The solution of simultaneous equations with more than three variables requires \(4 \times 4 \) and higher matrices. If the data are available at even spaced \(x \) values, a much simpler procedure involves the use of orthogonal polynomials such as the Chebyshev polynomials. Such a simpler procedure is to use interpolation programs to provide data for evenly spaced \(x \) values and to fit the data with a Chebyshev polynomial as illustrated in Chapter I.

Sometimes, it is desired to fit data to a four constant equation, but it may not be advisable to fit an equation with four simultaneously adjustable constants, as errors in the data can yield quite unreasonable constants when the four terms are allowed to work against one another in an attempt to fit the scattered data. A procedure for fitting the four constants with only three being independently adjusted will be illustrated for heat capacity data and for values of enthalpy increments available from drop-calorimeter measurements. The equation \(C_p = a + bT + cT^{-2} \) is often adequate for many substances for a considerable temperature range above room temperature and can be fit as described for a three constant fit. The negative \(cT^{-2} \) term represents the drop in heat capacity at lower temperatures due to quantized vibrational levels. The 'a' term corresponds to the classical Dulong and Pettit value.
The 'bT' arises from electronic, thermal expansion and anharmonicity contributions. These contributions also provide higher order terms which together with a contribution from vacancy formation necessitate a \(d/T^2\) term at higher temperatures. The enthalpy equation corresponding to \(C_p = a + bT + cT^{-2} + d/T^2\)
is
\[\text{HT}_{\text{Std}} - \text{HT} = a(T - T_{\text{Std}}) + \frac{1}{2}b(T^2 - T_{\text{Std}}^2) - c(T^{-1} - T_{\text{Std}}^{-1}) + (d/3)(T^3 - T_{\text{Std}}^3).\]
As the enthalpy data often have approximately the same percent error over the temperature range of study, the expression to be fitted by least-square procedures is often
\[\frac{(\text{HT}_{\text{Std}} - \text{HT})}{(T - T_{\text{Std}})} = a + \frac{1}{2}b(T + T_{\text{Std}}) + c/T_{\text{Std}} + (d/3)(T^2 + T_{\text{Std}}^2 + T_{\text{Std}}^2).\]
If both the 'c' and 'd' terms are important, there will be a minimum value of \(dC_p/dT\) at \(T^*\) with \(-3c/d\) with the contribution of the \(d/T^2\) term becoming very small at lower temperatures and with the contribution of the \(cT^{-2}\) term becoming very small at higher temperatures. A first approximation to \(T^*\) can be obtained from inspection of the data. A revised value can be selected upon examination of the deviations between observed and calculated \(C_p\) values near \(T^*\). A practical way of treating the data is to replace the constant \(d\) by \(-3c/(T^*)^{1/4}\) to obtain \(C_p = a + bT + c[T^{-2} - 3(T^*)^{-1}T^2]\). One could also replace \(c\) to obtain \(C_p = a + cT + d[T^2 - \frac{1}{3}(T^*)^{4}T^{-2}]\). The equations are equivalent. Program LSf(x) can be used with \(f_1(x) = T\) and \(f_2(x) = T^2 - 3(T^*)^{-1}T^2\) if the constant \(c\) is retained or with \(f_2(x) = T^2 - \frac{1}{3}(T^*)^{4}T^{-2}\) if the constant \(d\) is retained. Program LSCp is given here with the constant \(c\) retained.

Directions:

1. Insert tape LS Cp
2. T* A
3. T B (repeat for all data)
4. Cp R/S
5. R/S
6. SST SST SST
7. T C
8. Ti H1-H298 fa
9. T D
10. R/S

Display

\[T^*\]
\[T\]
\[C_p f_2(x)\]
\[a\]
\[b, c, d\]
\[C_p\]
\[T_i\]
\[H-H_1\]
\[H-H_{298}\]

NOTE: If \(T_i = 298.15\), key \(H_1-H_{298} = 0\) in step 8. Start at step 2 for each new set of data. To add more data after step 6, RCL3 STOX5 and start with step 3 again.
Test:

(2) 740 A; (3) 500 B; (4) 1.35 R/S 2.0 \times 10^{-6}; EEEX 3 B; 2.9 R/S - 2.6 \times 10^{-5};
1500 B; 1.7056 R/S - 1.0 \times 10^{-6}; 2EEX 3 B; 6.975 R/S - 2.8 \times 10^{-4}
(5) R/S 0.999; (6) SST 0.003001, SST - 99932; SST 0.9993 \times 10^{-6}
(7) 500 C 1.350; (8) 298.15 \div 0 \times 298.15; (9) 500 D 179.9 (10) R/S 179.9

Program LS C*: can be readily adapted to the fit of \((H_T - H_{T*})/(T - T_1)\) values
to the constants a, b, c and d.

\[
\frac{(H_T - H_{T*})}{(T - T_1)} = a' + b'T + c'f(T)
\]

where

\[
a' = a + \frac{1}{2}bT_1 - cT_1^3(T* - T_1)^{-1} = a + \frac{1}{2}bT_1 + \frac{1}{3}dT_1^2
\]

\[
b' = \frac{1}{2}b - cT_1(T* - T_1)^{-1} = \frac{1}{2}b + \frac{1}{3}dT_1
\]

\[
c' = -c(T* - T_1)^{-1} = \frac{1}{3}d
\]

\[
f(T) = T^2 - (T*)^2/T^2_1
\]
Directions:
(1) Insert tape LS H*
(2) T* \rightarrow T \rightarrow H$_1$-H$_{298}$ A
(3) T B
 repeat for all data
(4) H-H$_1$ R/S
 \[f_2(T)(H-H_1)/(T-T_1) \]
(5) R/S
(6) SST SST SST
(7) T C
(8) T D
(9) R/S

Test:
(2) 740 \rightarrow 298.15 \rightarrow 0 A 740
(3) 500 B; (4) 180 R/S - 1570828; EEX 3 B; 1246.5 R/S - 10220;
 1500 B; 3130 R/S 4113513; 2EEX3 B; 6030 R/S 12391015;
(5) R/S 9.9997x10$^{-7}$ (6) SST - 99953, SST 0.001000, SST 1.00048;
(7) 500 C 1.35; 500 D 180; R/S 180

Prgm. LS H*
(2) fLBLA fCLREG STOO hRh fPES fCLREG hSTI hRh STOE hRTN
(3) fLBLB \uparrow \uparrow \uparrow fe hRh \uparrow hLSTx hRTN
(4) STOO CLx hRCI - RCL0 htxy \div hRh htxy
 STO$+$5 X STO$+$6 hRh hLSTx X STO$+$7 hRTN
(5) The next 91 steps to STOA are unchanged from Prgm.L$Sf(x)$ except for changing hSTOI and hRCI to ST06 and RCL6 at steps 73 and 90.
 RCLC 3 X STOD RCLB RCLC hRCI X - RCLB
 ST01 htxy 2 X ST0B hRh hRCI X RCLA ST00
 - CHS ST0A RCLC \downarrow hyx RLCX X CHS ST0C
 RCLB htxy RCLD hRTN hRh hRh hRh
(6) fLBLD RCLI htxy X hLSTx fe hLSTx f\sqrt{x} htxy RCLD
 X 3 \div htxy hRh $+$ RCL0 $+$ hRh hRCI
 - X hRTN fP\divS RCL0 fP\divS $+$ hRTN
 gLBLfe RCLE \uparrow \div hyx hRCI \div htxy \div CHS
 hLSTx gx2 $+$ hRTN
(7) fLBLC \uparrow \uparrow hL$/x$ gx2 RCLC X htxy RCLB X
 + RCLA + hRTN 220 memory steps.

All registers are the same as for L$Sf(x)$ except that u is stored in R6,
H$_1$-H$_{298}$ in S0, a' is added to R0, b' is added to R1 and A to I are as follows:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'</td>
<td>b'</td>
<td>c'</td>
<td>d</td>
<td>T*</td>
<td>T$_1$</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program \(Lsf(x) \) and the related programs fit data to a three constant equation. To least-square fit the two constant \(y = bf_1(x) + cf_2(x) \) equation, it is necessary to minimize \(\sum [y - bf_1(x) - cf_2(x)]^2 \) to obtain the two equations:
\[
b\sum f_1^2 + c\sum f_2 f_2 = \sum y f_1 \quad \text{and} \quad b\sum f_1 f_2 + c\sum f_2^2 = \sum y f_2.
\]
Simultaneous solution yields
\[
b = (\sum y f_1 f_2^2 - \sum y f_2 f_2 f_2)/(D) \quad \text{and} \quad c = (\sum y f_2 f_2 f_1^2 - \sum y f_2 f_1 f_2 f_2)/(D)
\]
where \(D = \sum f_1 f_3 f_2 - (\sum f_1 f_2)^2 \). With \(f_1(x) = x^0 \), the above equations would also fit to a equation with a constant term plus a function of \(x \). However, program SD-03A of the HP-67 Standard Pac(18) covers several of the commonly used simple functions such as \(y = a + bx \), \(y = ae^{bx} (a > 0) \), \(y = a + blnx \), and \(y = ax^b (a > 0) \).

A program based on the above equations for a two constant fit is given here to deal with properties of binary solutions as a function of mole fraction, \(x \), which varies from 0 to 1. The properties \(C_p, H, S \) and \(G \) are expressed as functions of \(x \) in the following manner:
\[
\bar{Y}_1 = bx_2^2 + cx_2^2, \quad \bar{Y}_2 = (b + \frac{3}{2}c)x_1^2 - cx_1^3, \quad \text{and} \quad Y = x_1 x_2 (b + \frac{1}{2}c + \frac{1}{2}cx_2).
\]

In many solutions, the change from an excess of one component to an excess of the other component changes the character of the interaction and the constants of the function. Thus, it is often expedient to fit each portion of the composition range independently with the change often at the midpoint, but frequently at other compositions depending upon the orbitals being utilized as one metal is added to another. When a single equation is not used over the entire composition range for partial molal quantities, a constant of integration of the Gibbs-Duhem equation must be evaluated at the overlapping composition for \(\bar{Y}_1 \) at high \(x_2 \) or for \(\bar{Y}_2 \) at high \(x_1 \) to assure continuity of the functions. The programs given below provide for evaluation of the constant of integration when necessary.

Because of occurrence of substantial systematic errors in many data, complications in the character of the interactions, and inherent bias of the least-square process when applied to the functions of interest, suitable weighting of the data is very important. A variety of weighting procedures are used. Key A makes a least-square fit to \(\bar{Y}_1 = bx_2^2 + cx_2^2 \), which heavily weights values at high \(x_2 \). Key B uses \(\bar{Y}_1/x_2 = bx_2 + cx_2^2 \) to reduce the bias of the least-square process toward high \(x_2 \) values. Key C uses \(\bar{Y}_1/x_2^2 = b + cx_2 \) to further reduce the weight at high \(x_2 \). Components are assigned 1 and 2 so that the experimental \(\bar{Y} \) is \(\bar{Y}_1 \). When integral quantities are available, key D fits \(Y/x_1 x_2 = b + \frac{1}{2}c + \frac{1}{2}cx_2 \).
When a single equation for Y_1 is not used over the entire composition range, the integration of the Gibbs-Duhem equation (12) to obtain \bar{Y}_2 at high x_1 requires evaluation of a constant of integration which is obtained from

$$d = \frac{1}{4}[(b' + c') - (b'' + c'')]$$

where the single primes apply to the constants for the $x_1^1 = 0.5 - 1$ range and the double prime applies to the constants for the $x_1^2 = 0 - 0.5$ range. When the change in equations is at a value of x_1 not at the midpoint, $d = x_1^2[(b' + c'(\frac{3}{2} - x_1)] - [b'' + c'(\frac{3}{2} - x_1)]$ which is stored in RD for evaluation of \bar{Y}_2 and Y at low x_2''.

To calculate Y_1, \bar{Y}_2 or Y given b and c, store b in RB and c in RC and steps 6 to 8 will yield the desired quantities. If necessary, d should also be stored in RD.

Directions:

(1) Insert Prgm. LS \bar{Y}

(2) f a

To fit $Y_1 = bx_2^2 + cx_2^3$

(3a) x_2 A
Repeat for all data

(4a) \bar{Y}_1 R/S

(5) R/S

(6) x_2 E

(7) R/S

(8) R/S

To fit $\bar{Y}_1/x_2 = bx_2 + cx_2^2$

(3b) x_2 B
Repeat for all data

(4b) \bar{Y}_1 R/S

Steps 5-8 as above

To fit $\bar{Y}_1/x_2 = b + cx_2$

(3c) x_2 C
Repeat for all data

(4c) \bar{Y}_1 R/S

Steps 5-8 as above

To fit $Y/x_1 x_2 = b + \frac{1}{2}c + \frac{1}{2}cx_2$

(3d) x_2 D
Repeat for all data

(4d) Y R/S

(5) R/S

(5d) R/S

Steps 6-8 as above
NOTE 1: For each new set of data, start at step 2.

NOTE 2: Once constants b, c, and, if necessary, d are stored, steps 6-8 can be repeated for any values of x in range of fit.

NOTE 3: For calculations of \(Y_2 \) at low \(x_2 \) values, \(d \) is needed if the original \(Y_1 \) data were not fit to a single equation for the entire composition range as explained in the text. For such a situation, follow step 6 with step 6' after evaluation of data for \(x_2 = 0 \) to 0.5 range. Step (6'): \((b' + c') f_e \) will store \(d = \frac{1}{4}[(b' + c') - (b'' + c'')] \) in register D. When the break in the data treatment is not at \(x = 0.5 \), use equation for \(d \) in the text.

Program Y

(2) gLBLFe fCLREG fP+:S fCLREG hRTN
(3a) gLBLA \(+ \) gx² X hLSTx \(\Sigma^+ \) hLSTx hRTN
(4a) X STO+1 hx²y hLSTx X STO+2 hRTN GTOO
(3b) gLBLB gx² hLSTx \(\Sigma^+ \) hLSTx hRTN
(4b) STO+1 X hRTN GTOO
(3c) fLBC 1 hR² hR² hRTN
(4c) \(+ \) hR² hx²y \(\div \) STO+2 hR² hLSTx gx² \(\div \) STO+1 hRTN GTOO
(3d) fLBD fGSBC \(+ \) \(+ \) 1 - CHS hRTN
(4d) hx²y \(\div \) STO+2 hx²y \(\div \) STO+1 hRTN
(5) fLBO fP+:S RCL5 RCL8 RCL7 fP+:S STO5 hR² STO4 hR²
STO+3 RCL2 X RCL1 RCL4 X - RCL3 RCL5 X
RCL4 gx² X - RCL0 \(\div \) STO+3 STOC RCL1 RCL5 X RCL2
STOB hLSTx 2 X STOC f-x- RCLB hRTN
(6) fLBE STO9 gx² hLSTx RCLC X RCLB + STOA X hRTN
(7) 1 RCL9 \(- \) STO8 gx² RCLC 2 \(\div \) RCLA +
X RCLD + hRTN
(8) RCL9 X hx²y RCL8 X + hRTN
(6') gLBLFe RCLB RCLC \(+ \) \(- \) 4 \(\div \) STOD hRTN

<table>
<thead>
<tr>
<th>R</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>(\Sigma f_1)</td>
<td>(\Sigma f_2)</td>
<td>(\Sigma f_1^2)</td>
<td>(\Sigma f_1 f_2)</td>
<td>(\Sigma f_2^2)</td>
<td>(x_1)</td>
<td>(x_2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RS</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma f_1^2)</td>
<td>(\Sigma f_2^2)</td>
<td>(\Sigma f_1 f_2)</td>
<td>(b+c)</td>
<td>(\frac{1}{2}c)</td>
<td>(b+\frac{1}{2}c)</td>
<td>(b+3c)</td>
<td>(\frac{1}{2}c)</td>
</tr>
</tbody>
</table>

b+cx₂ b c d
The following values can be used to test Prgm. \(\bar{\bar{Y}} \).

<table>
<thead>
<tr>
<th>(x^2)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{Y}_1)</td>
<td>4</td>
<td>24</td>
<td>72</td>
<td>160</td>
<td>300</td>
<td>504</td>
<td>784</td>
<td>1152</td>
<td>1620</td>
</tr>
<tr>
<td>(\bar{Y}_2)</td>
<td>1134</td>
<td>1024</td>
<td>882</td>
<td>720</td>
<td>550</td>
<td>384</td>
<td>234</td>
<td>112</td>
<td>30</td>
</tr>
<tr>
<td>(\bar{Y})</td>
<td>117</td>
<td>224</td>
<td>315</td>
<td>384</td>
<td>425</td>
<td>432</td>
<td>399</td>
<td>320</td>
<td>189</td>
</tr>
</tbody>
</table>

As these values are derived from \(\bar{Y}_1 = bx^2 + cx^3 \) with \(b = 200 \) and \(c = 2000 \), any of the weighting procedures of Prgm. \(\bar{Y} \) will yield \(b = 200 \) and \(c = 2000 \).
CHAPTER III
Standard Thermodynamic Calculations

A. Thermodynamic Properties of Gases

The several programs tabulated here are designed to calculate the translational, electronic, vibrational and rotational contributions to the thermodynamic functions of gaseous molecules using the equations given in Chapter 27 of Ref.(12). For gaseous atoms, Prgm. E-A provides the electronic and translational contributions to the thermodynamic functions. It can also be used to calculate only the electronic contribution for either atoms or molecules.

Program D-LT calculates the translational, rotational and vibrational contributions for diatomic or linear polyatomic molecules. Program Cor calculates the corrections to the results of Prgm. D-LT if the effects of anharmonicity, centrifugal stretching and vibration-rotation interaction are to be included. When it is desired to obtain moments of inertia for the rotational calculations from molecular constants, Prgm. ID can be used to calculate B_0 values for diatomic or linear molecules, moments of inertia or products of moments of inertia for a variety of molecules including bent triatomic, symmetric top CBA$_3$, octahedral BA$_6$, etc. Program NL uses the product of the moments of inertia of non-linear molecules to calculate the translation, rotational and vibrational contributions.

The spectroscopic constants used should be expressed in units of cm$^{-1}$, the unit conventionally used in spectroscopic publications. All the thermodynamic quantities are calculated in dimensionless form, which is most suitable for direct calculation of equilibrium constants. However, the programs provide for multiplication by R in appropriate units to yield the functions in the units desired.

In identifying quantities, the subscripts e, r, t and v are used to refer to electronic, rotational, translational and vibrational contributions, respectively. The superscript o for quantities including translational contributions indicate that the values are for the gaseous standard state, although the superscript is not always shown, as all values are for the gaseous standard state.
Diatomic or Linear Polyatomic Gases

Program D-LT uses the rotational constants \(B_e \) and \(\alpha \), the symmetry number \(\sigma \), the vibrational constants \(w_e \) and \(x_e w_e \), and the molecular weight \(M \). The calculations using the equations on pp. 420-30 of Ref. (12) proceed as follows with
\[y = \frac{hc(B_e - \frac{1}{2}\alpha)}{kT} \text{ and } u = \frac{hc(w_e - 2x_e w_e)}{kT} \]

\[C_{r,t}/R = \frac{y^2}{2} + \frac{y^2}{45} + \text{Ln} \sigma - \frac{y^2}{90} + \frac{3}{2} \text{Ln} M - 3.665 + \frac{\text{Ln} T}{2}, \]
\[-(G-H_0)_{r,t}/RT = S_{r,t}/R + y/3 + \frac{y^2}{45} - \frac{y^2}{T}, \]
\[(H_{298}-H_0)_{r,t}/R = 298.15\left(\frac{y}{3} - \frac{1}{3}y_{298} - \frac{1}{45}y_{298}^2\right), \]
\[-(G-H_{298})_{r,t}/RT = -(G-H_0)_{r,t}/RT + (H_{298}-H_0)_{r,t}/RT, \]
\[(H-H_0)_{r,t}/RT = \frac{y}{2} - \frac{1}{45}y^2 \]
\[(H-H_{298})_{r,t}/R = [(H-H_0)_{r,t}/RT - (H_{298}-H_0)_{r,t}/RT]T \text{ with } -(H_{298}-H_0)_{r,t}/RT \]

obtained by subtracting \(-(G-H_{298})_{r,t}/RT\) from \(-(G-H_0)_{r,t}/RT\) stored in the stack.

\[C_v/R = \frac{u^2}{e^u/(e^u-1)^2}, -{(G-H_0)_v}/RT = -\text{Ln}(1-e^{-u}), \]
\[(H-H_0)_v/RT = u/(e^u-1), S_v/RT = (H-H_0)_v/RT - (G-H_0)_v/RT, \]
\[(H_{298}-H_0)_v/R = \frac{(uT)}{(e^{298}-1)}, -(G-H_{298})_v/RT = -(G-H_0)_v/RT + (H_{298}-H_0)_v/R \]
\[(H-H_{298})_v/R = \frac{T[(H-H_0)_v/RT - (H_{298}-H_0)_v/RT]}{T}. \]

The various contributions to \(S/R, C_p/R, -(G-H_{298})/RT, (H-H_{298})/R \) and \((H_{298}-H_0)/R \) are summed and are finally stored in registers 5 to 9, respectively.

Directions:

(1a) Insert Tape D-LT
(1b) Insert Data Tape D-LT

Diatomic Gas

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>(M) (+ B_e) (+ \alpha) (+ \sigma)</td>
<td>(A)</td>
<td>(Display)</td>
<td>(1.5 \text{ Ln} M-3.665)</td>
</tr>
<tr>
<td>(3)</td>
<td>(w_e) (+ x_e w_e)</td>
<td>(B)</td>
<td>(uT)</td>
<td>(C_p/R)</td>
</tr>
<tr>
<td>(4)</td>
<td>(T)</td>
<td>(C)</td>
<td>(S^0/R)</td>
<td>(-(C^0-H^0_{298})/RT)</td>
</tr>
<tr>
<td>(5)</td>
<td>(R/S)</td>
<td>((H^0_{298}-H^0_0)/R)</td>
<td>((H^0_{298}-H^0_0)/R)</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>SST</td>
<td>(C_p)</td>
<td>(S^0)</td>
<td>(-(G^0-H^0_{298})/T)</td>
</tr>
<tr>
<td>(7)</td>
<td>(R)</td>
<td>(D)</td>
<td>(H^0-H^0_{298})</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>(R/S)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cont'd.
cont'd. from p. 1

Triatomic Linear Gas

(2)	$M + B_e + \alpha + \sigma$	A
(3)	$w_e' + x_e w_e B$	
(3a)	$w_e'' + x_e w_e' f b$	
(3b)	$w_e'' + x_e w_e'' f b$	
(4T)	$T E$	

Display

| 1.5 lnM-3.665 |
| $u'T$ |
| $u''T$ |

NOTE 1: After constants are entered, start at step 4 or 4T for each temperature. After completing calculations for one molecule, go back to step 1b before entering constants for new molecule. However, entering $f P=8$ RCL 2 STO A RCL 3 h STI $f P=8$ or entering 3.665 STO A 1.4388 h STI will replace step 1b and allow starting at step 2.

NOTE 2: w_e'' must be doubly degenerate bending frequency. If α or $x_e w_e$ are not known, key zero.

NOTE 3: Step 7 can follow either step 4, 5 or 6, but step 5 can only follow step 4, step 6 can only follow step 5, and step 8 can only follow step 7.

Test for Diatomic

(2)	114.938 + .314 + .003 + 1 A 3.452;
(3)	700 + 7 B 987.017; (4) $EEX 3 C 4.423$
(5)	R/S 32.981, 29.975, 3005.472; (6) SST 1080.765
(7)	1.98719 D 8.789; (8) R/S 65.539, 59.567, 5972.444

Test for Linear Triatomic

(2)	113.936 + .211 + 0 + 2 A 3.438;
(3)	700 + 0 B 1007.160;
(3T')	650 + 0 fb 935.220;
(3T'')	150 + 0 fb 215.820;
(4T)	$EEX 3 E 7.342; (5) R/S 38.822, 33.874, 4947.9
(6)	SST 1527.743; (7) 1.98719 D 14.590; (8) R/S 77.146, 67.314, 9832.4.
Prgm. D-LT

Data Tape: 298.15 in E, 3.665 in A and RS2, and 1.4388 in I and RS3.

Tape D-LT

(2) fBLA STOC hR+ 2 \div - hRCI X STOB hR+
 fLN 1 \bullet 5 X RCLA - STOA hRTN

(3) fLBLb fGSO STOD hRTN

(3T) gLBLfSb fGSO hF?2 GT01 ST00 hSF2 hRTN

(4) fBLB ST1 hRTN

(4T) fBLLE hSF0 fGSO RCL0 fGSO2 ST00 fGSO3 RCL1 fGSO2 ST01
 fGSO3 RCL0 fGSO2 RCL1 ST00 hR+ ST01 hF0 CT04
 fBLF RCLD hxy STOD hR+ hRTN

(4T) fBLFB RCLD hxy ST02 gx^2 4 5 \div
 ST03 3 \bullet 5 ST06 + RCLC RCL2 X fLN
 CHS RCL6 + RCL3 2 \div - RCLA + hRCI
 fLN 2 \bullet 5 X + \Sigma + hLSTx RCL2 3
 \div RCL3 + ST03 + RCL6 - RCLB 3 \div
 RCLE \div \uparrow gx^2 5 \div + RCL6 - RCLE
 X CHS ST09 hRCI + ST07 - RCL3 -
 RCL6 + hRCI X ST08
 fBLF RCLD hRCI \div ST02 gx^2 hLSTx geX ST03 X
 hLSTx 1 - ST04 gx^2 \div RCL3 RCL4 \div fLN
 ST05 RCL2 RCL4 \div ST06 + \Sigma + RCL5 RCL2 RCLD
 RCLE \div ge^X 1 - \div ST05 + ST0+7 -
 RCL6 + hRCI X ST0+8 RCL5 hRCI X ST0+9 hF?0
 hRTN

(5) fBLB4 RCL+ ST05 hxy ST06 fBLB6 hRTN hR+ f-x- RCL7

(6) f-x- RCL8 hRTN RCL9

(7) fBLBD STOX5 STOX6 STOX7 STOX8 RCL5 RCL6 GTO6

<table>
<thead>
<tr>
<th>R 0 1 2 3 4 5 6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>u'T u''T y \ y^2/45 e^{-1} -ln(1-e^{-u}) 3.5</td>
<td>H = H_298/RT</td>
<td>H = H_298/R</td>
<td>H_298-H_0</td>
</tr>
<tr>
<td>u'T u''T \ y + \ y^2/45</td>
<td>(H_298-H_0R)u</td>
<td>u \ e^{-u}</td>
<td></td>
</tr>
<tr>
<td>u''T u''T \u e^u</td>
<td>\Sigma S/R</td>
<td>\Sigma C_p/R</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R S2 S3 S4 S6</th>
<th>R A B C D E I</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.665 1.4388 \Sigma S/R \Sigma C_p/R</td>
<td>3.665 y^T \sigma u'T 298.15 1.4388</td>
</tr>
<tr>
<td>(3.665) \ y^T</td>
<td>u''T T</td>
</tr>
<tr>
<td>\sigma</td>
<td>u''T</td>
</tr>
<tr>
<td>1.4388</td>
<td>298.15</td>
</tr>
<tr>
<td>u''T</td>
<td>T</td>
</tr>
</tbody>
</table>
Calculation of Contributions from Anharmonicity, Centrifugal Stretching and Vibration-Rotation Interaction

Program Cor provides the corrections to be applied to the thermodynamic functions calculated for a diatomic molecule by the harmonic-oscillator-rigid-rotator approximation. The initial spectroscopic values are used in units of cm\(^{-1}\). The final results are first displayed in dimensionless form with the quantities divided by \(R\), the gas constant. Insertion of \(R = 1.98719\text{cal/K mol} = 8.3144\text{J K}^{-1}\text{mol}^{-1}\) will yield the values in either set of units. However, the dimensionless values are the most suitable if the values are to be used for subsequent equilibrium calculations; steps 7 and 8 can be omitted if quantities in dimensions are not needed. The calculations are based on the following equations on pp. 430-7 of Ref. (12).

\[
\begin{align*}
\omega_0 &= \omega_e - 2x_e \omega_e, \\
\beta_0 &= \beta_e - \frac{1}{2}\alpha, \\
x &= \omega_e \omega_e / \omega_0 \\
\frac{\left(\frac{F-H_0}{RT}\right)_{\text{cor}}}{\text{cor}} &= \left[\delta + 2\omega u/(e^u - 1)\right]/(e^u - 1) + 8 \gamma / u \\
\frac{\left(\frac{H-H_0}{RT}\right)_{\text{cor}}}{\text{cor}} &= \left[\delta u^2 e^u (e^u + 1) + 2u (e^u - 1) (2u)/ (e^u - 1)^2 + 8 \gamma / u \\
\delta_{\text{cor}} / R &= \left(\delta u^2 e^u (e^u + 1) + 2u (e^u - 1) (2u)/ (e^u - 1)^2 + 8 \gamma / u \\
S_{\text{cor}} &= (H-H_0)_{\text{cor}}/T - (F-H_0)_{\text{cor}}/T.
\end{align*}
\]

Directions:

1. Insert tape Cor
2. \(\omega_e \uparrow x_e \omega_e \uparrow \beta_e \uparrow \alpha A\)
3. SST
4. SST
5. T B
6. SST will flash the following quantities sequentially
7. R C
8. SST

Display

\[
\begin{align*}
(H_298-H_0)_{c/R} \\
\left(S_{298}\right)_{c/R} \\
\left(C_{298}\right)_{c/R} \\
-(G-H_298)_{c/RT} \\
S_{c/R} \\
C_{c/R} \\
-(G-H_298)_{c/RT} \\
-(G-H_298)_{c/T} \\
(H-H_298)_{c} \\
S_{c} \\
C_{c} \\
-(G-H_298)_{c/T}
\end{align*}
\]

NOTE: Steps 3 and 4 can be skipped if corrections to \(S_{298}\) and \(C_{298}\) are not needed. Once step 2 has been run, start at step 5 for each temperature. Steps 7 and 8 can be omitted if dimensionless quantities are adequate.
Test:

2359.6 \pm 14.46 \pm 2.01 \pm .0187 A 0.181; SST 0.001; SST 0.001

2 \times 10^{-3} B 0.007; SST 23.7, 0.019, 0.030, 0.007

1.98719 C 0.0147; SST 47.1, 0.038, 0.060, 0.0147
Moments of Inertia

The moments of inertia of molecules are needed to calculate the rotational contributions to thermodynamic properties using PrGs, DLT and NL. When there is more than one value, I_S is the moment about the axis of greatest symmetry. I'' indicates a doubly degenerate moment. The symmetry number, σ, is tabulated along with the equations for I. If m is the atomic weight of A and r is the internuclear distance in \AA, mr^2 must be divided by $10^{16} N_0 = 6.02209 \times 10^{39}$ to obtain units of $g\,cm^2$.

Program ID calculates $I \times 10^{39}$ in $g\,cm^2$, $B_0 = h/8\pi^2 cI$ in cm^{-1} for linear molecules, and the product of the three principal moments of inertia, $D \times 10^{117}$, for non-linear molecules. For symmetric top molecules and unsymmetric linear molecules, m_1 is atomic weight of A, m_2 of B and m_3 of C.

Diatomic A_2, $\sigma = 2$
$I'' = \frac{1}{2}mr^2$

Linear ABA, $\sigma = 2$
$I'' = 2mr^2$

Planar BA$_3$, $\sigma = 6$
$I_S = 3mr^2$

Tetrahedral BA$_4$, $\sigma = 12$
$I = \frac{8}{3}mr^2$

Trigonal Bipyramid BA$_5$, $\sigma = 6$
$I_S = 3mr^2$

Octahedral BA$_6$, $\sigma = 24$
$I = \frac{4}{2}mr^2$

Bent BA$_2$, $\sigma = 2$
$I_S = \frac{mr^2(2 - \frac{1 + \cos \theta}{1 + \frac{m_B}{2m}})}{2}$

$I = \frac{mr^2(1 + \cos \theta)}{(1 + 2m/m_B)}$

$I = \frac{mr^2(1 - \cos \theta)}{3}$

For a symmetric top $C \xrightarrow{\theta} B \xleftarrow{A}$, $\sigma = 3$, and θ in degrees.

$I_S = 3m_1r_{12}^2(1 - \cos \theta)$

$I'' = m_1r_{12}^2(1 - \cos \theta) + \frac{m_1(m_2 + m_3)r_{12}^2(1 + 2 \cos \theta)}{3m_1 + m_2 + m_3}$

$+ \frac{m_3r_{23}^2}{3m_1 + m_2 + m_3} \left[(3m_1 + m_2)r_{23} + 6m_1r_{12} \left(\frac{1 + \cos \theta}{3} \right)^{\frac{1}{2}} \right]$

If $m_3 = 0$, the equations give I for the symmetric top $B \xrightarrow{\theta} A \xleftarrow{A}$, $\sigma = 3$.

If $m_1 = 0$, I'' becomes the doubly degenerate moment of inertia of diatomic C-B, $\sigma = 1$.

If $\theta = 0$, I'' becomes the moment of inertia of a linear triatomic molecules with atomic masses m_3, m_2 and m_1, if m_1 is divided by three at the initiation of the program.
Directions:
(1) Insert Prgm. ID
(2) m → r A
 Diatomic A₂
(3) R/S

 Linear ABA
(3LT) BA
 Planar BA₃
(3P) C

 Tetrahedral BA₄
(3T) D

 Trigonal Bipyramid BA₅
(3TB) E

 Octahedral BA₆
(3 OC) F a

 Bent Triatomic BA₂
(3BT)m/mB → θ → b

 Symmetric Top CBA₃
(2a) r₁₂ + m₁ → θ → c
(3a) r₂₃ + m₃ + m₂ R/S

 Symmetric Top BA₃
(2b) r₁₂ + m₁ + θ → c
(3b) 0 + m₂ R/S

 Linear CBA
(2c) r₁₂ + m₁ → d
(3c) r₂₃ + m₃ + m₂ R/S

 Diatomic CB
(2d) r₂₃ + m₃ + m₂ → e

Display
 mx²/6.02209
 Iⁿ x 10⁻³⁹, Be
Prgm. ID

(2) fLBLA \(\frac{gx^2}{x} \) STO 4 \(\div \) STO A hRTN 1.4
(3D) 5 fGSBO GTO 1 1.8
(3LT) fLBLB 2 fGSBO fLBL1 STOO 2 \(\div \) STO1 hRTN 3.4
3 2 hxy \(\div \) STO 2 hRTN 4.3
(3P) fLBLC 3 fGSBO STOO 1 \(\div \) fGSBO GTO 2 5.1
(3T) fLBLD 8 \(\div \) 3 \(\div \) fGSBO GTO 2 6.0
(3TB) fLBLE 3 fGSBO STOO 3 \(\div \) 5 fGSBO GTO 2 7.6
(3 OC) gLBLfr \(\frac{1}{x} \) fGSBO fLBL2 STO 1 \(\div \) STO 3 hRTN 1.12
fLBL0 RCLA hxy X \(\div \) STO 3 hRTN 13.7
(3 BT) fLBLfb fCOS \(\frac{1}{x} \) STO 8 hxy \(\frac{1}{x} \) STO 7 h \(\frac{1}{x} \) 2 \(\div \) 2 X \(\div \) fGSBO STOO hRTN 11.2
fGSBO X \(\div \) STO 3 hRTN 13.7
(2a-d) gLBLfc fCOS STO 5 hXY STOE fGSBA 1 RCLD 19.1
RCL A X STO 6 2 X RCLD 2 X 1
\(\div \) STO 7 hxy STOO hRTN 13.7
(3a-c) fLBL3 STOB hxy STOC \(\div \) RCLA X RCL 5 3 X
RCL + STO 8 RCLC \(\div \) STO 9 \(\div \) RCL 7 \(\div \) X RCL 6
\(\div \) hxy hSTI hXY RCL 7 3 \(\div \) f/ \(\frac{1}{x} \) RCL 5 X
+ X RCLE X RCLI hRCI X \(\div \) + RCL 4 \(\div \) + STO 1 f/x \(\frac{1}{x} \) gx 2
RCL 0 X STO 3 hRTN 19.1
(2c) gLBLfd \(\frac{3}{x} \) \(\div \) 0 gGSBfc hRTN 19.7
(3c) fGSB3 RCL 1 fGSB 1 hRTN 20.1
(2d) gLBLfe STOB CLX hN+ STOC CLX hN+ hSTI hN+ hN+ gGSBfe hRCI RCLC RCLB fGSB3 RCL 1 fGSB 1 hRTN 21.9

R 0 1 2 3 4 5 6 7 8 9
1" B 6.022 m 1 m 1 r 12 \(1 - \cos \theta \) \(\frac{m}{m} \) l\(\cos \theta \) \(\frac{3m_1 + 2m_2 + m_3}{2} \)
1 s I" I D
I 1 I 2 I 3 D \(1 + 2 \cos \theta \) \(3m_1 + m_2 \)

A B C D E I

mr 2
6.02209 m 2 m 3 \(\cos \theta \) r 12 r 23

Test:
(2) 10 \(\div \) 2 A 6.64
(3LT) B 13.28, 0.21
(3T) D 17.71, 5577.05
(3 OC) f a 26.57, 18 755.05
(3 BT) \(\frac{1}{x} \) \(\div \) 60 f b 11.62, 8.30, 3.32, 320.52
(2a) 2 \(\div \) 10 \(\div \) 60 f c 6.64
(2b) 2 \(\div \) 10 \(\div \) 60 f c 6.64
(2c) 2 \(\div \) 10 \(\div \) 60 d 0.00
(2d) 3 \(\div \) 30 \(\div \) 20 f e 17.93, 0.16
(3) R/S 3.32, 0.84
C 19.93, 9.96, 1978.07
E 19.93, 23.25, 10 769.50
f a 26.57, 18 755.05
.1 \(\div \) 60 f b 11.62, 8.30, 3.32, 320.52
3 \(\div \) 30 \(\div \) 20 R/S 57.95, 22305.50
0 \(\div \) 20 R/S 8.635, 495.25
3 \(\div \) 30 \(\div \) 20 R/S 37.92, 0.07
Non-Linear Gases

Program ID calculates $D \times 10^{117}$, where D is the product of the three principal moments of inertia, for a variety of non-linear molecules. The following equations from Ref. (12) are used by Prgm. NL to calculate the rotational and translational contributions to the thermodynamic functions of non-linear molecules. The symmetry numbers, σ, are available in Ref. (12) and are also listed in the discussion of Prgm. ID.

$$
C_{\text{R}, \text{t}}^\circ / R = h \left(\hat{H}_{298}^\circ - H_\text{r,t}^\circ \right) / R = 4(298.15), \quad \left(H^\circ - \hat{H}_{298}^\circ \right)_{\text{R}, \text{t}} / R = 4(T-298.15)
$$

$$
S_{\text{R}, \text{t}}^\circ / R = 4 \ln T + \left(\frac{2}{5} \right) \ln M + \frac{1}{2} \ln(D \times 10^{117}) - \ln \sigma - 1.1823
$$

$$
\ln D + 1 \ln 64 \pi^5 + \ln (82.057k^3) / \left(h \frac{\hat{H}_{298}^\circ}{10^{58.5}} \right) = -1.1823
$$

$$
-(G^\circ - \hat{H}_{298}^\circ)_{\text{R}, \text{t}} / RT = S_{\text{R}, \text{t}}^\circ / R - 4(1-298.15/T).
$$

The vibrational contributions are calculated using the same equations as used for Prgm. D-LT.

The program requires that the singly degenerate vibrational frequencies be inserted first followed by doubly degenerate frequencies and finally by triply degenerate frequencies. The number of frequencies of each type must be entered. i_1 is the number of singly degenerate frequencies, i_2 is the number of doubly degenerate frequencies, and i_3 is the number of triply degenerate frequencies.

Directions:

1. Insert tape NL
2. M \uparrow σ \uparrow $D \times 10^{117}$ A
3. Values of w in cm$^{-1}$ are entered on stack so that singly degenerate values are inserted first (lowest on the stack) followed by doubly and then triply degenerate values. Groups of 1, 2, but not over 3 values on the stack are entered and followed by B. A maximum of 10 values can be entered.
4. i_1 \uparrow i_2 \uparrow i_3 C
5. T D
6. R/S

(6') SST

cont'd.
Directions, cont'd.

(7) R STO B
(8) E
(9) R/S

\[
\begin{align*}
\Delta H^o & = \frac{R \left(T - T_0 \right)}{\left(\frac{H^o}{R} - T \right)} \\
\Delta S^o & = \frac{C_p^o}{T_0} \\
\end{align*}
\]

NOTE 1: Calculations at each temperature start at step 5 once the constants have been inserted. Step 7 need not be repeated unless new constants are entered in step 2.

NOTE 2: If dimensionless quantities are not wanted, step 6 can be deleted. SST after either step 6 or step 9 will display value of \(\frac{(H^o_298 - H^o)}{R} \).

NL Test:
(2) \[133.936 \times 2 \times 202.5 / 1.000;\]
(3) \[700 \times 150 / 1.000;\]
(4) \[2 \times 0 \times 1 \times 200.00;\]
(5) \[EEX 3 D 35.772;\]
(6) \[R/S 4588.2;\]
(7) \[9117.6, 80.204, 13.583.\]

Prgm. NL

(2) fLBLA FCLREG fP^S 0 hR^+ f\sqrt{ } \div fLN CHS h\times \times y
fLN 1 \bullet 5 X 1 \bullet 1 R 2
3 \cdot + STOD CLX 1 0 hSTI CLX hRTN
(3) fLBLB 1 \cdot 4 3 8 8 X STO(I) fISZ
CLX hR^+ CLX hR^+ f\times=0 hRTN GTOB
(4) fLBLC EEX 2 \div + h\times \times y EEX 2 X +
STOA hRTN
(5) fLBLD STOC fLN 4 X RCLD \div STO5 4 STO6
RCLC X 2 9 8 \bullet 1 STOE 4
X ST09 - ST08 RCLC \div ST07 RCLA EEX
2 \div fINT f\# / f\# fa RCLA EEX 2 \div gPRAC
f=0 GT08 EEX 2 X fINT f\# fLBL8 RCLA gPRAC
EEX 2 X f\# / f\# fc GT07
gLBLfa 1 0 hSTI + ST04 fLBL0 fGSB3 gx=y hRTN 116
GTO0 127
gLBLfb STO+4 fLBL1 fGSB4 fGSB3 gx=y hRTN GTO1
135
gLBLfc STO+4 fLBL2 fGSB4 fGSB3 gx=y hRTN GTO2
144
fLBL3 fGSB4 fISZ hRCI RCL4 hRTN
150
fLBL4 RCL(i) RCLC \div ST00 gx^2 hLSTx ge \times ST01 X 160
hLSTx 1 - ST02 gx^2 \div STO+6 RCL1 RCL2 \div
fLN ST03 RCL0 RCL2 \div ST01 + STO+5 RCL3 RCL0
RCL(i) RCLC \div ge^x 1 - \div ST03 + STO+7
- RCL1 + RCLC X STO+8 RCL3 RCLC X STO+9
hRTN 201
(6,6') fLBL7 RCL7 hRTN RCL8 f-x- RCL5 f-x- RCL6 hRTN RCL9
211
(8,9) fLBL8 RCLB STOX5 STOX6 STOX7 STOX8 GTO7
218

continued...
cont'd. from pg. 38

<table>
<thead>
<tr>
<th>R</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>e^u</td>
<td>e^-u</td>
<td>-ln(1-e^-u)</td>
<td>Index</td>
<td>(\Sigma S_R)</td>
<td>(\Sigma C_P)</td>
<td>(\Sigma)</td>
<td>(\frac{G-H_{298}}{RT})</td>
<td>(\frac{H-H_{298}}{R})</td>
<td>(\frac{H_{298}-H_0}{R})</td>
</tr>
</tbody>
</table>

\[
\frac{u}{e^{u-1}} = \frac{(H_{298}-H_0)}{RT}
\]

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>I</th>
<th>RSO-9 are available for up to 10 values of (uT).</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_{10}i_{2}•i_{3}</td>
<td>R</td>
<td>T</td>
<td>(\left(\frac{S_{v,t}}{R} \right))</td>
<td>298.15</td>
<td>Index</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation of Electronic Level Contributions to Thermodynamic Functions

Program A can be used to calculate the complete thermodynamic functions for gaseous atoms including translational and electronic contributions or it can be used to just calculate the electronic level contributions for either atoms or molecules. Degeneracies and energies of up to seventeen levels can be stored for the calculations. Although the program is intended for calculating the contribution of electronic levels to thermodynamic functions, it can be used for any internal energy levels. For example, if the vibrational or rotational levels are sufficiently perturbed to introduce significant error even after using Prgm. Cor for anharmonic and centrifugal stretching corrections, the partition function can be calculated, seventeen levels at a time, to evaluate the vibrational or rotational contributions.
The spectroscopic unit, cm$^{-1}$, is used for the energies. The thermodynamic functions are calculated in dimensionless units, which are most appropriate for equilibrium calculations, but insertion of the gas constant R in appropriate units will provide the thermodynamic functions in the same units. The calculations follow the equations on pp. 422-4 of Ref. (12).

After energy levels and degeneracies have been stored in the preliminary steps, calculations at various temperatures commence with step(5). There are several choices in the sequence of steps following step(5). If the interest is primarily in the complete thermodynamic functions for an atom, step (5) would be followed by step(6"a) to yield $-(G^0-H_{298})/RT$ and then by step(6"b) if the remainder of the functions are desired in dimensionless form. If $-(G^0-H_{298})/T$ is desired, step (6"a) would be followed by step(7) and then by step(8) if the other functions are of interest. If values for all functions are wanted both with dimensions and in dimensionless form, the sequence after step(5) would be (6"a), (6"b), (7) and (8). If only the electronic contributions are wanted, step (5) would be followed by step(6') and then by steps (7) and (8) for values expressed in the units of the value of R introduced in step(7). If, after obtaining the electronic contributions of an atom through step(6'), the complete thermodynamic functions should also be wanted, replacement of the directions of step(6"a) by hR+ hR+ T STO D M D will allow calculation of the complete functions without repeating step(5). The restrictions are summarized as follows: step(8) only after (7), step(6"b) only after (6"a), step(7) after (6'),(6"a), or (6"b), step (6') only after (5), and step(6"a) only after (5) except after (6') with insertion of the special step given above.

In addition to the program tape, a data tape is used to store the following constants: 3.665 STO A, 298.15 STO B, 1438.8 STO C. These constants can be keyed in manually or by tape. If the constants have not been inserted before step 2, integers will be lacking in all of the displays of step 2.
Directions:

(1) Insert tape A and Data tape A

\[(2-1)g_1 \uparrow \epsilon_1 A\]

\[(2-2)g_2 \uparrow \epsilon_2 R/S\]

\[(2-i)g_1 \uparrow \epsilon_1 R/S\]

i up to 17

(3) B

(4) R/S

\[(6') R/S \]

(not to be followed by 6a

without step given in text)

(5) T C

(6'') M D

(6'b) R/S

\[(7) R E \]

(8) R/S

Display

\[1438 \times 10^{-2} \]

\[1438 \times 10^{-2} \]

\[1438 \times 10^{-2} \]

\[(H_{298} - H_{0})_e/R\]

\[(S_{298}/R)_e\]

\[(C_{298}/R)_e\]

\[-(G - H_{298})_e/RT\]

\[(H_{298} - H_{298})/R\]

\[S_e/R\]

\[C_e/R\]

\[-(G - H_{298})_e/RT\]

\[(H^0 - H_{298})/R\]

\[S^0/R\]

\[C^0/R\]

\[-(G - H_{298})_e/RT\]

\[H - H_{298}\]

\[S\]

\[C_p\]

\[-(G - H_{298})/T\]

NOTE 1: If a number of levels are inserted together at an average value of \(\epsilon_1\), the total \(g\) must not exceed 99.

NOTE 2: If values of \(\epsilon_1\) larger than 69 502 cm\(^{-1}\) are to be used, change constant in register C to 143.88 and change 3 at step 95 to 2 to allow values up to 695 000 cm\(^{-1}\). With this change, \(\epsilon\) values are truncated beyond .01 cm\(^{-1}\).

NOTE 3: If values for more than seventeen energy levels are inserted, the display will read Error. With seventeen levels, steps (3) and (5) each require 45 sec calculation time. With fewer levels, the time is cut as the calculation stops when a zero degeneracy is encountered. If calculations for a new atom or molecules is started by inserting new level values, one can start at step 2 if the same number or a greater number of levels is inserted: otherwise, one must reinsert the data card. If only the electronic contributions are desired, up to twenty levels can be stored if three pairs of fGSO hRTN are added after step 36, RCLC at step 38 is replaced by 1438.8, RCLB at step 56 is replaced by 298.15, the 19 of steps 112-113 is changed to 22 after at least fifteen steps of the ITBLD subroutine have been deleted to accommodate the insertions.

cont'd.
Notes, cont'd.

NOTE 4: The dimensionless values for functions at 298 K given by steps (3) and (4) can be multiplied by R by the following procedure. After step (4), key R in the desired units followed by E to display \((H_{298} - H_0)\). Then R/S will display the electronic contributions to \(S_{298}, C_{298}\), and \(- (G_{298} - H_0)/T\). If the total \(H_{298} - H_0\) is wanted for a gaseous atom, it can be obtained by adding 1481.20 to the electronic contribution in cal/mol.

NOTE 5: If \(- (G - H_0)/RT\) is desired, it can be obtained after step 5 or any of the following steps by keying h RCI. Keying of g eX would then give Q, the partition function.

Test with Si gas at 5000 K

(2) 1 0 A 0.010
 3 77.12 R/S 110960.030
 5 223.16 R/S 32082.050
 5 699.86 R/S 9062799.050
 1 15394.37 R/S 22149419.01
 5 33326 R/S 47949448.05
 9 39660 R/S 57350568.09
 3 40992 R/S 58979289.03
 15 45303 R/S 65181956.15
 3 47284 R/S 68032219.03
 5 47352 R/S 68130057.05
 15 48161 R/S 69294046.15
 9 49128 R/S 70685366.09
 3 49400 R/S 71076720.03
 21 49966 R/S 71891080.21
 5 50189 R/S 72211933.05
 10 50535 R/S 72709759.10

(3) B 162.716

(4) R/S, 2.108, 0.176; 1.98719 E 323.347 R/S 4.190, 0.350, 3.105

(5) 5 EEX 3 C 2.279

(6') R/S 844.589, 2.448, 0.277, 2.279

(7) 1.98719 E 1678.4; (8) R/S 4.864, 0.550, 4.528

or after (5) (6"a) 28.086 D 12599.214; (6"b) R/S 27.579, 2.777, 25.059

(7) 1.98719 E 25037.031; (8) 54.804, 5.518, 49.796 cal.
Prgm. A

(2-1 to 3) fLBL A 3 hSTI hRTN fGSB0 hRTN fGSB0 hRTN fGSB0 hRTN fGSB0 hRTN
(2-4 to 8) fGSO hRTN fGSO hRTN fGSO hRTN fGSO hRTN fGSO hRTN fGSO hRTN
(2-9 to 13) fGSO hRTN fGSO hRTN fGSO hRTN fGSO hRTN fGSO hRTN fGSO hRTN
(2-14 to 16) fGSO hRTN fGSO hRTN fGSO hRTN
(2-17) fISZ hRTN GT09
(3) fLBL B fGSO hRTN 0 STOE RCL 2 fGSO hRTN hSTI hRTN fGSO hRTN
(4) STOD hRTN RCL 1 f-x- RCL 2 hRTN
(5) fLBL C STOD fGSO hRTN fGSO hRTN fGSO hRTN fGSO hRTN
STO 0 STO 0 STO 2 hSTI hRTN
fISZ
fINT RCL 1 RCL 2 hRTN
fLBLD RCL 1 RCL 2 RCL C RCL D E I
R

Data Tape: 3.665 STO A, 298.15 STO B, 1438.8 STO C.

\[
\frac{-(G-H_{298})}{RT} \quad \frac{Q'}{Q} \quad C/R
\]

RS 0 to 9 have \(1438.8 \times 10^{-2}\) with \(i = 8\) to 17

\[
\begin{array}{ccccccc}
R & A & B & C & D & E & I \\
3.665 & 298.15 & 1438.8 & 2.5 & H_{298} - H_0 & 3 to 20 & \text{several times} \\
& & & & \frac{H_{298} - H_0}{R} & \text{several times} & \frac{-(G-H_0)}{RT} \\
\end{array}
\]

1438.8
B. Calculation of Thermodynamic Functions from C_p or H Values

Heat capacity or enthalpy data may have been fit to $C_p/R = a + bT + cT^2 + dT^2$ or $C_p/R = a_0 + a_1T + a_2T^2 + a_3T^3$ using the programs of Chapter II. Programs CHSG and Cheb CHSG use the constants of these equations to calculate C_p/R, $(H/H_{298})/R$, S/R and $-(G-H_{298})/RT$.

The C_p equations generally will have a limited temperature range of application fixed by either the range of existence of the phase or by the range for which the equation gives a sufficiently accurate fit. Thus, the programs provide for joining at the temperature T_1 at which a new range starts and $(H_1-H_{298})/R$ and S_1/R, calculated in the lower temperature range, are inserted to allow extension into the higher temperature range. The equations for Prgm. CHSG are based on $C_p/R = a + bT + cT^2 + dT^2$.

\[
\begin{align*}
(H-H_1)/R &= (T-T_1)[a + \frac{1}{2}b(T+T_1)+c/(T_1T_1+\frac{1}{3}d(T^2+TT_1+T_1^2))] \\
(S-S_1)/R &= a\ln(T/T_1) + (T-T_1)[b + \frac{1}{2}c(T+T_1)/T_1T_1+\frac{1}{3}d(T+T_1)] \\
-(G-H_{298})/RT &= (S-S_1)/R + S_1/R - [(H-H_1)/R+(H_1-H_{298})/R]/T.
\end{align*}
\]

The constants a, b, c and d are stored in registers A, B, C and D. If the data have been fit to an equation with fewer constants, store a for the unused constants. The program has been illustrated with dimensionless functions; it operates equally well if the constants yield C_p rather than C_p/R. Then S_1 and H_1-H_{298} should be inserted in steps 3 and 4 and the displays of steps 5 and 6 will be the indicated displays multiplied by R.

If it is desired to convert the dimensionless displays of steps 5 and 6 to values in cal or J, R in the appropriate units should be stored in register E. Then step 7 will display the values multiplied by R. If the displays of steps 5-6 are already in dimensions, step 8 will divide by R from register E to display dimensionless values.

Directions

1. Insert Prgm. CHSG; store constants in registers $A-D$ if not carried over from previous calculation.

2. T_1 A
3. S_1/R SST
4. $(H_1-H_{298})/R$ SST; 0 SST if $T_1 = 298$
5. T B
6. SST SST SST
7. C to multiply by R
8. D to divide by R
Prgm. CHSG

(2-4) FLBLA STO5 hRTN STO4 STO3
(5) FLBLB STO2 RCL5 + STO0 X RCL5 gx^2 +
RCLD X 3 ÷ RCLC RCL5 ÷ RCL2 ÷ +
RCL0 RCLB X 2 ÷ + RCLA ÷ RCL2 RCL5
- STO1 X RCL3 + STO6 RCLC 2 ÷ RCL0
X RCL2 RCL5 X gx^2 ÷ RCLB + RCLD 2
+ RCL0 X + RCL1 X RCL2 RCL5 ÷ fLN
RCLA X + RCL4 + STO7 h^x2 RCL2 ÷ -
STO9 RCLD RCL2 gx^2 X RCLC hLSTx ÷ + RCLB
(6) RCL2 X + RCLA + STO8 hRTN RCL6 RCL7 hR^4
(7) FLBLC RCL9 RCLE X hSTI RCL8 hLSTx X RCL6 hLSTx
X RCL7 hLSTx X hRCI gSTK RTN
(8) FLBLD RCL9 RCLE ÷ hSTI RCL8 hLSTx ÷ RCL6 hLSTx
+ RCL7 hLSTx ÷ hRCI gSTK RTN

<table>
<thead>
<tr>
<th>R</th>
<th>T+Ti</th>
<th>T-Ti</th>
<th>T</th>
<th>H_i-H_298</th>
<th>S_i</th>
<th>T_i</th>
<th>H-H_298</th>
<th>S</th>
<th>C_P</th>
<th>-(G-H_298)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>I</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>R</td>
<td>-(G-H_298)</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test:

10 STO A, EEX CHS 3 STO B, 1 CHS EEX 5 STOC,
EEX CHS6 STOD, 1.98719 STOE

(2) 298.15 A; (3) 10 SST; (4) 0 SST
(5) EEX 3 B 11.900; (6) SST 7563, SST 22.747, SST 15.183;
(6) C 23.648, 15029, 45.202, 30.172
(7) D 5.888, 3806, 11.447, 7.641

From C_p/R = a_0 + a_1T + a_2T^2 + a_3T^3,

\[
\frac{H-H_1}{R} = a_0(T-T_1) + \frac{1}{2}a_1(T^2-T_1^2) + \frac{1}{3}a_2(T^3-T_1^3) + \frac{1}{4}a_3(T^4-T_1^4)
\]

\[
\frac{S-S_1}{R} = a_0\ln(T/T_1) + a_1(T-T_1) + \frac{1}{2}a_2(T^2-T_1^2) + \frac{1}{3}a_3(T^3-T_1^3)
\]

\[
\frac{-(G-H_298)}{RT} = (S-S_1)/R + S_1/R - [(H-H_1)/R + (H_1-H_298)/R]/T
\]

a_0 to a_3 will be in R6 to R9 if evaluated by Prgm. Cheb-a.
Directions:

(1) Insert Prgm. Cheb CHSG and a₀ to a₃ in R6-8 if not already there
Display

(2) T₁
(3) S₁/R
(4') (H₁-H₂₉₈)/R
(4'') R
(5) T₂ B
(6) SST SST (H-H₂₉₈)/R, S/R, -(G-H₂₉₈)/RT
(7) C repeats display of steps 5 & 6 multiplied by R if
R has been stored in register E by step 4''.
(8) D repeats display of steps 5 & 6 divided by R if the aₙ
constants gave Cₚ in dimensions of R and therefore steps
5 & 6 gave the indicated quantities multiplied by R.

NOTE: After step 6, another SST will flash in turn the four values
previously displayed if a review is wanted.

Prgm. Cheb CHSG

\[\begin{align*}
(2-4) & \quad \text{fLBLA STOA } gx^2 \text{ STOB hRTN STOC STOD STOE} \\
(5) & \quad \text{fLBLB hSTI RCLA } - \text{ STO5 RCL6 } X \text{ hRCI } gx^2 \text{ RCLB} \\
& \quad \text{CLA RCL7 } X \text{ 2 } \div + \text{ hRCI } 3 \text{ hX} \\
& \quad \text{RCLA RCLB } X \text{ - STO3 RCL8 } X \text{ 3 } \div + \\
& \quad \text{hRCI } 1 \text{ hX} \text{ RCLB } gx^2 \text{ - RCL9 } X \frac{1}{4} \div \\
& \quad + \text{ RCLD } + \text{ STO1 hRCI } \div \text{ RCL3 RCL9 } X \frac{3}{3} \\
& \quad \div \text{ RCL8 } RCL9 \frac{3}{3} \div \text{ + RCL5 RCL7 } X \\
& \quad + \text{ hRCI RCLA } \div \text{ fLN RCL6 } X + \text{ RCLC } + \\
& \quad \text{STO2 hX} \text{ STO3 RCL9 hRCI } X \text{ RCL8 } \div + \text{ hRCI} \\
& \quad X \text{ RCL7 } + \text{ hRCI } X \text{ RCL6 } + \text{ STO0 hRTN RCL1} \\
(6) & \quad \text{fLBL2 hR+ gSTK} \\
(7) & \quad \text{fLBLC RCL3 RCLE } X \text{ STO4 RCL0 } \text{ RCLE } X \text{ RCL1 RCLE} \\
& \quad X \text{ RCL2 RCLE } X \text{ RCL4 gSTK hRTN} \\
(8) & \quad \text{fBLBD RCL3 RCLE } \div \text{ STO4 RCL0 } \text{ RCLE } \div \text{ RCL1 RCLE} \\
& \quad \div \text{ RCL2 RCLE } \div \text{ RCL4 gSTK hRTN} \\
\end{align*} \]

\[\begin{align*}
R & \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \\
\text{Cₚ/R} & \quad \text{H-H₂₉₈)/R} \quad \text{S/R} \quad -(G-H₂₉₈)/RT \quad -(G-H₂₉₈)/T \\
\end{align*} \]

\[\begin{align*}
R & \quad A \quad B \quad C \quad D \quad E \quad I \\
\text{T₁} & \quad \text{T₁} \quad S₁/R \quad (H₁-H₂₉₈)/R \quad R \quad T \\
\end{align*} \]
Test:
\[C_p = a_0 + a_1T + a_2T^2 + a_3T^3 \] with Prgm. CHSG

1.50365 STO 6, 8.19918x10^{-3} STO 7, -4.13509x10^{-6} STO 8, 9.21717x10^{-10} STO 9;

(2) 1400 A; (3) S_{1400} = 16.792 \text{ cal K}^{-1} \text{ SST}; (4) H_{1400} - H_{298} = 7307 \text{ cal SST}, 1.98719 SST; (5) 1400 B 7.407, SST 7307, SST 16.792, SST 11.573;

2800 B 12.276, SST 20 320, SST 23.057, SST 15.800; SST reviews the four values, D divides them by R.

The programs of Chapters I and II have provided least-square fits of enthalpy or heat capacity data to four constant equations. Programs CHSG and Cheb CHSG calculate values of the other thermodynamic functions from the four constant heat capacity equations. Using eight values of the \(C_p \) of molybdenum solid at 200 K intervals from 1400 to 2800 K,

\[C_p = 1.5037 + 8.1992x10^{-3}T - 4.1351x10^{-6}T^2 + 9.2172x10^{-10}T^3 \]

was obtained which fit the original values with an average deviation of 0.009 or less than 0.1%. The same values were fit by Prgm. LS \(C_p^* \), which uses only three independent constants, to obtain

\[C_p = 9.5466 - 3.8026x10^{-3}T - 1.360x10^{-5}T^2 + 1.6987x10^{-6}T^2 \]

This equation fits the original values with an average deviation of 0.06 or about 0.6%. Both equations were used with Prgms. Cheb CHSG and CHSG, respectively. The values of \(-(G-H_{298})/T\) calculated by Prgm. CHSG using the constants from Prgm. LS \(C_p^* \) were only slightly lower than those calculated using the constants from Prgm. Cheb-a with an average deviation of 0.002 or 0.02%, thus illustrating the insensitivity of \((G-H_{298})/T \) values to errors in \(C_p \).

It is sometimes useful to go directly from the analytical equations for \(C_p \) to an analytical equation for \(-(G-H_{298})/T\), which will have six terms derived from the four terms of the original heat capacity equations. Prgm. CgK described below carries out this operation. This program not only calculates values of \(-(G-H_{298})/T\), but if the constants for each of the reactants and products of a reaction are combined to obtain an equation for \(\Delta C_p^\circ \), the program calculates \(-(\Delta G^\circ - \Delta H_{298})/T\) for a given T. The program can be used for either \(C_p^\circ \) or \(C_p^\circ/R \). The program provides for multiplication or division by R to provide consistency.
The ability to calculate \(-\left(\Delta G^\circ - H_{298}^\circ\right)/RT\) allows calculation of \(\Delta H_{298}^\circ/RT\) from a value of \(K\), the equilibrium constant, or the calculation of \(K\) from knowledge of \(\Delta H_{298}^\circ/RT\). Normally the \(C_p\) equations will be of the same form and \(\Delta C_p/RT\) will either be

\[
\Delta a_0 + \Delta a_1 T + \Delta a_2 T^2 + \Delta a_3 T^3 \quad \text{or} \quad \Delta a + \Delta b T + \Delta c T^{-2} + \Delta d T^2.
\]

Prgm. CgK will handle either form. In addition, if not all of the reactants or product heat capacities are in the same form, the program will handle \(\Delta C_p/RT = \Delta a_0 + \Delta a_1 T + \Delta a_2 T^2 + \Delta a_3 T^3 + \Delta c T^{-2}\). Constants of terms that are not used should be entered as zero.

\[
\Delta C_p^\circ/RT = \Delta c T^{-2} + \Delta a_0 + \Delta a_1 T + \Delta a_2 T^2 + \Delta a_3 T^3 \quad \text{where} \quad \text{b terms are included in} \Delta a_1 \quad \text{and d terms are included in} \Delta a_2.
\]

\[
-(\Delta C_p^\circ - \Delta H_{298}^\circ)/RT = \Delta a_0 \ln T + \Delta a_2 T^{-2} + \Delta a_3 T^{-1} + \Delta a_1 T + \Delta a_1 T + \Delta a_1 T^2 + \Delta a_1 T^3
\]

where \(\Delta a_3^1 = \frac{1}{12} \Delta a_3, \Delta a_2^1 = \frac{1}{6} \Delta a_2, \Delta a_1^1 = \frac{1}{2} \Delta a_1, \Delta a_2 = \frac{1}{2} \Delta c, \Delta a_1^1 = \Delta G_{1}^\circ/RT - \Delta a_0 (\ln T + 1) + \frac{1}{2} \Delta a_2 T^{-2} - \Delta a_1 T - \frac{1}{2} \Delta a_2 T^{-1} - \frac{1}{2} \Delta a_3 T^{-1}, \Delta a_3 = \Delta a_0 T_1 + \frac{1}{2} \Delta a_2 T_1^{-2} + \frac{1}{4} \Delta a_2 T_1^{-1} + \frac{1}{4} \Delta a_3 T_1^{-1} - \Delta c T_1^{-1} - (\Delta H_{1}^\circ - \Delta H_{298}^\circ)/RT.\)

The equations are written for \(\Delta H_{298}^\circ\) but can be used for \(\Delta H^\circ\) and \((\Delta G - \Delta H^\circ)/RT\) if \((\Delta H_{1}^\circ - \Delta H_{298}^\circ)/RT\) is replaced by \((\Delta H_{1}^\circ - \Delta H_{298}^\circ)/RT\). \(T_1\) is the temperature limit for range of validity of the \(C_p\) equations. The following equations are used for calculation of \(K, \Delta H_{298}^\circ/RT, \text{or} \Delta G^\circ/RT\).

\[
\Delta H_{298}^\circ/RT = T[-(\Delta G^\circ - \Delta H_{298}^\circ)/RT - \ln K].
\]

The values of \(\Delta H_{298}^\circ\) from a set of \(T\) and \(K\) values are averaged and then used for calculation of \(\Delta G^\circ/RT\) and \(K\) by \(\ln K = -(\Delta G^\circ/RT) = -(\Delta G^\circ - \Delta H_{298}^\circ)/RT - (\Delta H_{298}^\circ/RT) T^{-1}.\)

When accurate entropies are not available for all reactants and products, both \(\Delta H^\circ\) and \(\Delta S^\circ\) can be determined (21) through evaluation of

\[
\Delta H_{298}^\circ/RT - \Delta T S_{1}^\circ/RT = T[-(\Delta G^\circ - \Delta H_{298}^\circ)/RT - \Delta S_{1}^\circ/RT - \ln K] = T[A - \ln K]
\]

where \(A\) can be calculated from just the constants of the \(C_p/RT\) equations by step 10 of Prgm. CgK if zero is entered for \(\Delta S_{1}^\circ/RT\) in step 3. If steps 14 and 15 are carried out for a set of \(T\) and \(K\) values with \(\Delta S_{1}^\circ/RT = 0\), the display of step 15 is \(\Delta H_{298}^\circ/RT - \Delta T S_{1}^\circ/RT\) which is stored in the secondary register. These values can then be least-square fit to a linear equation after all data have been inserted in steps 14 and 15 by carrying out step 21. Step 21 displays first \(\Delta H_{298}^\circ/RT\) followed by \(\Delta S_{1}^\circ/RT\) and incorporates these constants; so that steps 10 and 18 to 20 can then be carried out.
Directions:
(1) Insert Prgm. CgK
(2) Store Δa_0 in R0, Δa_1 in R1, Δa_2 in R2, Δa_3 in R3, Δc in RC, and
\[R = 1.98719 \text{ or } 8.3144 \text{ in RE}. \]
(3) $T_1 + \frac{\Delta S_f}{R} + \frac{(\Delta H_1^0 - \Delta H_{298}^0)}{R}$ A
(4) SST Δa_0
(5) SST Δa_2
(6) SST Δa_1
(7) SST Δa_0
(8) SST Δa_2
(9) SST Δa_1
(10) T B $-(\Delta H^0_{298} - \Delta H_{298}^0)/RT$
(11) f a to multiply by R
(12) f e to divide by R
(13) f c before starting set of data in steps 14 and 15 0.00
(14) $T_1 + K_1 C$ repeat for all i $\Delta H_{298}^0/R$
(15) R/S $\frac{\Delta S_f}{R}$
(17) R/S $\frac{\Delta H^0_{298}}{R}$ Standard Deviation
(18) T D K
(19) SST $\ln K$
(20) T E $\Delta c^0/R$
(21) f d after step 15 if $\Delta S_f^0/R = 0$ in step 3 $\Delta H_{298}^0/R, \Delta S_f^0/R$

NOTE 1: Enter 0 for $(\Delta H^0_{298} - \Delta H_{298}^0)/R$ if $T_1 = 298.15$ K and enter zero for Δc, Δa_3, or Δa_2 if the C_p equations do not use these terms.

NOTE 2: If it is desired to repeat the calculations using a changed value of T_1, it is necessary to start back at step 2. Steps 4 to 9 can be bypassed if there is no need to check the constants. With $\Delta S_f^0/R$ known and stored in RA and step 3 completed, steps 10-12, 18 and 20 can be carried out in any order. If S_f^0/R is known and has been inserted in step 3, steps 16 and 17 follow the insertion of all of the sets of K and T values. If S_f^0/R is not known, it is entered as zero in step 3 and steps 10 and 16-20 cannot be used until $\Delta S_f^0/R$ has been determined by carrying out step 21 after the insertion of all of the sets of K and T values. After step 21, steps 10, 18 and 20 can be used in any order.
Prgm. Cglk

\[
\begin{align*}
\text{(3)} & \quad \text{fLBLA STOB hr+ STOA hr+ } & + & + & \text{STOD RCL3 4} \\
& \quad : X RCL2 3 & \div & + & X RCL1 2 \\
& \quad + X RCL0 + X RCLC hR+ & \div & - & RCLB \\
& \quad - ST04 hR+ RCL3 3 & \div & X RCL2 2 \\
& \quad + X RCL1 + X RCLC hR+ & \div & x^2 & 2 \\
& \quad \div hR+ fLN 1 & + & RCL0 X & + & RCLA \\
& \quad - CHS ST05 2 ST0/1 6 & ST0/2 1 2 & ST0/3 \\
\text{(4-7)} & \quad RCLC 2 & \div & STOC RCL0 hRTN & RCLC RCL4 RCL5 RCL1 \\
\text{(8-9)} & \quad RCL2 RCL3 \\
\text{(10)} & \quad \text{fLBLB } & + & + & RCL3 & X RCL2 & + & X RCL1 \\
& \quad + X RCL4 hR+ & \div & + & RCLC hR+ & gx^2 & \div \\
& \quad + & RCL5 & + & hR+ fLN RCL0 & X & + & hRTN \\
\text{(11)} & \quad gLBLa RCLE X & hRTN \\
\text{(12)} & \quad gLBLc RCLE & \div & hRTN \\
\text{(13)} & \quad gLBLc \text{ TP+8} 0 ST04 ST05 ST06 ST07 ST08 ST09 TP+8 \\
\text{(14)} & \quad hRTN fLBLa fLN ST06 hR+ \\
\text{(15)} & \quad B RCL6 - & X & hR+ & \Sigma & hR+ & hRTN f- & hR+ \\
\text{(16)} & \quad ST07 hRTN gs hR+ & hRTN \\
\text{(17)} & \quad \text{ST07 fLBLD B RCL7 hR+ } & \div & - & ge^x & hRTN fLN \\
\text{(18-19)} & \quad \text{fLBLD B RCL7 } & hR+ & \div & hRTN \\
\text{(20)} & \quad \text{fLBLc B X CHS RCL7 } & + & hRTN \\
\text{(21)} & \quad \text{fPB+5 RCL4 RCL6 X RCL9 RCL8 X } & \div & hRTN \\
& \quad \text{RCL6 } & + & RCL9 \div & \text{TP+8 ST07 f-x- RCLA ST0/5 hRTN} \\
\end{align*}
\]

\[
\begin{align*}
\text{RP} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
& \Delta a_0 & \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 \\
& \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
& \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
& \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
& \Delta a_0 & \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
& \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
& \Delta a_0 & \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
& \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
& \Delta a_0 & \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
& \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
& \Delta a_0 & \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 & \Delta a_8 & \Delta a_9 \\
\end{align*}
\]

\[
\begin{align*}
\text{RS} & \quad 4 & 5 & 6 & 7 & 8 & 9 \\
& \Sigma T & \Sigma T^2 & \Sigma H^2_298/R & \Sigma (H^2_298/R)^2 & \Sigma T (H^2_298/R) \\
& \text{or } \Sigma \frac{H^2_298-TAS^2}{R} & \Sigma \frac{H^2_298-TAS^2}{R} & \Sigma (H^2_298/R)^2 & \Sigma T (H^2_298/R) \\
\end{align*}
\]

\[
\begin{align*}
R & \quad A & B & C & D & E \\
& \Delta S^0_j/R & \Delta H^0_j-\Delta H^0_j_298 & \Delta c & T_1 & R \\
& \Delta a_{-2} \\
\end{align*}
\]
Test with $C_p = a_0 + a_1T + a_2T^2 + a_3T^3$ for Mo, 1400-2800 K:

(2) $1.50365 \text{ STO 0}, 8.19918 \times 10^{-3} \text{ STO 1}, -4.13509 \times 10^{-6} \text{ STO 2}, 9.21717 \times 10^{-10} \text{ STO 3}, 0 \text{ STO C}, 1.98719 \text{ STO E};$

(3) $1400 + 16.792 + 7307 A 1.50365; (4) \text{ SST 0}; (5) \text{ SST -63.706};$

(6) $\text{ SST -3.874; (7) SST 4.0996 \times 10^{-3}; (8) SST -6.892 \times 10^{-7}; (9) SST 7.681 \times 10^{-11};}$

(10) $1400 B 11.573; (12) f e 5.824; (10) 1800 B 12.956;$

(10) $2200 B 14.171; (10) 2800 B 15.800; (12) f e 7.951; (11) f a 15.800.$

Test with $C_p = a + bT + cT^2 + dT^{-2}$ for Mo, 1400-2800 K:

(2) $9.54656 \text{ STO 0}, -3.80258 \times 10^{-3} \text{ STO 1}, 1.6987 \times 10^{-6} \text{ STO 2}, 0 \text{ STO 3}, -1.35954 \times 10^{-5} \text{ STO C}, 1.98719 \text{ STO E};$

(3) $1400 + 16.792 + 7307 A 9.54656; (4) \text{ SST -67} 977; (5) \text{ SST 3982.51};$

(6) $\text{ SST -58.2878; (7) SST -1.90129 \times 10^{-3}; (8) SST 2.8312 \times 10^{-7}; (9) SST 0};$

(10) $1400 B 11.573; (12) f e 5824; (10) 1800 B 12.955;$

(10) $2200 B 14.168; (10) 2800 B 15.796; (12) f e 7.949; f a 15.796.$

Test of complete program with ΔS_p known:

(2) $1 \text{ STO 0}, 10^{-3} \text{ STO 1}, 10^{-6} \text{ STO 2}, 0 \text{ STO 3}, -10^{-6} \text{ STO C}, 1.98719 \text{ STO E};$

(3) $10^3 + 20 + 100 A 1.000; (4) \text{ SST -5} \times 10^5; (5) \text{ SST 2733} \frac{1}{5}; (6) \text{ SST 10.092};$

(7) $\text{ SST 5} \times 10^{-1}; (8) \text{ SST} \frac{5}{3} \times 10^{-7}; (9) 0; (10) 10^3 B 19.900;$

(10) $2000 B 20.601; (11) f a 40.939; (12) f e 20.601 (13) f c 0.000;$

(14) $10^3 + 0.905 C 19 999.8; (14) 2 \times 10^3 + 40 194 C 2000.0;$

(16) $\text{ R/S} 19 999.9; (17) \text{ R/S} 0.3; (18) 10^3 D 0.905;$

(19) $\text{ SST -0.100} (18) 2000 D 40 196; (19) \text{ SST 10.602}; (20) 10^3 E 99.918.$

Test of program with ΔS_p to be determined:

(2) same as above; (3) $10^3 + 0 + 100 A 1.000; (4&5) \text{ same as above};$

(6) $\text{ SST -9.908}, (7-9) \text{ same as above}; (13) f c 0.000;$

(14) $10^3 + 0.905 C -0.180; (14) 2 \times 10^3 + 40 194 C -19 999.98;$

(21) $f d 19 999.6, 20.00; (10) 10^3 B 19.900; (10) 2000 B 20.601.$
As Prgm. CgK would be repeatedly used for equilibrium calculations of the solidus-liquidus equilibria for molybdenum, it is worthwhile to use a variant of Prgm. CgK specifically designed for this type of equilibrium calculation. The program can be simplified by calculating \(-(\Delta G^o - \Delta H_{\text{Std}}^o)/RT \) for the fusion process at several evenly spaced temperatures and fitting these values with Prgms. Cheb \((f,C_n)\) and Cheb-a. The resulting four \(a_n\) values are then put on a data tape to be stored in registers 0 to 3. Also \(\Delta H_{\text{Std}}/R\) for the fusion process would be on the tape to be stored in register 9. The atomic weight of molybdenum, 95.94 would be stored in register C to be used if any data in weight percent are to be converted to mole fraction.

With the molefractions of Mo in the solid and liquid phases at a given temperature, the program provides values of \(\gamma_L/\gamma_S\) and \(\ln\gamma_L/\gamma_S^2\). For values at several temperatures, a least-square fit is made to estimate the excess entropy and enthalpy of mixing in the liquid phase. With these constants and for systems with moderate solid solubilities, the liquidus curve can then be calculated by the present program.

The choice of standard temperature to serve as a reference for enthalpy values and the choice of liquid standard state is sometimes found to be confusing. A number of possible choices for molybdenum were discussed in detail in Ref.(13) to demonstrate that the final calculations do not depend upon the arbitrary choices that can be made. A summary of the different types of calculations from Ref.(13) is presented here. The heat capacity data for Mo(s) at 200 K intervals from 1400 to 2800 K were fit by Prgms. Cheb \((f,C_n)\) and Cheb-a. The heat capacity of Mo(l) was extrapolated to lower temperatures by \(C_P/R = 2.832 + 5.923 \times 10^{-7}T\) to join the solid \(C_P^o\) at 800 K. For Mo(s) = Mo(l), \(\Delta C_P^o/R = 2.075 - 3.534 \times 10^{-3}T + 2.0809 \times 10^{-6}T^2 - 4.638 \times 10^{-10}T^3\) for 1400-2800 K. This choice of \(C_P\) for Mo(l) fixes the metastable liquid standard state between 1400 and the melting point. If 298.15 K is chosen as the reference temperature and \(\Delta H_{\text{Std}}\) is the enthalpy of fusion at 298 K, the method of extrapolating the liquid thermodynamic properties from 1400 K to 298 K can be completely arbitrary with no effect upon the calculations in the operating range of 1400 to 2890 K. This is most simply seen from the equation

\[
\ln K = -\Delta G^o/RT = -(\Delta G^o - \Delta H_{\text{Std}}^o)/RT - \Delta H_{\text{Std}}/RT = \phi - (\Delta H_{\text{i}}^o - \Delta H_{\text{Std}}^o)/RT - \Delta H_{\text{Std}}^o/RT
\]
where \varnothing represents those terms of $-(\Delta G^o - \Delta H^o_{\text{Std}})/RT$ that depend only upon the heat capacity contributions and T_i, the bound to the range of validity of the heat capacity equation, and not upon T_{Std}. It is apparent that any change in the standard reference temperature or in the methods of extrapolating to the standard reference temperature cancels out due to an equal change in $(\Delta G - \Delta H^o_{\text{Std}})/RT$ and in $\Delta H^o_{\text{Std}}/RT$. This was illustrated in Ref.(13) by using different heat capacity equations for liquid Mo between 298 and 1400 K and as expected from the above equation, identical values of $\ln K$ are obtained in the range 1400-2890 K. Also the use of 2890 K instead of 298 K as the standard reference temperature gave identical $\ln K$ values. Likewise, $T_{\text{Std}} = 0$ K changes $(\Delta H^o - \Delta H^o_{\text{Std}})/RT$ and $\Delta H^o_{\text{Std}}/RT$ equally. If the same standard reference state, e.g. Mo(s) at 298.15 K, is used for both the solid and liquid phases such that $\Delta H^o_{298} = 0$ for Mo(s) = Mo(l), $\Delta H^o_{1400} - \Delta H^o_{\text{Std}}$ is changed correspondingly to yield the same $\Delta G^o/RT$. The various quantities are shown for comparison where A corresponds to extrapolation of the liquid C_p equation from 1400 to 298 K; B takes $\Delta C_p = 0$ from 800 to 298 K, C refers both liquid and solid to the solid reference state at 298 K and D uses 2890 K as the standard reference temperature.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{Std}</td>
<td>298.15</td>
<td>298.15</td>
<td>298.15</td>
<td>2890 K</td>
</tr>
<tr>
<td>$\Delta H^o_{\text{Std}}/R$</td>
<td>5305</td>
<td>5323</td>
<td>0</td>
<td>4303 K</td>
</tr>
<tr>
<td>$(\Delta H^o_{1400} - \Delta H^o_{\text{Std}})/R$</td>
<td>2</td>
<td>17</td>
<td>5307</td>
<td>1005 K</td>
</tr>
<tr>
<td>$-(\Delta G^o_{1400} - \Delta H^o_{\text{Std}})/RT$</td>
<td>1.904</td>
<td>1.916</td>
<td>-1.885</td>
<td>1.188</td>
</tr>
<tr>
<td>$-\Delta G^o_{1400}/RT$</td>
<td>-1.886</td>
<td>-1.886</td>
<td>-1.886</td>
<td>-1.886</td>
</tr>
</tbody>
</table>

Within the limit of rounding errors, the final results are identical.

Since there is no difference, Prgm. 6xb is set-up to use the conventional standard reference temperature of 298.15 K but a wider temperature range is handled than previously (13). For the range 900 K to the melting point,

\[C_p^o/R = 2.18 + 2.0484 \times 10^{-3}T - 1.1049 \times 10^{-6}T^2 + 0.31558 \times 10^{-9}T^3 \]

was used for the solid. For the liquid,

\[C_p^o/R = 2.832 + 5.923 \times 10^{-4}T \]

was used to extrapolate from the value of 4.544 at 2890 K to join the solid value of 3.306 at 800 K. For Mo(s) = Mo(l),

\[\Delta C_p^o/R = 0.651 - 1.456 \times 10^{-3}T + 1.049 \times 10^{-6}T^2 - 0.31558 \times 10^{-9}T^3 \]

from 900 K to the melting point. ΔC_p^o was taken as
zero below 900 K. \(\Delta H_{2900}/R = 4303 \), \(\Delta H_{900}/R = \Delta H_{298}/R = 5329 \) K and \\
\(\Delta S_{900}/R = -\left(\Delta G_{900}^0 - \Delta H_{298}\right)/RT = 1.921 \).

The constants of the \(\Delta C_P^0 \) equation were inserted in Prgm. CgK with \\
\(T_1 = 900 \), \(\Delta S_{900}/R = 1.921 \), and \(\left(\Delta H_{900}^0 - \Delta H_{298}\right)/R = 0 \). Values of \(-\left(\Delta G_{900}^0 - \Delta H_{298}\right)/RT \)
were calculated ranging from 900 K to the melting point and fitted with

Prgms. Cheb. \(C_{n-\left(f,C_{n}\right)} \) and Cheb-\(a_{3} \) to obtain \\
\(-\left(\Delta G_{900}^0 - \Delta H_{298}\right)/RT = 1.9357 - 3.544 \times 10^{-5} T + 3.123 \times 10^{-8} T^2 - 1.042 \times 10^{-11} T^3 \)
for \(\text{Mo}(s) = \text{Mo}(l) \) between 900 K and the melting point with an average

deviation of less than 0.001 compared to the values from

Prgm. CgK.

\[
K = x_{\text{Mo}}^L x_{\text{Mo}}^L / x_{\text{Mo}}^L x_{\text{Mo}}^L \quad \text{and} \quad \ln K = -\Delta G / RT = -\left(\Delta G_{900}^0 - \Delta H_{298}\right)/RT - \Delta H_{298}/RT = \ln x_{\text{Mo}}^L / x_{\text{Mo}}^L + \ln x_{\text{Mo}} / x_{\text{Mo}}^L.
\]

From just the liquidus curve, it is not possible to unambiguously fix the

enthalpy of mixing and the excess entropy of mixing for the solution.

However, the approximation of assuming that both the enthalpy of mixing

and the excess entropy of mixing vary as \((1-x_{\text{Mo}}^L)^2 \) is made for preliminary

treatment of the data. \(\Delta H_{\text{Mo}}^L / R = b_h (1-x_{\text{Mo}}^L)^2 \), \(\Delta S_{\text{Mo}}^L / R = +b_s (1-x_{\text{Mo}}^L)^2 \), and \\
\(L = \Delta H_{\text{Mo}}^L / RT = b_h (1-x_{\text{Mo}}^L)^2 \) where the partial molal quantities

are for the mixing of liquid Mo with the other component. At a given

temperature, \(b_h/T - b_s \) will be designated as \(\Omega \). When \(x_{\text{Mo}}^L \) and \(y_{\text{Mo}}^L \) are

close to unity, \(\ln y_{\text{Mo}}^L \) will be very small and will be approximated by
\(\ln y_{\text{Mo}} = \ln \left(\frac{L}{y_{\text{Mo}}^L / y_{\text{Mo}}^L}\right)(1-x_{\text{Mo}}^L)^2 / (1-x_{\text{Mo}}^L)^2 \). If the resulting \(y_{\text{Mo}}^L \) is approximated by \(\frac{1}{y_{\text{Mo}}^L} \). Then multiplication of \(y_{\text{Mo}} / y_{\text{Mo}}^L \), determined

de in the equation above from the liquidus and solidus points and \(\Delta G^0/RT \) of

fusion, by \(y_{\text{Mo}}^L \) will yield \(y_{\text{Mo}}^L \) which can then be converted to \(\Omega \) or \(b_h/T - b_s \).

From values at several temperatures, a least square fit will yield the

values of \(b_h \) and \(b_s \) from which the first approximation to the enthalpy and

excess entropy of mixing of liquid Mo with the other component will be

available. Then using bonding theory to fix reasonable enthalpy and

entropy values, a second approximation to \(b_h \) and \(b_s \) is obtained that fits

both the liquidus data and provides reasonable enthalpy and entropy values.

An approximate liquidus curve can be calculated using the initial \(b_h \) and \(b_s \)

with an estimated solid solubility. The program also provides for

converting Celsius temperatures to Kelvin and converting weight percent

to molefraction.
Directions:

(1) Insert Prgm. Ωxb

(2) Insert data tape with constants of equation for \(-{(\Delta G^o - \Delta H_{298}^o)/RT}\) and \(\Delta H_{298}^o\) for the fusion of Mo and the atomic weight of Mo.

(3) If any weight percent data are to be treated, store atomic weight of second component in register C.

(4) E (to preceed each new set of data) Display 0,000

(5) \(\frac{T}{S} \ (1-x_{Mo}) \frac{L}{A} \ (1-x_{Mo}) \Omega, \frac{\gamma_{Mo}}{\gamma_{Mo}}\)

Repeat step 5 for data at each T

(6) R/S after all data entered in step 5

(7) \((1-x_{Mo})^T (1-x_{Mo}) B\)

(8) T f a

(9) t C

(10) wt.%A D

\(x_A = (1-x_{Mo})\)

NOTE 1: Step 9 is used to preceed steps 5, 7 and 8 when \(\text{o}^\circ\)C is to be converted to \(\text{o}^\circ\)K.

NOTE 2: Step 5 calls for \(x_A = (1-x_{Mo})\). When wt.%A is available, step (10) converts to \(x_A\). Starting with wt.%Mo, key 100 wt.%Mo - D for step 5.

NOTE 3: The initiation of a new set of data in step 5 must be initiated by step 4 which clears the secondary registers. At any time after completion of step 5 and before step 4 is carried out to prepare for a new set of data, step 6 can be repeated by keying f c.

NOTE 4: In step 7, small values of \(x_A^T\) have little effect on the liquidus and a rough estimate can be used. \(x_A^T = 10^{-4} \) or \(10^{-5}\) can be used for all very small solid solubilities. The calculation is inadequate for large solid solubilities.

NOTE 5: The values of \(b_h\) and \(b_s\) obtained in step (6) are sensitive to experimental error. After modification to match reasonable enthalpies and excess entropies, the revised \(b_h\) is stored in R5 and the revised \(b_s\) is stored in R1; step 7 will then use these values for calculation of the liquidus curve.

NOTE 6: To use for another component, store \(\Delta H_{T}/R\) in A, \(\Delta S_{T}/R\) in 0, and 0 in 1-3 if \(\Delta C_{p} = 0\). In steps 5 and 7, \(x_{Mo}\) is replaced by \(x_2\). When \(\Delta C_{p} \neq 0\), the next level of approximation is to use the average values of \(\Delta H_{T}/R\) and \(\Delta S_{T}/R\) over the temperature range. For Mo, one can use \(\Delta H_{T}/R = 5127\) and \(\Delta S_{T}/R = 1.774\) as averages for 1400-2890 K.
PRGM. "Xb"

(9) fLBLG RCLD + hRTN
(10) fLBLH REX 2 : h1/x 1 - RCLC X RCLR
(11) fLBLJ REX 2 : h1/x hRTN
(12) fLBLK RSTO 0 STO4 STO5 STO6 STO8 STO9 fP=8 hRTN
(13) fLBLA STOE 1 - hR2 hSTI 1 - hRTN
(14) fLBLB hR4 STO8 RCL6 + RCL6 hR6 RCLE hRTN
(15) fLCLC hSTx # hSTx f-x- RCL6 ge x hRTN
(16) fLBLF fP=8 RCL4 RCL5 X - # CHS hSTI RCL4 X
(17) fLBLG hR5 STO9 hR5 hR4 - hR3 RCL8 RCL9 + STO7
(18) fLBLH hR4 hR5 STO6 RCL0 + STO4 RCL4 hR5 + hR5
(19) fLBLI hR5 hRTN
(20) fLBLJ hR5
(21) fLBLK hR5
(22) fLBLL X

RP 0 1 2 3 4 5 6 7 8 9
a0 a1 a2 a3 t b h ln x S ln m ln y mo ln y mo
used used x S x mo

RS 4 5 6 7 8 9
ΣT ΣT² ΣXT ΣXT² ΣXT³

R A B C D E I
ΔH° 95.94 M A 273.15 x A x A

Test:
(3) 157.26 STO C
(9) 150 C 423.15; (10) 0.09 D 5.49x10⁻¹⁻, 1.53 D 9.39x10⁻³⁻;
(11) E 0.000; (5) 2800 + 10⁻³⁻ + .053 A 1.715, 1.005;
(12) 2700 10⁻³⁻ + .132 A 1.741, 1.031; (5) 2600 + 10⁻⁵⁻ + .2522 A 1.769, 1.119;
(13) 2500 10⁻⁶⁻ + .54202 A 1.800, 1.697; (5) 2400 10⁻⁶⁻ + .7315 A 1.833, 2.667;
(14) R/S 1977.8, -1.009; (7) 10⁻⁷⁻ + 0.26 B 2683, 2783, 2797, 2800, 2800;
(15) 10⁻⁵⁻ + .2522 B 2523, 2592, 2599, 2600; (8) 2700 f a -0.111;
(16) 1.009
Calculation of Composition Boundaries of Saturating Phases

Such calculations require that Gibbs energy of solution be expressed in analytical form as a function of temperature and composition. The functional form of the regular solution equation is the most practical for most systems.

The regular solution derivation\(^{12,20}\) gives the Gibbs energy in terms of volume fraction. If the volume fraction is expanded as a truncated power series in mole fraction, one obtains

\[
\frac{\Delta G_1^E}{RT} = b_g x_2^2 + c_g x_2^3
\]

and

\[
\frac{\Delta G_2^E}{RT} = [b_g + c_g] x_1^2 - c_g x_1^3
\]

\(\Delta G^E\) is the excess partial molal Gibbs energy of component 1 and \(V_1\) is the molal volume of component 1. As the regular solution equation is derived under constant volume conditions, an excess entropy term arises from the volume change upon mixing. In addition, since \(b_g = \left(\frac{V_2}{V_1}\right)\left[\frac{\Delta E_1}{V_1}\right]^2 - \left(\frac{\Delta E_2}{V_2}\right)^2 \right] / RT\), the temperature coefficients of the molal volume and of the energy of vaporization, \(\Delta E\), also result in an excess entropy.\(^{12}\) The enthalpy and excess entropy can be expressed as similar functions of mole fraction.

Their combination to give the partial molal Gibbs energy equation yields for each component in its standard state dissolving in the solution

\[
\ln y_1 = \frac{\Delta G_1^E}{RT} = (b_h / T - b_s) x_2^2 + (c_h / T - c_s) x_2^3 = \Omega_1 x_2^2
\]

and

\[
\ln y_2 = \frac{\Delta G_2^E}{RT} = \left[b_h / T - b_s + \frac{3}{2} c_h / T - c_s \right] x_1^2 - \left(c_h / T - c_s \right) x_1^3 = \Omega_2 x_1^2
\]

where the signs of the \(b_h, c_h, b_s\), and \(c_s\) terms are the same as the signs of the corresponding enthalpy and entropy terms in the Gibbs energy equation. Thus, \(b_g T\) at a temperature \(T\) equals \(b_h - b_s T\), etc. These equations average out the contributions of \(\Delta C_p\) values to the Gibbs energy by using the average enthalpy and entropy values over the temperature range of interest. Analytical equations of this form are found to reproduce, within the range of experimental uncertainty, the thermodynamic properties of many metallic solutions over a considerable range of temperature and composition.

When a miscibility gap exists in the solution at a given temperature, the partial molal Gibbs energies of both components are equal in both saturating phases. If the mole fractions are expressed as \(x_1 = 1 - y\) and \(x_2 = y\) in the phase with excess component 1 and as \(x_1 = x\) and \(x_2 = 1 - x\)
in the phase with excess component 2, the equilibrium condition can be expressed as

\[\ln x + b(l-x)^2 + c(l-x)^3 = \ln(l-y) + b y^2 + c y^3 \]
\[\ln y + (b^2 + 2c)(l-y)^2 - c(l-y)^3 = \ln(l-x) + (b^2 + 2c)x^2 - cx^3 \]

where \(b = (b_l/T - b_s) \) and similarly for \(c \). When the same values of \(b \) and \(c \) are not applicable for both phases, the equations become

\[\ln x + b_x(l-x)^2 + c_x(l-x)^3 + e_x = \ln(l-y) + (b_y + 3c_y)y^2 - c_y y^3 = -d_x \]
\[\ln y + b_y(l-y)^2 + c_y(l-y)^3 + e_y = \ln(l-x) + (b_x + 3c_x)x^2 - c_x x^3 = -d_y \]

The subscript \(x \) indicates the constants apply in the phase region for which \(x = x_1 \) is small and \(y \) indicates applicability in the phase region for which \(y = x_2 \) is small. These general equations may be reduced to the first set if \(b_x = b, \ y = b + \frac{3c}{2}, \ c_x = c, \ \text{and} \ c_y = -c \). When the solubilities are small, the cubic terms can be dropped with the constants of the quadratic terms being \(\Omega_x = b_x + c_x \) and \(\Omega_y = b_y + c_y \). The \(e_x \) and \(e_y \) terms are discussed below.

For a symmetrical immiscibility gap when the molal volumes of the two components are closely the same, \(c = 0 \) and \(b_x = b_y \) resulting in equal values of \(x \) and \(y \). The two equations reduce to \(\ln[x/(l-x)] + b(1-2x) = 0 \) which is readily solved by Prgm. Im. If the excess entropy is neglected, \(b \) will be inversely proportional to \(T \) and the calculations can be repeated at a new temperature \(T_2 \) by multiplying \(b \) by \(T_1/T_2 \). This can be done by \(T_1 \div T_2 \) STO X \(\frac{1}{4} \) RCL \(\frac{1}{4} \) f \(b \) to obtain the value of \(x = y \) at \(T_2 \). The temperature that brings \(b \) down to 2 will be the critical temperature. For \(b < 2 \), the system will be miscible.

Program Im carries out the simultaneous solution of these two equations for \(x \) and \(y \) to yield the compositions of the saturating phases. The iterative solution using the secant method is based in part on a portion of Prgm. SD-ll of the HP-67 Standard Pac(18). Program Im first assumes that the solubilities are small enough to neglect \(d_x \) and \(d_y \) and to approximate \(1-x \) by 1. This yields as the first approximation \(x' = e^{-(b_x+c_x)} \). \(x' \) is used to calculate the first approximation of \(d_y \).

\[\ln y + b_y(l-y)^2 + c_y(l-y)^3 + d_y + e_y = 0 \]

is then solved by iteration to yield \(y'' \). If flag 0 is set, the value of \(y \) obtained by each interaction is flashed. The process continues until the fractional change in \(y \) in the last iterative step rounded to the number of
places after the decimal designated in step 2 is displayed as zero. The same process is then used in step 7 to calculate \(x'' \). The value of \(x'' \) is used to calculate a new value of \(dy \) and the equation for \(y \) is solved again to obtain \(y''' \). Steps 6 and 7 are alternately repeated until the values of \(x \) and \(y \) show no additional change. To speed convergence, step 2 should be set initially at DSP 2 and no change in \(x \) and \(y \) will be noted after \(\Delta x/x \) or \(\Delta y/y \leq 0.005 \). For \(x \) and \(y \approx 0.1 \), the values of \(x \) and \(y \) will be accurate to 0.0005 and can be read to 4 places by keying DSP 4. If it is desired to calculate \(x \) and \(y \) more accurately, steps 7 and 6 can be repeated with DSP 3 or 4. If there is no interest in the progress of the iterations at each step, hCPO will stop the flashing of successive \(x \) or \(y \) values. hSPO will change back to flashing.

If the same standard states are not used for both phases, a constant term would be added to \(dx \) or \(dy \) or both corresponding to the Gibbs energy difference between the standard states divided by \(RT \). The equilibrium between the solidus and liquidus portions of a phase diagram will be considered as an example. For solid with largely component 1 in equilibrium with the liquid phase, then \(e_x = \Delta G_f,1/RT = \Delta H_f,1/RT - \Delta S_f,1/R \) and \(e_y = -\Delta G_f,2/RT = -\Delta H_f,2/RT + \Delta S_f,2/R \), where \(\Delta H_f \) and \(\Delta S_f \) are the average enthalpies and entropies of fusion of the two components over the temperature range of interest. In the equations given on the previous page, \(b_x \) and \(b_y \) will be considerably different, in general, for the example of solid-liquid equilibria.

Program Im provides for insertion of the enthalpy and entropy terms to allow calculation of \(b_x, c_x, e_x, b_y, c_y \) and \(e_y \) at various temperatures and then to solve for \(x \) and \(y \) values for the saturating phases at the given temperature. When the \(b, c \) and \(e \) values are already known for the desired temperature, the enthalpy values are inserted as zero and the \(b, c \) and \(e \) values are inserted with reversed sign for the entropy terms as illustrated in one of the test examples.

For mutual solubilities of two liquid phases or two solid phases for which there are no \(e_x \) or \(e_y \) terms due to differences in standard states, \(\Delta H_{f,1}, \Delta S_{f,1}, \Delta H_{f,2} \) and \(\Delta S_{f,2} \) are entered as zero. When the difference in standard states corresponds to the solid phase transition, then \(\Delta H_f \) and
\(\Delta S^g_1 \) are replaced by the corresponding values for the transition. For liquid immiscibility with small enough solubilities for the approximation

\[
\ln Y_1 = (b_x + c_x) y^2 \quad \text{and} \quad \ln Y_2 = (b_x + \frac{1}{2} c_x)(1-y)^2
\]
in the phase rich in component 2, the regular solution theory predicts

\[
(b_x + c_x)/ (b_x + \frac{1}{2} c_x) = (V_2/V_1).
\]

This is sometimes useful, but, in practice, the value of \(c \) is often more dependent upon change in character of the bonding across the solution range than upon the volumes of the pure materials, especially with change in electronic configuration upon solution. One can sometimes obtain a useful value of \(c \) by comparison of

\[
(\ln Y_1)/x_2 = b+c \quad \text{at large } x_2 \quad \text{with} \quad (\ln Y_2)/x_1 = b+\frac{1}{2}c \quad \text{at large } x_1.
\]

If \(c = 0 \) is used in Prgm. Im, \((\ln Y_1)/x_2^2 \) and \((\ln Y_2)/x_1^2 \) are taken equal for a given solution, but their value can be greatly different on opposite sides of the miscibility gap.

Directions:

1. Insert Prgm. Im
2. DSP n, usually n=2 initially
3. \(\Delta H^o_{1,1}/R \uparrow \Delta S^o_{1,1}/R \uparrow b_h + b_s A \quad \text{Display} \quad \Delta H^o_{1,1}/R \)
4. \(-\Delta H^o_{1,2}/R \uparrow -\Delta S^o_{1,2}/R \uparrow b_h + b_s R/S \) \(\text{or fa} \quad -\Delta H^o_{1,2}/R \)
5. \(c_h^x + c_s^x + c_h^y + c_s^y \quad R/S \) \(\text{or fb} \quad c_h^y \)
6. T B (or \(^0 \text{C} \ D \) \(x', y' y'' \)
7. C \(\text{Repeat 7 and 8 alternately until } \quad x'' \quad \quad x'''' \)
8. R/S \(\text{if } x \text{ and } y \text{ show no change in successive steps; read final values } \quad y'' \quad \quad y'''' \)

If \(x \) is known: after step 7, DSP n to desired accuracy followed by

\[
(8') y \text{ STO A fd} \quad d_x
\]

\[
(7') c \quad x'' \quad \quad x_{final}
\]

If \(x \) is known: after step 6, DSP n to desired accuracy followed by

\[
(7'') x \text{ STO A fd} \quad d_y
\]

\[
(8'') c \quad y'' \quad \quad y_{final}
\]

NOTE 1: The alternatives \(\text{fa} \) and \(\text{fb} \) for R/S in steps 3 and 4 allows alteration of part of the data without need to reinsert all of the data. For step 6, temperature in \(^0 \text{C} \) can be inserted followed by D to convert to \(^0 \text{K} \) and initiate the calculations.

NOTE 2: The display control of step 2 can be changed at any time, but is best started with only two places. If higher than 3 place accuracy is desired, n can be increased at each successive repeat of steps 7 and 8. For each new T, start at step 6 following step 8. If step 7 was the last step, key \(\text{fP2S} \) before starting again at step 6.

cont'd.
NOTE 3: C can be used in place of R/S for step 8, but alternating between C for the x calculation and R/S for the y calculation helps one keep track of which value is being calculated.

NOTE 4: If it is desired to repeat step 7' to obtain a value to a larger number of places, change DSP n and repeat steps 8' and 7'. Similarly, if x is known, repeat steps 7'' and 8''.

NOTE 5: After T STOD, E calculates $\frac{\Delta G}{RT}$, $\sqrt{\gamma}$ calculates b_x and f_c calculates c_x for component 1 if the component 1 constants are in the primary registers. If $d_x = -\ln a_1$ is desired, it may be obtained by RCL 5 after step 8.

NOTE 6: Step 6 assumes x and y are small. If they are not, replace step 6 by T STO D x + y GTO 8 R/S, where x' and y' are estimates of the solution. Then continue with steps 7 and 8. This procedure is also used for calculating solubilities for a sequences of temperatures. If the temperature intervals are small, only T STOD is needed for step 6.

TEST:

(3) 5127 + 1.774 + 4x10^3 + .3 A 5127.00;
(4) -1371 + -.162 + 8x10^3 + .2 R/S -1371.00;
(5) 500 + .1 + 500 + .1 R/S 500.00;
(6) 2x10^3 B (or 1726.85 D) x=.07, y=.02, .02, .02, .02;
(7) C x=.10, .10, .10, .10;
(8) R/S y=.02, .02, DSP 4, .0190;

(7) C x=.1014, .1014, .1014, DSP 5, .10138;

(8) R/S y=.01902, .01902, .01902, DSP 6, .019022.

$y = .019022$ known

Steps 2-7 the same as above; (8') .019022 STO A fd, $d_x = .0177$;

(7') C .1014, .1014, .1014, DSP 5, .10138

x = .10138 known

Steps 2-6 the same as above; (7'') .10138 STO A fd, $d_y = .0873$;

(8'') C .0190, .0190, .0190, DSP 6, .019022

$e_x = e_y = 0, b_x = 2.5, b_y = 3, c_x = .5, c_y = .1$

(3) 0 + 0 + 0 + -2.5 A 0.00
(4) 0 + 0 + 0 + -3 R/S 0.00
(5) 0 + -.1 + 0 + -5 R/S 0.00
(6) 1 B x=.05, y=.04, .06, .06, .06
(7) C .08, .08, .08, DSP 3, .075; (8) R/S .062, .062, .062, DSP 4, .0618

(7) C .0755, .0755, .0755, .0755
Prgm. Im

(3) **fLBLA** STO7 hR+, STO6 hR+, STO4 hR+, STO3 hRTN

(4) **gLBLfa** fP+S A fP+S hRTN

(5) **gLBLfb** STO9 hR+, STO8 hR+, fP+S STO9 hR+, STO8 fP+S hRTN

(6) **fLBLB** STOD fc fGSB6 + E + CHS ge x hPSE

(7, 7') **fLBLC** fc hSTI fGSB6 STOE fGSB2 fGSB3 STOA fGSB1 RCLA

(8, 8'') **fBLD** 2 7 3 1 5 + GTOB

(6') **fLBLD** 2 7 3 . 1 5 + GTOB

(7, 7') **fLBLC** fc hSTI fGSB6 STOE fGSB2 fGSB3 STOA fGSB1 RCLA

(8, 8'') **fBLD** 2 7 3 1 5 + GTOB

R 0 1 2 3 4 5 6 7 8 9
P x' x'' Δx ΔH/R Δη/R d x b x b y b + x b - x y' y'' Δy -ΔH/R -Δη/R d y b y b + y b - y
S y' y'' Δy -ΔH/R -Δη/R d y b y b + y b - y

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>I</th>
<th>Flag 0 is set</th>
</tr>
</thead>
<tbody>
<tr>
<td>x'</td>
<td>f(y')</td>
<td>f(x')</td>
<td>f(y'')</td>
<td>f(x'')</td>
<td>b y</td>
<td>c y</td>
</tr>
<tr>
<td>y'</td>
<td>f(x')</td>
<td>f(x')</td>
<td>f(y'')</td>
<td>b x</td>
<td>c x</td>
<td></td>
</tr>
</tbody>
</table>

Flag 0 is set

x' f(y') f(x') f(y'') b y c y
y' f(x') f(x') f(y'') b x c x
Gibbs Energy from Phase Boundaries

When the compositions of saturating phases are known, two constants can be directly determined. If the same b and c values are assumed for both phases for which the same standard states are used,

\[
\ln x + b(1-x)^2 + c(1-x)^3 = \ln(1-y) + cy^2 + cy^3 = \ln a_1 = \Delta G_1/RT
\]

\[
\ln y + (b+\frac{3}{2}c)(1-y)^2 - c(1-y)^3 = \ln(1-x) + (b+3c)x^2 - cx^3 = \ln a_2 = \Delta G_2/RT
\]

The mole fraction of component 1 is x in the phase rich in 2 and is 1-y in the phase rich in 1. The simultaneous solution of these equations expressed as \(a_1b + \beta_1c = \epsilon_1\) and \(a_2b + \beta_2c = \epsilon_2\) is discussed on pg. 114 of reference 13 using the quantities

\[
a_1 = 1 - x^2/(1-y)^2, \quad a_2 = 1 - x^2/(1-y)^2, \\
\beta_1 = 1 - x - y^3/(1-x)^2, \quad \beta_2 = \frac{1}{2} + y - \frac{3}{2}x^2/(1-y)^2 + x^3/(1-y)^2, \\
\epsilon_1 = [\ln(1-y)/x]/(1-x)^2, \quad \epsilon_2 = [\ln(1-x)/y]/(1-y)^2,
\]

and \(D = a_1\beta_2 + a_2\beta_1\).

When the same b and c values are not expected to be applicable for both phases or if the solubilities are small enough to combine the cubic terms with the square terms, then one uses \(\ln y_1/(1-x)^2 = b_x\) and \(\ln y_2/(1-y)^2 = b_y\). In addition to calculating values of b and c or b_x and b_y, values of \(\ln y_1 = \Delta G_1/RT\) and \(\ln a_1 = \Delta G_1/RT\) and the corresponding values for the other components are calculated for both phases. If a set of b and c values or b_x and b_y values have been obtained at several temperatures, steps 4-6 of Prgm. qxb can be used to obtain enthalpy and excess entropy terms corresponding to \(b = b_h/R + b_s\) or \(c = c_h/T + b_s\) and similarly for b_x and b_y. The steps are (4) E, (5) T + b for each b value, then (6) f c will yield b_h and b_s. The same steps are repeated to obtain c_h and c_s values from the set of c values.

Directions:

(1) Insert Prgm. yx-bc
(2) y + x A
(3) SST
(4) y + x B
(5) SST
(6) C
(7) D
NOTE 1: b and c can be obtained after step (5) by RCLE hRCI.

NOTE 2: Steps 6 and 7 can be used in either order following step 3 or step 5.

Prgm. yx-bc Test:
(2) .095 t .07 A 2.4837; (3) SST 0.5397;
(4) .04 t .03 B 3.6889; (5) SST 3.4635;
(6) C 3.4709, -0.0357, 0.0036, -0.0269;
(7) D 3.1920, -0.0269, 0.0051, -0.0357;
after (2), (6) C 2.5823, -0.0769, 0.0160, -0.0566;
(7) D 2.2973, -0.0566, 0.0229, -0.0769.

<table>
<thead>
<tr>
<th>Prgm. yx-bc</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) (FLB)A [ST]05 1 - [CHS] [ST]06 hxy [ST]07 1 -</td>
</tr>
<tr>
<td>[CHS] [ST]04 RCL5 hxy (\div) [ST]08 hR RCL3 hxy (\div)</td>
</tr>
<tr>
<td>[ST]07 RCL6 5 + RCL8 gx² X RCL4 +</td>
</tr>
<tr>
<td>[CHS] 5 + [ST]0D 1 RCL7 3 hyX</td>
</tr>
<tr>
<td>- RCL6 X [ST]OC RCL7 fLN [CHS] RCL4 gx² (\div)</td>
</tr>
<tr>
<td>[ST]02 1 RCL7 gx² (\div) ST0A RCL8 fLN [CHS] RCL6</td>
</tr>
<tr>
<td>gx² (\div) [ST]01 1 RCL8 gx² (\div) ST0B X hxy</td>
</tr>
<tr>
<td>RCL2 X - RCLC RCLB X RCLA RCLD X -</td>
</tr>
<tr>
<td>[ST]09 (\div) hST0I RCLC RCL2 X RCL1 RCLD X -</td>
</tr>
<tr>
<td>(3) RCL9 (\div) ST0E hRTN hxy hRTN</td>
</tr>
<tr>
<td>(4) (FLBL)B A + hRCI RCL5 X - [STOC] RCL3 0</td>
</tr>
<tr>
<td>(5) 5 + hRCI X RCLE + [STOD] RCLC hRTN hxy</td>
</tr>
<tr>
<td>(6) (FLBL)C hRCI RCL6 X RCLE + RCL6 gx² X ST00</td>
</tr>
<tr>
<td>RCL5 fLN (\div) fa RCL5 X - RCL5 0 X</td>
</tr>
<tr>
<td>(\div) [ST]0I RCL6 fLN (\div) RCL0 hR+ gSTK hRTN</td>
</tr>
<tr>
<td>(7) (FLBL)D fa RCL4 X - RCL4 gx² X ST02 RCL3</td>
</tr>
<tr>
<td>fLN (\div) hRCL3 X RCLE + RCL4 gx² X</td>
</tr>
<tr>
<td>(\div) [ST]09 RCL4 fLN (\div) RCL2 hR+ gSTK hRTN</td>
</tr>
<tr>
<td>gLBLfa RCLE 1 5 hRCI X hRCI hRTN</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\epsilon_1 & \epsilon_2 & y & 1-y & x & 1-x & y/(1-x) & x/(1-y) & D \\
ln\gamma_1 & ln\gamma_2 & ln\gamma_2 & ln\gamma_1 \\
A & B & C & D & E & I \\
\alpha_1 & \alpha_2 & \beta_1 & \beta_2 & b & c \\
b_x & b_y \\
\end{array}
\]
Calculation of Thermodynamic Properties of Liquid Solution from Properties of Solid Solution and Solidus-Liquidus Data and Effect of Errors

Program Im presents the equations for the solidus-liquidus equilibrium. The same equations and symbols will be used here for Prgm. Oyxbc. This program starts with enthalpies and entropy of fusion of both components and the partial molal enthalpies and entropies in the solid phase and calculates

\[\Omega_1^l = \ln \gamma_1^l / x_2^2 \quad \text{and} \quad \Omega_2^l = \ln \gamma_2^l / x_1^2 \]

for the liquid phase of composition \(x_1^l = x \) in equilibrium with the solid phase of composition \(x_2^s = y \) and then calculates \(b_x \) and \(c_x \) of \(\Omega_1^l = b_x + c_x (1-x) \).

It is often of interest to determine the influence of error in \(x \) and \(y \) on the calculated values of \(\Omega_1 \) and \(\Omega_2 \). This program provides values of \(d\Omega / dx \) and \(d\Omega / dy \) for both components. The variation of each \(\Omega \) with the change of \(b_y \) and \(c_y \) can also be calculated. An error in the entropy of fusion of a component causes an error only in \(\Omega_i^l \) for the same component. The program gives the error in \(\Omega_2^l \) for an error in \(\Delta S_f,2/R \).

\[
\begin{align*}
\ln n_2^s &= \ln y + b_y (1-y)^2 + c_y (1-y)^3, \quad \ln n_2^l = \ln (1-x) + (b_x + \frac{3}{2} c_x - c_x x) x^2 \\
\ln n_2^l - \ln n_2^s &= -\Delta S_{fus,2}^{o}/RT = e_y \\
\ln n_2^s + e_y - \ln (1-x) &= \ln n_2^l - \ln (1-x) = (b_x + \frac{3}{2} c_x - c_x x) x^2 = \Omega_2^x^2 \\
\Omega_2^l &= [\ln y + b_y (1-y)^2 + c_y (1-y)^3 + e_y - \ln (1-x)] / x^2 \\
\ln n_1^s - \ln n_1^l &= -\Delta S_{fus,1}^{o}/RT = -e_x \\
\ln n_1^s &= \ln (1-y) + (b_y + \frac{3}{2} c_y) y^2 - c_y y^3 \\
\ln n_1^l - e_x - \ln x &= \ln n_1^s - \ln x = (b_x + c_x - c_x x)(1-x)^2 = \Omega_1^l (1-x)^2 \\
\Omega_1^l &= [\ln (1-y) + (b_y + \frac{3}{2} c_y) y^2 - c_y y^3 - e_x - \ln x] / (1-x)^2 \\
c_x &= 2(\Omega_2 - \Omega_1), \quad b_x = 3n_1 - 2\Omega_2 + 2(\Omega_2 - \Omega_1)x = \Omega_1 - c_x (1-x) \\
\frac{d\Omega_2^l}{dy} &= \left[\frac{1}{y} - 2 b_y (1-y) - 3 c_y (1-y)^2 \right] / x^2 \\
\frac{dc_x}{dy} &= \left[\frac{1}{1-y} + (2b_y + 2c_y) y - 3 c_y y^2 \right] / (1-x)^2 \\
\frac{d\Omega_1^l}{dy} &= \left[\frac{1}{1-y} + (2b_y + 2c_y) y - 3 c_y y^2 \right] / (1-x)^2 \\
where v = x, y, b_y or c_y.
\end{align*}
\]

cont'd.
\[
\frac{d\Omega_2^l}{dx} = \frac{2 \ln(1-x)}{x^3} + \frac{1}{x^2(1-x)} - \frac{2 [x^2 \Omega_2^l + \ln(1-x)]}{x^3} = \frac{1}{x^2(1-x)} - \frac{2 \Omega_2^l}{x}
\]
\[
\frac{d\Omega_2^l}{dx} = \frac{-1}{x(1-x)^2} - \frac{2 \ln x}{(1-x)^3} + \frac{[2(1-x)2 \Omega_2^l + \ln x]}{(1-x)^3} = \frac{-1}{x(1-x)^2} + \frac{2 \Omega_2^l}{(1-x)}
\]
\[
\frac{d\Omega_2}{dy} = \frac{(1-y)^2}{x^2}
\]
\[
\frac{d\Omega_2}{dc_y} = \frac{(1-y)^3}{x^2}
\]
\[
\frac{d\Omega_1}{dy} = \frac{y^2}{(1-x)^2}
\]
\[
\frac{d\Omega_1}{dc_y} = \left(\frac{3}{2} - y\right) \frac{y^2}{(1-x)^2}
\]
\[
\frac{db_x}{dv} = \frac{d\Omega_1}{dv} - (1-x) \frac{dc_x}{dv} = \frac{d\Omega_2}{dv} - 2 (1-x) \left[\frac{d\Omega_2}{dv} - \frac{d\Omega_1}{dv} \right]
\]
\[
\frac{d\Omega_2}{d(\Delta S_{f,2/R})} = \frac{T - T_{MP2}}{T_x^2}, \quad \frac{dc_x}{d(\Delta S_{f,2/R})} = \frac{2(T - T_{MP2})}{T_x^2}, \quad \frac{db_x}{d(\Delta S_{f/R})} = \frac{(2x - 2)(T - T_{MP2})}{T_x^2}
\]

Directions:

1. Insert \(\Omega_{xyzc} \) tape
2. \(\Delta H_{f,1/R} + \Delta S_{f,1/R} \) A
3. \(-\Delta H_{f,2/R} + -\Delta S_{f,2/R} \), \(b_y^+ + b_y^+ R/S \)
4. \(c_h^+ + c_h^+ R/S \)
5. T B
6. y \(\leftrightarrow \) x C
7. D
8. E
9. T_{MP2} fa

cont'd.
NOTE 1: After step 6, steps 7, 8 and 9 can be carried out in any order.

NOTE 2: After step 9, 2X gives \(\frac{dc_x}{d(\Delta S_f, 2/R)}\) which yields \(\frac{db_x}{d(\Delta S_f, 2/R)}\) by multiplication by \(x-1\).

NOTE 3: If liquid thermodynamic data are available and it is desired to calculate solid data from \(x, y\) values, the same program can be used with reversal of 1 and 2 and \(x\) and \(y\) with the following directions:

- \(\Delta H_2/R \rightleftharpoons -\Delta S_2/R\)
- \(\Delta H_1/R + \Delta S_1/R \rightleftharpoons b_x + b_x\)
- \(b_y + 1 = x\)
- \(x \rightleftharpoons y\)
- \(c_x\rightleftharpoons c_y\)
- \(\Omega_{2} \rightleftharpoons \Omega_{2}\)

Program: \(q\times b c\)

```plaintext
(2) fLBLA fP\#S STO4 hR+ STO3 hP\#S hRTN
(3) STO7 hR+ STO6 hR+ STO4 hR+ STO3 hRTN
(4) STO9 hR+ STO8 hRTN
(5) fLBLB STOD h 1/x RCL6 X RCL7 - STO0 RCL8 RCLD
: STO0 fP\#S hRTN
(6) fLBLC fP\#S STO1 1 - CHS STO2 fP\#S hR+ STOA
+ hx2y - STOB hLSTx f+ + fP\#S RCL2 RLN
- RCL1 gx2 : STO9 f-x- RCLB f- - RCL1
+ fLN - RCL2 gx2 : STO8 f-x- RCL9 - 2
+ X CHS STO7 f-x- RCL2 X RCL8 - CHS STO6
fP\#S hRTN
(fLBL)e fLN 1 hLSTx - gx2 hLSTx RCL5 X RCLO
+ X + RCL3 RCLD : RCL4 - hRTN
(7) fLBLD RCLB RCLB RCL5 X 3 X RCL0 2 X
+ X RCLA h 1/x - CHS fP\#S RCL1 gx2 :
+ hLSTx f-x- RCLA RCLB RCL5 X 3 X RCL0 2
+ X + X RCLB h 1/x - RCL2 gx2 : STOR
f-x- RCL9 2 X RCL1 RCL2 X h 1/x - RCL1
+ CHS STOC f-x- RCL8 2 X RCL1 RCL2 X
+ h 1/x - RCL2 : fP\#S STO1 RCLC STO2 hR+ hRTN
(8) fBLLE RCLB RCLB RCL1 : gx2 STOC f-x- RCLB X
f-x- RCLA RCL2 : gx2 f-x- 1 - 5 RCLA
- X fP\#S hRTN
(9) fLBLa RCLD - hLSTx : fP\#S RCL1 gx2 : CHS
```

<table>
<thead>
<tr>
<th>RP</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

\[y \begin{array}{cccc}
\frac{d\Omega}{dy} & \frac{d\Omega}{dy} & \frac{d\Omega}{dy} & \frac{d\Omega}{dy} \\
\end{array} \]
If it is desired to determine the effect upon b_x and c_x of the liquid phase of errors in b_y and c_y of the solid phase, Prgm. bc calculates dc_x/db_y, dc_x/dc_y, db_x/db_y, and db_x/dc_y.

$$\frac{dc_x}{db_y} = 2 \left(\frac{\partial^2 b}{db_y^2} - \frac{\partial b}{db_y} \right) = 2 \left[\frac{(1-y)^2}{x^2} - \frac{y^2}{(1-x)^2} \right]$$

$$\frac{dc_x}{dc_y} = 2 \left(\frac{\partial^2 c}{dc_y^2} - \frac{\partial c}{dc_y} \right) = 2 \left[\frac{(1-y)^3}{x^2} - \frac{(3-y)}{(1-x)^2} \frac{y^2}{(1-x)^2} \right]$$

$$\frac{db_x}{db_y} = \frac{\partial x}{db_y} - (1-x) \frac{dc_x}{db_y} = \frac{\partial x}{db_y} - 2(1-x) \left[\frac{\partial b}{db_y} - \frac{\partial c}{db_y} \right]$$

$$\frac{db_x}{dc_y} = \frac{\partial x}{dc_y} - (1-x) \frac{dc_x}{dc_y} = \frac{\partial x}{dc_y} - 2(1-x) \left[\frac{\partial b}{dc_y} - \frac{\partial c}{dc_y} \right]$$

$$= \frac{y^2}{(1-x)^2} - 2(1-x) \left[\frac{(1-y)^2}{x^2} - \frac{y^2}{(1-x)^2} \right]$$

$$\frac{\partial x}{dc_y} = \frac{\partial x}{dc_y} - (1-x) \frac{dc_x}{dc_y} = \frac{\partial x}{dc_y} - 2(1-x) \left[\frac{\partial b}{dc_y} - \frac{\partial c}{dc_y} \right]$$

$$= \frac{(3-y)}{(1-x)^2} - 2(1-x) \left[\frac{(1-y)^3}{x^2} - \frac{(3-y)}{(1-x)^2} \frac{y^2}{(1-x)^2} \right]$$

Directions:

(1) Insert tape bc
(2) $y \leftrightarrow x A$

Prgm. bc

<table>
<thead>
<tr>
<th>fLBA</th>
<th>STOA</th>
<th>1</th>
<th>-</th>
<th>CHS</th>
<th>STOB</th>
<th>hR+</th>
<th>STOC</th>
<th>1</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHS</td>
<td>STOD</td>
<td>RCLA</td>
<td>+</td>
<td>gx^2</td>
<td>STO9</td>
<td>RCLC</td>
<td>RCLB</td>
<td>+</td>
<td>gx^2</td>
</tr>
<tr>
<td>STO8</td>
<td>-</td>
<td>2</td>
<td>X</td>
<td>STO2</td>
<td>f-x-</td>
<td>RCL9</td>
<td>RCLD</td>
<td>X</td>
<td>RCL8</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>RCLC</td>
<td>-</td>
<td>X</td>
<td>STO7</td>
<td>-</td>
<td>2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STO3</td>
<td>f-x-</td>
<td>RCL8</td>
<td>1</td>
<td>RCLA</td>
<td>-</td>
<td>RCL2</td>
<td>X</td>
<td>-</td>
<td>STO0</td>
</tr>
<tr>
<td>f-x-</td>
<td>RCL7</td>
<td>1</td>
<td>RCLA</td>
<td>-</td>
<td>RCL3</td>
<td>X</td>
<td>-</td>
<td>STO1</td>
<td>hR+</td>
</tr>
</tbody>
</table>

cont'd.
There is no general procedure for applying the various programs that have been described for treating a phase diagram. Liquidus data usually would be treated first by Prgm. \(axb \) which neglects the effect of solid solubility to obtain a rough idea of the partial molal enthalpies and entropies in the liquid phase. Neglect of solid solubility or experimental error in the data can yield values substantially in error and the initial values may have to be somewhat modified to be within the range of reasonable values indicated by various theoretical models. Program \(yxb \) can be used to calculate the boundaries of the solidus and liquidus from the selected thermodynamic values. There are, in general, an infinite combination of thermodynamic quantities that will fit a set of experimental data within experimental error. Comparison of the results from Prgm. \(yxb \) with the original experimental data will indicate what changes in the thermodynamic data might be necessary to give a better fit and still be in the range of reasonable entropy and enthalpy values. Program \(yxbc \) is of use of obtain Gibbs energy values from boundary values at a given temperature or Prgm. \(yxbc \) will yield the molefraction dependence of the thermodynamic properties in one phase knowing the properties in the saturating phase. This last program can be of value in adjusting the thermodynamic data through analysis of the effect of error in various quantities upon the phase boundaries and the effect of error in one thermodynamic quantity upon related thermodynamic values. For intermediate phases with relatively limited solid solubility, the next program, Prgm. \(SP \), is often of value. Because of the experimental error in most observations and the resulting wide spread of thermodynamic quantities that could be used to fit the data, it is important that this fitting process not be carried out in a mechanical manner. Considerable judgment using theoretical models with useful predictive value is essential to narrow down the range of thermodynamic values consistent with the experimental data.
Solubility Product Calculations for Liquidus of Intermediate Phases

Combination of the equations $\Delta G^o/RT = (\Delta G^o-\Delta H_{298}^o)/RT + \Delta H_{298}^o/RT$ for

$A(s) + nB(s) = AB_n(s)$, $A(s) = A(l)$, and $nB(s) = nB(l)$ gives for

$AB_n(s) = A(l) + nB(l)$, $-\Delta G^o/RT = -\Delta H_{298}^o/RT - (\Delta G^o-\Delta H_{298}^o)/RT = \ln K = \ln x_A + n\ln x_B + n\ln y_A + n\ln y_B = \ln x_A + n\ln x_B - (b_h b - b_h T)(1-x_A)^2 - (c_s - c_h T)(1-x_A)^3$

$- n[b_s^2 + c_s - (b_h^2 c_h - c_h T)x_A^2 + n(c_s - c_h T)x_A^3]$

$T = \frac{\Delta H_{298}^o/R + [b_h + c_h (1-x_A)](1-x_A)^2 + n[b_h^2 c_h - c_h x_A] x_A^2}{-(\frac{AG-\Delta H_{298}^o}{RT}) - \ln x_A - n\ln(1-x_A) + [b_s + c_s (1-x_A)](1-x_A)^2 + n(b_s^2 c_s - c_s x_A) x_A^2}$

$-\Delta G^o/RT = \ln x_A + n\ln(1-x_A) + \frac{[b_h + c_h (1-x_A)](1-x_A)^2 + n[b_h^2 c_h - c_h x_A] x_A^2}{T} - [b_s + c_s (1-x_A)](1-x_A)^2 - n[b_s^2 c_s - c_s x_A] x_A^2$

Program SP can be used to calculate the liquidus curve when $\Delta H_{298}^o/R$ is known or to calculate $\Delta H_{298}^o/R$ when the liquidus curve is known.

Directions:
(1) Insert Prgm. SP
(2) $b_h \leftrightarrow c_h \leftrightarrow b_s \leftrightarrow c_s$ E
(3) $\Delta H_{298}^o/R$ STOA, $-(\Delta G-\Delta H_{298}^o)/RT$ STOB n STOE, 273.15 STO3
(4) x_A A + T
(5) R/S + t
(6) x_A + T B -> $-\Delta G^o/RT$
(7) R/S + $\Delta H^o/R$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta H_{298}^o/R$</td>
<td>$-(\Delta G^o-\Delta H_{298}^o)/RT$</td>
<td>x_A</td>
<td>$1-x_A$</td>
<td>n</td>
</tr>
<tr>
<td>RP</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>b_h</td>
<td>c_h</td>
<td>used</td>
<td>273.15</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>b_s</td>
<td>c_s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cont'd.
<table>
<thead>
<tr>
<th>Prgm. SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>fLBLDE</td>
</tr>
<tr>
<td>hR1TN</td>
</tr>
<tr>
<td>fLBLA</td>
</tr>
<tr>
<td>fP±S</td>
</tr>
<tr>
<td>RCLC</td>
</tr>
<tr>
<td>RCL3</td>
</tr>
<tr>
<td>fLBL0</td>
</tr>
<tr>
<td>RCLE</td>
</tr>
<tr>
<td>RCLD</td>
</tr>
<tr>
<td>fLBLB</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>fP±S</td>
</tr>
</tbody>
</table>
Chapter IV

Regular Solution Calculations

The previous chapters have frequently referred to regular solution equations and their application to thermodynamic calculations.\(^{(12,19,20)}\) In Chapter III, it was pointed out that the partial molal Gibbs energies expressed in terms of volume fractions as composition variables can be conveniently expanded in terms of mole fraction truncated at the cubic term. In its simplest form, the regular solution theory is a pair-interaction model with interactions between unlike atoms or molecules being taken as the geometric mean of the interactions between like atoms of molecules and excess entropy contributions comes only from the temperature coefficients of the volume and energy of sublimation terms. For most actual systems, the geometric mean assumption must be modified and additional entropy contributions must be considered. For metallic atoms, there is also the question of the appropriate valence state to use for evaluating the cohesive energy\(^{(7)}\).

The programs tabulated below can use for \(\Delta H\) either the enthalpy of sublimation to the ground electronic state or to any valence state in obtaining the first approximations to the solubility parameters. Subsequent approximations depend upon the types of atoms being mixed and an appraisal of the types of chemical interactions that can take place. Thus strain contributions due to size disparity can add positive contributions to the Gibbs energy of mixing for solids with equivalent lattice positions and can add negative contributions for appropriate size differences for structures such as those of the Laves phases, liquids, and other systems with non-equivalent sites that achieve better space filling with appropriate size disparities. The very substantial acid-base interactions that can take place when atoms with non-bonding electrons are mixed with atoms with unoccupied low energy orbitals must also be considered.\(^{(5)}\) However, the simplest form of internal pressure calculation is the starting point for most systems. For this level of approximation, the energy of vaporization is taken as \(\Delta H = RT_1\) where \(T_1\) is the average temperature of the range of interest.

\[
\begin{align*}
T_{\Omega_1} &= T_{1n}Y_1/(1-x_1)^2 = V_1(\delta_n-\delta_1)^2/R = V_1 \left\{ \left[\frac{\Delta H_n}{R} - T_1 \right]/V_1 \right\}^{1/2} - \left\{ \frac{\Delta H_n}{R} - T_1 \right\}/V_1 \left\{ \frac{\Delta H_n}{R} - T_1 \right\}^{1/2}, \\
T_{\Omega_n} &= T_{1n}Y_n/x_1^2 = V_n(\delta_n-\delta_1)^2/R, \\
T_{\text{critical}} &= \frac{2V_n(\delta_n-\delta_1)^2/R}{[1+(V_n/V_1)^2]}^{1/2}
\end{align*}
\]
Program RS can store data for eight binary systems of component 1.

Directions:

1. Insert Prgm. RS
2. \(R \uparrow T_1 \uparrow \Delta H_1 \uparrow V_1 \uparrow A \)
3. \(B \)
4. \(\Delta H_n \uparrow V_n \uparrow C; \) repeat for all \(n \) up to \(n = 9 \)
5. \(T \uparrow n \uparrow D \)
6. \(n \uparrow E \)

Display

\[\frac{(\Delta H_1/R-T_1)}{V_1} \]

\[2 \]

\[\frac{V_1(\delta_n-\delta_1)^2}{R}, \frac{V_n(\delta_n-\delta_1)^2}{R} \]

\[\Omega_1 = \ln \gamma_1/x_n, \quad \Omega_n = \ln \gamma_n/x_1^2 \]

\[T_{\text{critical}} \text{ for } 1-n \text{ system} \]

NOTE 1: Step 3 is required before a new set of data in step 4.

NOTE 2: Steps 5 and 6 can be used in any order. If it is desired to add more values in step 4 after step 5 or 6 has been used, carry out step 6 for last value of \(n \) used in step 4. Then key \(f \uparrow b \) and step 4 will accept values for \(n+1, n+2, \) etc. up to the maximum of 9.

Prgm. RS

\[
\begin{array}{cccccccc}
(2) & f\text{LBLA} & \text{STOA} & \text{hr}+ & \text{STOB} & \text{hr}+ & \text{STOC} & \text{hr}+ & \text{STOE} & \text{RCLB} & \text{hx}xy \\
(3) & f\text{LBLE} & \text{2} & \text{hSTI} & \text{hRTN} & \\
(4) & f\text{LBLC} & \text{STOO} & \text{hr}+ & \text{STO1} & \text{RCLE} & \div & \text{RCLC} & \div & \text{RCLO} & \\
(5) & f\text{LBLD} & \text{hSTI} & \text{hr}+ & \text{RC(i)} & \text{hx}xy & \div & \uparrow & \uparrow & \text{fa} & \text{RCL(i)} \\
(6) & f\text{LBLE} & \text{hSTI} & \text{RC(i)} & \text{2} & \text{x} & \text{fa} & \text{RCL(i)} & \text{X} & \text{RCL(i)} & \text{RCLA} \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{A} & \text{B} & \text{C} & \text{D} & \text{E} & \text{I} \\
V_1 & \Delta H_1 & T_1 & \left(\frac{(\Delta H_1/R-T_1)}{V_1}\right)^{\frac{1}{2}} & R & \text{Index} \\
\end{array}
\]

<table>
<thead>
<tr>
<th>P</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>\ldots</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_n</td>
<td>\Delta H_n</td>
<td>\left(\frac{(\delta_1-\delta_2)^2}{R}\right)</td>
<td>\left(\frac{(\delta_1-\delta_3)^2}{R}\right)</td>
<td>\ldots</td>
<td>\left(\frac{(\delta_1-\delta_8)^2}{R}\right)</td>
<td>\left(\frac{(\delta_1-\delta_9)^2}{R}\right)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>2</th>
<th>3</th>
<th>\ldots</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_2</td>
<td>\ldots</td>
<td>V_8</td>
<td>V_9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use of Regular Solution Equations for Fitting of Data

When there is substantial solid and liquid solubility and Prgm. Im of Chapter III is required, an exact analytical solution cannot be given, but quite accurate fitting of the results can be obtained in terms of a polynomial fit of the deviation from simple limiting equations.

If the solid and liquid solubilities are small, the liquidus of component A of an A-B binary system is given by \(\ln x_A^L = \alpha + a_{-1}T^{-1} \) where
\[
\alpha = \Delta S_f^0/R + b_s^L + c_s^L \quad \text{and} \quad a_{-1} = -\Delta H_f^0/R - b_h^L - c_h^L
\]
and all quantities refer to component A. The solidus can be expressed as
\[
\ln x_B^S = \alpha^S + a_{-1}T^{-1}
\]
where
\[
\alpha^S = -\Delta S_f^0/R + b_s^S + c_s^S \quad \text{and} \quad a_{-1} = \Delta H_f^0/R - b_h^S - c_h^S
\]
and all quantities refer to component B.

Actual data are fitted to the equation \(\ln x = a_{-1}T^{-1} + \Delta \), where \(\Delta \) is a power series in \(T \). It is sometimes useful to fit \(\ln \frac{x}{T_f-T} = a_{-1}T^{-1} + \Delta \). When the liquidus or solidus is of very limited extent near the melting point, a simpler equation can be used. The limiting liquidus near the melting point of B becomes
\[
\frac{x_A^L}{(T_f-T)} = \frac{\Delta S_f^0/R}{T(1-x_A^L/x_A^L)}
\]
from Eq.(19-14) of ref.(12) which reduces to
\[
\frac{x_A^L}{(T_f-T)} = \frac{\Delta S_f^0/R}{T}
\]
when solid solubility is small.

The various modifications of these limiting equations can be used to obtain accurate least square fits for liquidus or solidus boundaries to a polynomial with a minimum number of terms. Prg. LSA is designed to handle the variety of situations that might arise by evaluating the constants of \(f(x,T) = a_1/T + a_0 + a_{-1}T + a_2T^2 \), where \(f(x,T) \) may be \(\ln[x/(T_f-T)] \), \(\ln x \), or \(x/(T_f-T) \). \(a_{-1} \) is fixed as indicated below by the type of equilibrium and \(\Delta = f(x,T) - a_{-1}/T \) is fit to a power series in \(T \) or under some circumstances in \(T_f-T \).
Prgm. LSA for \(f(x,T) = \frac{a_{-1}}{T} + \Delta, \Delta = a_0 + a_1 T + a_2 T^2 \)

1. Insert tape LSA
2. Store \(a_{-1} \) in B
3. \(f_a \) to clear registers
4. Modify prgm. to fit \(f(x,T) = x/(T_f-T) \) or \(\ln x \) in place of \(\ln \frac{x}{2890-T} \)
5. \(x_1 \) \(T_1 \) B

If any of \(T \) values are evenly spaced, key \(x \) after 2nd of regularly spaced values if \(10^{-2} \) has been replaced by proper I.

6. R/S
7. SST SST
8. T D
 E after 2nd of regularly spaced \(T \)
9. C, SST
 \(a_1, a_2 \) for \(T_f-T \) in place of \(T \)
10. T fd
 \(f \) for evenly spaced \(T \)

NOTE 1: Prgm. is set for \(f(x,T) = \ln \frac{x}{2890-T} \), although usually a simpler function is used.

NOTE 2: For \(f(x,T) = \ln x \), remove \(\text{fGSB} \) in 3rd line (steps 22-3) and \(\text{fGSB1} + \) near end of LBL D (steps 132-3 minus 2) and if \(T_f-T \) power series be used, remove \(\text{hR} \text{fLN} \) of gLBLd, step 192.

NOTE 3: If \(x \) is keyed in as \(10^n x \), add \(\text{EEX n} \) in 3rd line (after \(\text{hR} \) of step 20)

NOTE 4: For melting point of metal other than Mo, replace \(2890 \) by \(T_f \) after gLBLf, fLBLc, and end of gLBLd.

NOTE 5: For even spaced temp. at intervals I other than \(100^o \), replace \(\text{EEX 2} \) by I after fLBLf, fLBLc, and end of gLBLd.

NOTE 6: If \(x \) is to be used instead of \(\ln x \), remove \(\text{fLN} \) in 3rd line (step 21), and remove \(\text{gE}^x \) at end of fLBLc and end of gLBLc.

NOTE 7: For an A-B system with \(\ln Y_A = bx_B^2 + cx_B^3 \) and \(\ln B = (b+3c)x_A^2 - cx_A^3 \), there are the following combinations of \(f(x,T) \) and \(a_{-1} \).
Solid-Liquid Equilibrium

A liquidus, low x_A^L

$$f(x, T) = \ln x_A$$

$$\frac{a_l}{\Delta H_{f,A}^c b_c^{L-c}}$$

A solidus, low x_A^L

$$f(x, T) = \ln x_B$$

$$\frac{a_l}{\Delta H_{f,B}^c b_c^{L-c}}$$

A liquidus, high x_A^L

$$x_B/(T_{f,A}^c - T)$$

$$\frac{x_B}{T_{f,A}^c - T}$$

A solidus, high x_A^L

$$\ln x_B$$ or $$\ln[x_B/(T_{f,A}^c - T)]$$

$$\Delta S_{f,A}^c$$

B liquidus, high x_B^L

$$1 \ln x_A$$ or $$\ln[x_A/(T_{f,B}^c - T)]$$

$$\Delta H_{f,A}^c (b_{S-B}^c - c_{S-c}^L) - \frac{1}{2} (c_{S-c}^L)$$

B solidus, high x_B^L

$$1\ln x_A$$

$$-b_{S-c}^L$$

Solid-Solid Equilibrium

A solidus

$$\ln x_B$$

$$-b_{S-c}^L$$

B solidus

$$\ln x_A$$

$$-b_{S-c}^L$$

Prgm. LSA

<table>
<thead>
<tr>
<th>gLBLA</th>
<th>RCLB</th>
<th>fCLREG</th>
<th>fPZS</th>
<th>fCLREG</th>
<th>STOB</th>
<th>hRTN</th>
</tr>
</thead>
<tbody>
<tr>
<td>tLBLA</td>
<td>RCLE</td>
<td>EEX</td>
<td>2</td>
<td>+</td>
<td>fLBLB</td>
<td>STOE</td>
</tr>
<tr>
<td>Σ+</td>
<td>hLSTx</td>
<td>hr+</td>
<td>fLN</td>
<td>fGSB1</td>
<td>X</td>
<td>RCLB</td>
</tr>
<tr>
<td>fPZS</td>
<td>Σ+</td>
<td>hLSTx</td>
<td>RCLE</td>
<td>X</td>
<td>STO4</td>
<td>RCL6</td>
</tr>
<tr>
<td>RCLB</td>
<td>RCL8</td>
<td>fPZS</td>
<td>STO2</td>
<td>hR+</td>
<td>STOO</td>
<td>RCL9</td>
</tr>
<tr>
<td>gx2</td>
<td>RCL9</td>
<td>hR+</td>
<td>X</td>
<td>hLSTx</td>
<td>RCL6</td>
<td>RCL9</td>
</tr>
<tr>
<td>RCL8</td>
<td>STO3</td>
<td>hxy2</td>
<td>STO8</td>
<td>RCL7</td>
<td>gx2</td>
<td>RCL9</td>
</tr>
<tr>
<td>-</td>
<td>STO5</td>
<td>RCL1</td>
<td>RCL2</td>
<td>RCL4</td>
<td>RCL7</td>
<td>X</td>
</tr>
<tr>
<td>RCL4</td>
<td>RCL6</td>
<td>X</td>
<td>hR+</td>
<td>-</td>
<td>STOE</td>
<td>RCL8</td>
</tr>
<tr>
<td>gx2</td>
<td>RCL6</td>
<td>RCL5</td>
<td>hR+</td>
<td>X</td>
<td>RCL3</td>
<td></td>
</tr>
<tr>
<td>hR+</td>
<td>STOC</td>
<td>RCL8</td>
<td>RCL3</td>
<td>hRy2</td>
<td>RCL3</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>STO5</td>
<td>RCL6</td>
<td>RCLC</td>
<td>X</td>
<td>RCL9</td>
<td></td>
</tr>
<tr>
<td>RCL7</td>
<td>X</td>
<td>RCL6</td>
<td>RCLC</td>
<td>X</td>
<td>RCL4</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>STOA</td>
<td>hRTN</td>
<td>RCLC</td>
<td>X</td>
<td>RCLD</td>
<td></td>
</tr>
<tr>
<td>rBLBD</td>
<td>hR+</td>
<td>EEX</td>
<td>2</td>
<td>+</td>
<td>fBLBD</td>
<td>fb</td>
</tr>
<tr>
<td>+</td>
<td>fGSB1</td>
<td>geX</td>
<td>hRTN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fBLB</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>hR+</td>
<td>-</td>
</tr>
<tr>
<td>gLBLb</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>RCLD</td>
<td>X</td>
<td>RCLC</td>
</tr>
<tr>
<td>+</td>
<td>hRTN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fBLBD</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>fb</td>
<td>STO3</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>RCLC</td>
<td>+</td>
<td>CHS</td>
<td>STO4</td>
<td>hRTN</td>
</tr>
<tr>
<td>gLBLd</td>
<td>hR+</td>
<td>EEX</td>
<td>2</td>
<td>+</td>
<td>gLBLd</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>RCL3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>RCL4</td>
<td>+</td>
<td>X</td>
<td>RCLD</td>
<td>+</td>
<td>hR+</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0</td>
<td>hR+</td>
<td>-</td>
<td>RCLB</td>
<td></td>
</tr>
<tr>
<td>hRTN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A fifth chapter entitled "Philosophy of Critical Evaluation and Compilation" has been written which describes the compilation procedures and use of some of the programs described in the earlier chapters and which particularly reviews some of the bonding models used to predict thermodynamic values for systems lacking data. Because of the length of the present report, the decision was made to issue the fifth chapter as a separate report (LBL-7666) and the present summary of calculation programs will be ended with a program used to estimate enthalpies of formation using the Rittner model for gaseous halides with a large ionic component.
Bonding Energies of Gaseous Halides Using the Rittner Model

Rittner (24) has used an ionic model including polarizability to calculate bonding energies of gaseous halides. There are a number of difficulties in the model having to do with the proper treatment of overlap repulsion, the appropriate value of the polarizability to be used, and the contribution of higher order terms. In spite of the limitations, Cubicciotti (25,27) and Hildenbrand (26) have reported success in using the model for compounds of highly charged cations and criteria have been developed to predict range of applicability of the model.

It is of interest to determine how far the model can be extended among the gaseous transition metal halides, for which thermodynamic data are very scanty. It would be useful to compare the calculated values with the available experimental data to determine if the model or some modification of the model might yield useful data. The HP-67 calculator program given below follows the calculations of Cubicciotti, Hildenbrand, et al. (27).

Enthalpies of formation or dissociation energies to the gaseous ions can be readily calculated for MX, linear MX₂, planar MX₃, and tetrahedral MX₄ given a value of the cation-anion distance and the polarizabilities. These molecules will be described as MXₙ with x=1 to 4. The operation of the program will be illustrated using typical parameters for Zr and Mo.

\[R_{0}/R = 167,103[a_{n}/r + \alpha b_{n}/r^{4}] \]

(1)

\[M^{n+}(g) + nX^{-}(g) = MX_{n}(g) \]

where \(\alpha \) is the anion polarizability in Å³ for the symmetrical molecules and is the sum of the anion and cation polarizabilities for MX molecules. The constant 167,103, given by \(e^{2} N_{0}/10^{-8} R = e^{2}/10^{-8} k = (4.80324)^{2}10^{4}/1.38065 \), yields values of \(\Delta H_{0}^{o}/R \) in Kelvin units when \(r \) is given in Å. The values of \(a_{n} \) and \(b_{n} \) are (27):

\[a_{1} = -\frac{10}{11} \]
\[a_{2} = -\frac{10}{11}(3.5) \]
\[a_{3} = -\frac{10}{11}(9-\sqrt{3}) \]
\[a_{4} = -\frac{10}{11}(15-3\sqrt{1.5}) \]
\[b_{1} = -\frac{7}{11} \]
\[b_{2} = -\frac{7(4.8)}{11(16)} \]
\[b_{3} = -\frac{7(8.17)}{11} \]
\[b_{4} = -\frac{7(16.48)}{11} \]

where \(\frac{10}{11} = 1 - \frac{1}{p} \) and \(\frac{7}{11} = 1 - \frac{4}{p} \) with \(p \), the power of the overlap repulsion term, taken equal to 11.
The value of $\Delta H^0_{\text{f}}/R$ for $M(s) + \frac{n}{2}X_2 = M^{n+}(g) + nX^-(g)$ is given by the sum of ΔH^0_{f} for the following reactions.

\begin{align*}
(1) & & M(s) = M(g) \\
(3) & & \frac{n}{2}X_2 = \frac{n}{2}X(g)
\end{align*}

where X_2 is taken as gaseous for F_2 and Cl_2 at 0K and solid for Br_2 and I_2.

\begin{align*}
(4) & & nX(g) + n\text{e}^-(g) = nX^-(g) \\
(5) & & M(g) = M^{n+}(g) + n\text{e}^-(g).
\end{align*}

For reaction (2), $\Delta H^0_{\text{f}}/R = 78970\pm250$ K was used (29) for Mo and 72560 ± 500 K was used (28) for Zr. For reaction (3), $\Delta H^0_{\text{f}}/R$ was taken as 240 ± 70 for F, 14386 ± 1 for Cl, 14855 for Br, and 12889 ± 2 K for I. For reaction (4), $\Delta H^0_{\text{f}}/R$ was taken as -39440 ± 20 for F, -41930 ± 30 for Cl, -39030 ± 30 for Br, and -35550 ± 30 K for I. The ionization potentials in cm$^{-1}$ from Moore (38) for Mo^+ are

\begin{align*}
\text{Mo}^+ & = 57260, \quad \text{Mo}^{2+} = 130300, \quad \text{Mo}^{3+} = 219100, \quad \text{Mo}^{4+} = 374180 \\
\text{Zr}^+ & = 55145, \quad \text{Zr}^{2+} = 105900, \quad \text{Zr}^{3+} = 185400, \quad \text{Zr}^{4+} = 276970
\end{align*}

are used to calculate $\Delta H^0_{\text{f}}/R$ for reaction(5). The sum of $\Delta H^0_{\text{f}}/R$ values for reactions (1) to (5) yields $\Delta H^0_{\text{f}}/R$ for the formation from the elements.

\begin{align*}
(6) & & M(s) + \frac{n}{2}X_2(g) = MX_n(g) \\
& & \Delta H^0_{298}/R = \Delta H^0_{\text{f}}/R + (H_{298}^0-H_0^0)/R_{MX_n} - (H_{298}^0-H_0^0)/R_{M} - \frac{n}{2}(H_{298}^0-H_0^0)/RX_2.
\end{align*}

For $M(s)$, $(H_{298}^0-H_0^0)/R = 552K$ for Mo and $665K$ for Zr. For gaseous X_2,

\begin{align*}
\frac{1}{2}(H_{298}^0-H_0^0)/R = 531 \text{ for } F_2 \text{ and } 552 \text{ for } Cl_2. \quad \text{For } Br_2(\ell) \text{ at } 298K, \frac{1}{2}(H_{298}^0-H_0^0)/R = 1474K \text{ and for } I_2(s), \frac{1}{2}(H_{298}^0-H_0^0)/R = 794K.
\end{align*}

Values of $(H_{298}^0-H_0^0)/R$ for $MX_n(g)$ are tabulated in Table A.

The calculation of $\Delta H^0_{298}/R$ for reaction(6) can be expressed as $\Delta H^0_{298}/R = \frac{1}{2}(H_{298}^0-H_0^0)/R$, where $\Delta H^0_{\text{f}}/R$ for reaction(1) is expressed as $\frac{1}{2}(H_{298}^0-H_0^0)/R$ with $A_n = 167103\ a_n$ and $B_n = 167103\ b_n$. M_n is the sum of the $\Delta H^0_{\text{f}}/R$ values of reactions (2) and (5) minus $(H_{298}^0-H_0^0)/R$ for $M(s)$, and X_n is the sum of $\Delta H^0_{\text{f}}/R$ values of reactions (3) and (4) minus $(H_{298}^0-H_0^0)/R$ for $\frac{1}{2}X_2$. The M_n values are calculated by step 5 of the program. The other values, along with α_x values, are tabulated as follows:
The α value for I is from Cubicciotti, Hildenbrand, et al. (27). The other values are from Dalgarno (39). The calculation is carried out in two stages. After storing A_n and B_n, U/R is calculated from the M-X distance r by

$$U/R = \frac{A_n}{r} + \alpha \frac{B_n}{r^4}.$$

Then the value of U/R is combined with $(H_{298}^0 - H_0)/R$ of MX_n, to calculate $\Delta H_{298}^0/R$ of reaction (6). Constants are stored in registers or inserted with a data card as indicated.

<table>
<thead>
<tr>
<th>TABLE A</th>
<th>Values of $(H_{298}^0 - H_0)/R$ in K</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoF_n</td>
<td>MoCl_n</td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1079</td>
</tr>
<tr>
<td>2</td>
<td>1624</td>
</tr>
<tr>
<td>3</td>
<td>1768</td>
</tr>
<tr>
<td>4</td>
<td>2274</td>
</tr>
</tbody>
</table>

Directions:

1. Insert Prgm. I
2. Insert Data Tape I
3. If calculation is to be repeated for different n with same X, α + n + r + B
4. With U/R displayed, key $(H_{298}^0 - H_0)/R$ of MX_n R/S
5. To insert data for different X,
 $\Delta H_{298}^0/R$ subl. of $M + (H_{298}^0 - H_0)/R$ of $M(s)$ E 1.44
 IP_1 + IP_2 + IP_2 + IP_1 + R/S
6. fa to multiply any value by R
7. fe to divide any value by R
NOTE 1: \(\alpha \) is \(\alpha_x \) of halide ion except for \(n = 1 \) where sum of \(\alpha \) values of anion and cation are used.

NOTE 2: Step 2 leaves registers prepared for fluoride calculations. One can go directly from step 2 to step 3a for \(MF_n \) calculations.

Prgm. 1

(3) fLBLA hSTI hR+ RCLI STOA hR+ fLBLB STOO hR+ hSTI
 hR+ RCLI hR+ hR+ hSTI hR+
 hR+ RCLI hR+ hR+ hSTI RCLI STOB RCLI
 hSTI RCLI X STOD hRCI 5 + hSTI RCLI STOB RCLI
 hSTI RCLI X RCLI hLSTx 1 hSTI RCLI X + hSTI
 hSTI RCLI X + RCLA X + RCLB +
 hSTI RCLI X + RCLA X + hRTN +
 hSTI RCLI X + RCLA X + hRTN +
 hSTI RCLI X + RCLA X + hRTN +

(4) + hRCI 1 5 - RCLA X + RCLB +

(5) fLBLE 1 9 hSTI hR+ - STOI fDSZ STOI fDSZ
 fDSZ STOI RCLI STOO hRTN
 STOI fDSZ STOI hRCI RCLI RCL5 X RCLI +
 hSTI RCLI X hR+ RCLI STOB hRTN
 fGSOBO fGSOBO fGSOBO STO+i RCLI RCL5 X RCLI +
 fLBLO STO+i fDSZ hX-y RCLI RCL5 X + hRTN

(6) gLBLa RCLE X hRTN

(7) gLBLe RCLE hRTN

TEST:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>hREG,</td>
<td>0</td>
<td>-151 912</td>
<td>-531 691</td>
<td>-1 104 087</td>
<td>-1 872 429</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>-30 730</td>
<td>-28 100</td>
<td>-26 320</td>
<td>-23 450</td>
<td>-30 730</td>
<td>0</td>
</tr>
<tr>
<td>RS</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>- 53 169</td>
<td>-32560</td>
<td>-868800</td>
<td>-1752500</td>
<td>160802</td>
<td>348275</td>
</tr>
</tbody>
</table>

(3a) 1.2 + 4 + 1.82 B -1220477, (4) 2274 R/S -139252
(3a) 8.2 + 1 + 1.82 B -123204, (4) 1079 R/S 7947
(3) 3 + 4 + 2.26 + 7 A -1030041, (4) 2678 R/S 62108
(3a) 10 + 1 + 2.26 B -87599, (4) 11141 R/S 46245
(3) 6.42 + 3 + 2.66 + 9 A -526481, (4) 2570 R/S 69249
(5) 78970 + 552 1.44 + 374180 + 219100 + 130300 + 57260 R/S 1201871,
(6) fa 2388347 (7) fe 1201871
REFERENCES

Ref., cont'd.

(22) David Fink, Roots of $f(x) = 0$, HP-65 User's Library Program 1636A.
(23) Program routine for register review is a modification of suggestion by Art Leyenberger, HP Key Notes, 1, 5 (1977).
(30) J. G. Stampler and R. F. Barrow, Trans. Far. Soc. 54, 1592-4 (1958) for $D_0(P_2)$.
Ref., cont'd.

(33) R. F. Barow, D. F. Broyd, L. B. Pederson and K. K. Yee, Chem. Phys. Lett. 18, 357-8 (1973) confirms ref. 32 for $D_0 = 15895.6 \text{ cm}^{-1}$ for $^{79}\text{Br}^{81}\text{Br}$.

(34) R. F. Barrow and K. K. Yee, Trans. Far. Soc. II 69, 684-700 (1973) for $D_0(\text{I}_2) = 12440.1 \text{ cm}^{-1}$.

<table>
<thead>
<tr>
<th>A.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Program - Electronic Contribution to Thermodynamic Function</td>
<td>43</td>
</tr>
<tr>
<td>Analytic Function, fitting of Experimental Data by an -</td>
<td></td>
</tr>
<tr>
<td>Program Interp.GK</td>
<td>11-29</td>
</tr>
<tr>
<td>Anharmonicity, Calculation of Contributions from, Centrifugal</td>
<td>34</td>
</tr>
<tr>
<td>Stretching and Vibration-Rotation Interaction - Program Cor</td>
<td></td>
</tr>
<tr>
<td>Applications of Chebyshev Fitting Programs - Programs Cheb C_n,</td>
<td>10</td>
</tr>
<tr>
<td>Cheb(f,C_n), and Cheb-a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bc Program - Effect of Errors Solidus-Liquidus Fit</td>
<td>70</td>
</tr>
<tr>
<td>Boundaries, Calculation of Composition, of Saturating Phases -</td>
<td>59</td>
</tr>
<tr>
<td>Program Im</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal Stretching, Calculation of Contributions from</td>
<td>34</td>
</tr>
<tr>
<td>Anharmonicity, and Vibration-Rotation Interaction - Program Cor</td>
<td></td>
</tr>
<tr>
<td>CgK Program - Calculation of (F-H)/RT equation from C_p</td>
<td>51</td>
</tr>
<tr>
<td>Cheb-a Program - Applications of Chebyshev Fitting Programs</td>
<td>8</td>
</tr>
<tr>
<td>Cheb CHSG Program - Calculation of Thermodynamic Functions from</td>
<td>48</td>
</tr>
<tr>
<td>H Values</td>
<td></td>
</tr>
<tr>
<td>Cheb C_n Program - Applications of Chebyshev Fitting Programs</td>
<td>4</td>
</tr>
<tr>
<td>Cheb C_n-Cheb(f,C_n) Program - Applications of Chebyshev Fitting</td>
<td>10</td>
</tr>
<tr>
<td>Programs</td>
<td></td>
</tr>
<tr>
<td>Cheb C_n, Cheb(f,C_n), Cheb-a Programs - Combined Use of Programs</td>
<td>9</td>
</tr>
<tr>
<td>Cheb(f,C_n) Program - Applications of Chebyshev Fitting Programs</td>
<td>7</td>
</tr>
<tr>
<td>Chebyshev Polynomials, Data Fitting Using the - Programs C_n,</td>
<td>3</td>
</tr>
<tr>
<td>Cheb C_n and Cheb(f,C_n)</td>
<td></td>
</tr>
<tr>
<td>Chebyshev Polynomial Programs, Applications of - Programs Cheb C_n, Cheb(f,C_n) and Cheb-a</td>
<td>10</td>
</tr>
<tr>
<td>CHSG Program - Calculation of Thermodynamic Functions from C_p values</td>
<td>46</td>
</tr>
<tr>
<td>Constants, Fit of Data, to Equations with more than Three -</td>
<td>46</td>
</tr>
<tr>
<td>Program LS C_p</td>
<td>22</td>
</tr>
<tr>
<td>Cor Program - Anharmonicity Contribution from Anharmonicity,</td>
<td>34</td>
</tr>
<tr>
<td>Centrifugal Stretching and Vibration-Rotation Interaction</td>
<td></td>
</tr>
<tr>
<td>C_p or H values, Calculation of Thermodynamic Functions from</td>
<td></td>
</tr>
<tr>
<td>Programs CHSG and Cheb.CHSG</td>
<td>46</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>D.</td>
<td>Diatomic Gases, Calculation of Thermodynamic Functions for D-LT Program</td>
</tr>
<tr>
<td>E.</td>
<td>Electronic Level Contributions to Thermodynamic Functions, Calculation of Program A</td>
</tr>
<tr>
<td></td>
<td>Enthalpy Values, Calculation of Thermodynamic Functions from Programs CHSG and Cheb.CHSG</td>
</tr>
<tr>
<td>F.</td>
<td>Fit of Data to Equations with more than Three Constants - Programs LS C_p^4 and LSH4</td>
</tr>
<tr>
<td></td>
<td>Fitting, Data, Using Analytic Functions - Programs Interp.GK and LS$f(x)$</td>
</tr>
<tr>
<td></td>
<td>Fitting, Data, Using Chebyshev Polynomials - Programs C_n, Cheb C_n and Cheb(f, C_n)</td>
</tr>
<tr>
<td></td>
<td>Fitting of Data, Least-Square, Using Analytic Functions - Program LS $f_1 f_2 f_3(x)$</td>
</tr>
<tr>
<td></td>
<td>Fitting of Data, Use of Regular Solution Equations for - Program LSA</td>
</tr>
<tr>
<td>G.</td>
<td>Gases, Diatomic, Thermodynamic Calculations for - Program D-LT</td>
</tr>
<tr>
<td></td>
<td>Gases, Linear Polyatomic, Thermodynamic Calculations for - Program D-LT</td>
</tr>
<tr>
<td></td>
<td>Gases, Thermodynamic Properties of - Program A</td>
</tr>
<tr>
<td></td>
<td>Gibbs Energy from Phase Boundaries - Program $yx-bc$</td>
</tr>
<tr>
<td>H.</td>
<td>H Values, Calculation of Thermodynamic Functions from C_p or - Program Cheb.CHSG</td>
</tr>
<tr>
<td></td>
<td>Heat Capacity (C_p) Values, Calculation of Thermodynamic Functions from - Program CHSG</td>
</tr>
<tr>
<td>I.</td>
<td>I Program - Bonding Energies of Gaseous Halides</td>
</tr>
<tr>
<td></td>
<td>Im Program - Calculation of Boundaries of Saturating Phases</td>
</tr>
<tr>
<td></td>
<td>Inertia, Moments of Diatomic, linear, planar, tetrahedral, trigonal bipyramid, octahedral, bent triatomic, symmetric tops - Program ID</td>
</tr>
<tr>
<td></td>
<td>Other non-linear molecules - Program NL</td>
</tr>
</tbody>
</table>
Index

I. cont'd.

Interpolation fit to Analytic Function expressed as a Power Series - Interp. GK Program 11
Introduction 1

J.
No listing

K.
Calculation of Equilibrium Constant - Programs GK, CqK 12-15, 50-56

L.
Least-Square Fitting Using Chebyshev Orthogonal Polynomials - Cheb C_n, Cheb(f,C_n) and Cheb-a Programs 3
Least-Square Fitting of Data to an Analytic Function - Lsf(x), LR, Lsf_1 f_2 f_3(x), LS C_n^k, LS N^k and LS Y Programs 16-29
Linear Polyatomic Gases, Calculation of Thermodynamic Properties for - Program D-LT 31
Linear Regression - Program LR 18
Liquidus Curve, Calculation of Points on - Program Web 57
Liquidus, Solubility Product Calculations for, of Intermediate Phases - Program SP 72
LSA Program - Use of Regular Solution Equations for Fitting of Data 77

M.
Moments of Inertia [see Inertia, Moments of]

N.
NL Program - Non-linear Gases 39

O.
No listing.

P.
No listing.

Q.
No listing.

R.
References 84-86
Regression, Linear - Program LR 18
Regular Solution Gibbs-Duhem Integrations - Program LS Y 26-29
RS Program - Regular Solution Calculation 75
Index

S.
Saturating Phases, Calculation of Composition Boundaries of -
Program Im 59
Solubility Product Calculations for Liquidus of Intermediate Phases -
Program SP 72
Solution, Liquid, Calculation of Thermodynamic Properties of, from
Properties of Solid Solution - Programs yx-bc and bc 67
Solution, Regular, Calculations - Programs Im, LSA, yx-bc, yx-bc, Rs,bc, and SP
59-70
Solution, Regular, Equations, Use of, for Fitting Data - Program LSA 76
Solution, Solid, Calculation of Thermodynamic Properties of Liquid
Solution from Properties of - Program yx-bc 67
SP Program - Solubility Product Calculations for Liquidus of Inter-
mediate Phases 72
Standard Thermodynamic Calculations - Programs D-LT, Cor, ID, NL, A,
CHSG, Cheb.CHSG,CgK 30-55

T.
Thermodynamic Properties, Calculation of
from analytic equation for C_p - Program CgK 51
from C_p or H value - Programs CHSG and Cheb.CHS 46
diatomc or linear polyatomic gases - Program D-LT 31
gases, complete functions of electronic level contributions -
Program A 43
for liquid solution from properties of solid solution and solidus-
liquidus data and effect of errors - Programs yx-bc and bc 67
non-linear gases (rotational and translational contributions) -
Program NL 39
Tschebycheff [see Chebyshev]

U.W.X.Z.
No listing.

V.
Vibration-Rotation Interaction, Calculation of Contributions from
Anharmonicity, Centrifugal Stretching and - Program Cor 34

Y.
yx-bc Program - Gibbs Energy from Phase Boundaries 65

Ω.
ShXb Program - Calculation of Activity Coefficients from Liquidus Curve 54-58
Ωyxxbc Program - Calculation of Thermodynamic Properties of Liquid
Solution from Properties of Solid Solution and Solidus-Liquidus
Data and Effect of Errors. 68
This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.