UC Santa Cruz
UCSC Mathematics Colloquium

Title
Almost Global Solutions of the Eikonal Equation

Permalink
https://escholarship.org/uc/item/93p4c58m

Author
Crandall, Michael

Publication Date
2004-11-16
The “infinity-Laplace” equation
\[\Delta_\infty u = \frac{1}{2} \langle D(\lvert Du \rvert^2), Du \rangle = \sum_{l,j=1}^{n} u_x^l u_x^j x^l x^j = 0 \]
arises when one attempts to find a real-valued function \(u \) which minimizes \(\max \lvert Du \rvert \)
subject to \(u \) having prescribed values on the boundary of a given set. Here \(Du = (v_x, \ldots, v_x) \)
is the gradient of \(v \). From the first expression for \(\Delta_\infty u \), solutions
of the eikonal equation \(\lvert Du \rvert = 1 \) are “infinity harmonic”, that is, they satisfy
\(\Delta_\infty u = 0 \). Particular solutions of the eikonal equation are given by the linear
function \(u(x) = \langle p, x \rangle \) where \(p \in \mathbb{R}^n \), \(\lvert p \rvert = 1 \), and the distance to a point \(z \in \mathbb{R}^n \),
\(u(x) = \lvert x - z \rvert \). In the latter case, \(u \) is a solution on \(x \neq z \); it has a single singularity.
The distance to a line segment is also a solution of the eikonal equation off the line
segment; it has a one dimensional set of singularities.

We will explain a result obtained with L. Caffarelli which states, roughly speaking,
that there is nothing between the cone functions and the distance to a line
segment. That is, if \(u \) is a solution of the eikonal equation \(\lvert Du \rvert = 1 \) in \(\mathbb{R}^n \) ex-
cept on some set whose 1-dimensional measure is zero, then there are only the two
case above: either \(u \) is affine or \(u(x) = a \pm \lvert x - z \rvert \) for some \(a \in \mathbb{R}, z \in \mathbb{R}^n \).

Motivation for the question arose partly from the fact that the “cone functions”
are fundamental to theory of the infinity Laplacian, as infinity harmonic functions
are exactly those which obey the maximum principle relative to functions of the
form \(a \lvert x - z \rvert \) where \(a \in \mathbb{R} \). One wondered if there might be other important
solutions with, say, some finite number of singularities. The answer is no.