Color-coded chemotherapy: S/G2-phase-trapping by methioninase pre-treatment, indicated by FUCCI imaging, enables highly effective cancer chemotherapy (923.11)

Shuya Yano1, Yasunori Tome1, Michelle Digman2, Masashi Momiyama1, Atsushi Suetsugu1, Enrico Gratton2 and Robert Hoffman1

April 2014
The FASEB Journal
vol. 28 no. 1 Supplement 923.11

- Author Affiliations

1AntiCancer Inc. San Diego CA United States
2Department of Biomedical Engineering University of California Irvine Irvine CA United States

Abstract

Methionine deprivation by methionine a,y lyase (methioninase or METase) selectively arrests cancer cells during late S/G2-phase of the cell cycle, where the cancer cells are highly sensitive to DNA-damaging chemotherapy. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) (Cell 132, 487-498, 2008), was used to monitor the onset of the S/G2-phase block due to methionine deprivation effected by METase. The S/G2-phase-blocked cancer cells fluoresced yellow or green, in contrast to cancer cells in G1/G0 which fluoresced red due to FUCCI. Cancer cells, synchronously blocked in S/G2-phase by METase fluorescing yellow-green, were treated with doxorubicin, cisplatin, or 5-fluorouracil. As a control, cancer cells treated with drugs only without rMETase, were resistant to the drugs. rMETase treatment, followed by chemotherapy, when FUCCI indicated the onset of S/G2 block, was highly effective. Color-coded chemotherapy, whereby the cell cycle of cancer cells is blocked in S/G2-phase, as identified by fluorescent reporters, may be a general approach to effective cancer treatment.