Title
ENERGETICS OF GAS PHASE PROTON SOLVATION BY NH3

Permalink
https://escholarship.org/uc/item/94q5708q

Author
Ceyer, S.T.

Publication Date
1978-08-01
ENERGETICS OF GAS PHASE PROTON SOLVATION BY NH$_3$

S. T. Ceyer, P. W. Tiedemann, B. H. Mahan, and Y. T. Lee

August, 1978

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ENERGETICS OF GAS PHASE PROTON SOLVATION BY NH₃
S.T. Ceyer, P.W. Tiedemann, B.H. Mahan, and Y.T. Lee

Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and
Department of Chemistry
University of California, Berkeley, CA 94720
August 1978

ABSTRACT

The absolute proton affinity of NH₃ (203.6 ± 1.3 kcal/mol at 298K) and the proton solvation energies by more than one NH₃ have been determined by the molecular beam-photoionization method. In addition, the NH₃⁺-NH₃ interaction energy (0.79 ± 0.05 eV) has been measured by photoionization of the neutral van der Waals dimer. These experiments have shown that photoionization of van der Waals clusters is a very powerful method for determining the energetics of gas phase proton solvation.
INTRODUCTION

Proton transfer represents a very important class of reactions in both chemistry and biology. Understanding these reactions requires knowledge of the heats of formation of the protonated species as well as the effects of solvent interactions. Both the high pressure ion source mass spectrometric technique and ion cyclotron resonance have been employed to determine relative proton affinities and the energy released upon solvation of an ionic species. The relative proton affinity is readily obtained by measurements of the equilibrium constant of the reaction \(M_1H^+ + M_2 \rightarrow M_2H^+ + M_1 \). The equilibrium constant and hence \(\Delta G^0 \) is measured as a function of temperature to determine the ion solvation energies of a reaction \((M_1H^+)M_2 \rightarrow M_1H^+ + M_2 \). Absolute values of the proton affinity are usually obtained from appearance potential measurements of a protonated species produced by electron impact. The drawback of this method is that the protonated species of many interesting molecules do not occur as fragment ions. It has recently been shown in a molecular beam photoionization mass spectrometry experiment that dimer molecules produced in a supersonic expansion are excellent parent molecules for the investigation of the ion–molecule interaction potential and the photoionization production of \(MH^+ \). The finer control of ionizing radiation possible in a photoionization measurement of appearance potentials affords a more accurate means of determining thermochemical quantities such as absolute proton affinities directly from a measurement of a microscopic quantity such as a threshold energy. For instance, the stability of the ion–molecule cluster \(H_2O^+ \cdot H_2O \) has been determined from the threshold energy of formation since the photoionization of the
van der Waals polymer is viewed as ionization of one of the species in the parent cluster. Further excitation of the ion cluster allows the vibrational energy induced ion-molecule reaction at zero kinetic energy to proceed yielding the threshold energy of formation of H$_3$O$^+$. In this study, this technique is used to determine the proton affinity of NH$_3$. It is further extended to investigate the protonated species formed by decomposition of higher polymers to yield solvation energies of an ammonium ion by ammonia solvent molecules.

EXPERIMENTAL

The apparatus and procedures have been described previously. The ammonia polymer beam was produced by expansion of the neat gas through a 0.003" dia. Monel nozzle. Seeding of the NH$_3$ in Ar at various mixing ratios, maintaining the same total pressure, did not improve the dimer production. Using the monochromator grating at zero order the intensity of the fragments was monitored as a function of stagnation pressure and is shown in Fig. 1. The behaviors of the protonated ammonia signal compared to the dimer ion signal and of the protonated dimer ion compared to the trimer ion signal are very similar, indicating the dominant parent species.

RESULTS

The photoionization efficiency curves of the ammonia dimer ion and of the protonated ammonia species are shown in Figs. 2 and 3. The standard deviation of the signal intensity at the threshold is about 10% for (NH$_3$)$_2^+$ and about 5% for the protonated ammonia species. Points are
measured at much lower energies than the threshold values so that an average background ion intensity can be measured. The threshold values are labeled as such when the photoionization efficiency values increase uniformly above this background ion intensity. The threshold uncertainties are taken as the difference in values obtained in two separate scans.

DISCUSSION

In high pressure mass spectrometry experiments, the \(\text{NH}_3^+ + \text{NH}_3 \rightarrow \text{NH}_4^+ + \text{NH}_2 \) reaction, exothermic by 0.74 eV, occurs too rapidly for the \((\text{NH}_3^+)\text{NH}_3\) intermediate to be observed by stabilization from the gas bath molecules. In our investigation, the \((\text{NH}_3^+)\text{NH}_3\) intermediate is produced directly from photoionization of the neutral dimer. In addition, its stability can be determined from the threshold energy of formation. Figure 4 shows the energetics of this system. The well depth of the neutral ammonia-ammonia interaction is taken to be 0.35 kcal/mol from fitting the temperature dependence of second virial coefficient data. \(^1\) Combination of the neutral well depth, the ionization potential of \(\text{NH}_3\) \(^1\) and the threshold of \((\text{NH}_3^+)\text{NH}_3^2\) formation yields the \((\text{NH}_3^+)\text{NH}_3\) binding energy as 0.79 \(\pm\) 0.05 eV or 18.1 \(\pm\) 1.1 kcal/mole.

When the internal energy of the ammonia dimer ion is increased to 0.052 eV, the onset of the \(\text{NH}_4^+\) fragment is observed. The appearance potential of \(\text{NH}_4^+\), the ionization potential \(^1\) of H, the \(\text{H}_2\text{N-H}\) bond energy \(^1\) and the neutral well depth are employed to calculate the proton affinity of \(\text{NH}_3\) as 8.76 \(\pm\) 0.06 eV or 202.1 \(\pm\) 1.3 kcal/mol at 0 K as shown in Fig. 5. Assuming that all rotational degrees of freedom are excited
and that no vibrational degrees of freedom are excited at 298 K, the proton affinity becomes 203.6 ± 1.3 kcal/mol at 298 K. This value is in good agreement with a recent proton affinity measurement of 202.3 kcal/mol obtained in ion cyclotron resonance thermal equilibrium experiments at 298 K. The previously accepted value for the proton affinity of ammonia was 207 ± 3 kcal/mole. Recent theoretically calculated values for the proton affinity of NH$_3$ are 205.314 and 20815 kcal/mole.

The appearance potentials of the higher protonated polymers, (NH$_4^+$)NH$_3$, a fragment from excited (NH$_3$)$_3^+$, and (NH$_4^+$)(NH$_3$)$_2$, a fragment from excited (NH$_3$)$_4^+$, allow the solvation energy of an ammonium ion by one or two ammonia molecules to be calculated via the cycles shown in Fig. 5. These values are listed in Table I along with literature values for the solvation energies.

It is clear from Table I that the agreement between the solvation energies measured in this study and the literature values is not good. The theoretical values from ab initio SCF calculations are too large probably due to the limited basis set employed. The experimental values are obtained by high pressure ion source mass spectrometry. One very common criticism of the photoionization technique for measuring appearance potentials is that the threshold may not correspond to the ground vibrational state of the ion but rather to some upper vibrational ionic state. This is true when large changes in geometry of the molecule occur upon ionization. Vibrationally excited ions would lead to higher thresholds and thus lower absolute values of the
solvation energies. In our case, however, the process that is essentially occurring is the unimolecular decomposition of the vibrationally excited parent clusters (NH₃)₂⁺, (NH₃)³⁺, and (NH₃)⁴⁺. Franck-Condon factors will not play an important role in this case. If there is no barrier for proton transfer the threshold should correspond to the threshold of decomposition. Nevertheless, let us assume that the difference in energies between the two most recent high pressure mass spectrometry values²,⁴ and the photoionization value is due to vibrational excitation of the resulting ion in the photoionization experiments and that the kinetic energy of the electron is zero. Thus, the (NH₄⁺)(NH₃)₂ produced will have (42.3-20.2) = 22.1 kcal/mol² or (37.7-20.2) = 17.5 kcal/mol⁴ of excitation energy. Both these values are larger than the corresponding dissociation energies of 17.5² or 16.2 kcal/mol⁴ for (NH₄⁺)(NH₃)₂. Clearly, the notion that the ions (NH₄⁺)(NH₃)₂ formed by photoionization of clusters are vibrationally excited is inconsistent with the equilibrium solvation energies.

The onset of the decomposition of the higher polymers to yield NH₄⁺ serves as a check on the threshold measurements. The energy required to produce NH₄⁺ from (NH₃)₃ can be calculated from the data in Fig. 5; one obtains that the threshold for the reaction (NH₃)₃→NH₄⁺+NH₃+NH₂+e should occur at 9.75 eV or 127.2 nm. A plot of the log of the photoionization efficiency minus the background ion count versus log (E-Eₜ) where Eₜ is the threshold of NH₄⁺ is shown in Fig. 6. The least squares line fit to the two slopes intersects at exactly 127.2 nm, corresponding to a new channel for NH₄⁺ formation. The decomposition of the tetramer to NH₄⁺ should occur at 125.0 nm.
In the photoionization efficiency curve of \(\text{NH}_4^+ \) in Fig. 3, a change of slope is distinct at 125.0 nm. Similarly, there are distinct changes in slope of the photoionization efficiency curves of \((\text{NH}_4^+)\text{NH}_3 \) and \((\text{NH}_4^+)\text{(NH}_3)_2 \) shown in Figs. 7 and 8. The fact that fragmentation of higher polymers into smaller ions (involving loss of \(\text{NH}_2 \) and one or more \(\text{NH}_3 \) molecules) is predicted correctly by the appearance potentials of \(\text{NH}_4^+ \) and \((\text{NH}_3)_2\text{H}^+ \) indicates that the observed thresholds are self consistent and suggest that they do not correspond to vibrationally excited ions.

In summary, the proton affinity of \(\text{NH}_3 \) has been determined by measuring the appearance potential of \(\text{NH}_4^+ \) formed to be \(202.1 \pm 1.3 \text{ kcal/mol at 0 K} \) from decomposition of the ammonia dimer ion. The proton solvation energies by more than one ammonia have been determined by measuring the appearance potential of fragments from larger cluster ions. The appearance potential of the dimer ions formed from the neutral van der Waals dimer yields the binding energy of \(\text{NH}_3^+\text{-NH}_3 \) to be \(18.1 \pm 1.1 \text{ kcal/mole} \).

Acknowledgement

This work was supported by the Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy. P. W. Tiedemann acknowledges a fellowship from the Fundação de Amparo à Pesquisa do Estado de São Paulo.
REFERENCES

11. The value of 3.5 kcal was chosen since it is a ΔH^0 value obtained from fitting the temperature dependence of second virial coefficient data by J.S. Rowlinson, Dis. Far. Soc. Trans. 45, 979 (1949). Other experimental values for ΔH^0_{298} in the literature are 4.4 kcal by J.D. Lambert and E.D.T. Strong, Proc. Roy. Soc. 200, 566 (1950), 4.5 kcal by J.E. Lowder, J. Quant. Spec. Radiat. Transfer, 10, 1085.
(1970) and 2.8 kcal by G. Dugnette, T.H. Ellis, G. Scoles, R.O.

364 (1976).

16. J.J. Delpuech, G. Serratrice, A. Strich and A. Veillard,

17. H. Wincel, Int. J. Mass Spectrom. and Ion Phys. 9,
267 (1972).

18. J.J. Delpuech, G. Serratrice, A. Strick and A. Veillard,

Soc. 94, 8301 (1972).

Ultraviolet (Ed. C. Sandorfy, P.J. Ausloos and M.B. Robin)
TABLE 1 Energetics of proton solvation by NH₃

\[
\text{NH}_4^+ (\text{NH}_3)_n \rightleftharpoons \text{NH}_4^+ (\text{NH}_3)_{n-1} + \text{NH}_3
\]

<table>
<thead>
<tr>
<th>n,n-1</th>
<th>THIS WORK ΔH° kcal mol$^{-1}$</th>
<th>LITERATURE ΔH°</th>
<th>THEORETICAL ΔH°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ΔC_{298}°</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>13.8 ± 1.4</td>
<td>18.4a</td>
<td>6.3a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.5b</td>
<td>15.5b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.8c</td>
<td>17.1c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.0d</td>
<td>17.5d</td>
</tr>
<tr>
<td>2,1</td>
<td>6.4 ± 1.6</td>
<td>5.5a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.2b</td>
<td>9.4b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.5c</td>
<td>9.0c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.0d</td>
<td>8.9d</td>
</tr>
</tbody>
</table>

a) Ref. 17
 b) Ref. 4
 c) Ref. 2
 d) Ref. 20
 e) Ref. 18
 f) Ref. 19
 g) Ref. 16
 h) Ref. 3
FIGURE CAPTIONS

Fig. 1. Intensity of ions measured with the monochromator adjusted at zero order versus stagnation pressure: Δ (NH₃)₃⁺, Δ (NH₃)₂H⁺, 0 (NH₃)₂⁺, ⋄ NH₄⁺

Fig. 2. Photoionization efficiency of (NH₃)₂⁺ normalized at 116.0 nm.

Fig. 3. Photoionization efficiency of NH₄⁺, (NH₃)₂H⁺ and (NH₃)₃H⁺ normalized at 116.0 nm.

Fig. 4. Energetics of the (NH₃)₂⁺ system.

Fig. 5. Energetics of the protonated ammonia system.

Fig. 6. Log (σ-σ₀) where σ = photoionization efficiency, σ₀ = background ion count versus log (E-Eₜ) where Eₜ = threshold energy of NH₄⁺.

Fig. 7. Log-log plot of the photoionization efficiency of (NH₄⁺)NH₃ in the threshold region. Eₜ is the threshold energy of (NH₄⁺)NH₃. Two limiting lines are drawn through the low energy points, establishing maximum errors for the (NH₃)ₙ dissociation energy.

Fig. 8. Log-log plot of the photoionization efficiency of (NH₄⁺)(NH₃)₂ in the threshold region. Eₜ is the threshold energy of (NH₄⁺)(NH₃)₂. Two limiting lines are drawn through the low energy points, establishing maximum errors for the (NH₃)ₙ dissociation energy.
Fig. 1: XBL 7712-10926

-11-

Intensity (Arbitrary units)

Pressure (Torr)
\((\text{NH}_3)_2^+ \)

9.54 ± 0.05 eV

Fig. 2 XBL 7712-10928
Fig. 3
\[
\begin{align*}
\text{NH}_3 + \text{NH}_3^+ & \rightarrow (\text{NH}_3)_2^+ \\
10.166 \text{ eV} & \rightarrow 9.54 \pm 0.05 \text{ eV} \\
\text{NH}_3 + \text{NH}_3 & \rightarrow (\text{NH}_3)_2 \\
0.16 \pm 0.02 \text{ eV} & \rightarrow 0.79 \pm 0.05 \text{ eV}
\end{align*}
\]
\[
\text{NH}_2 + H^+ + n\text{NH}_3
\]

13.598 eV

\[
\text{NH}_3^+ + n\text{NH}_3
\]

10.166 eV

\[
\text{NH}_2 + H + n\text{NH}_3
\]

4.60 ± 0.05 eV

\[
\text{NH}_3 + n\text{NH}_3
\]

0.16 ± 0.02 eV

\[
(\text{NH}_3)_2^+ + (n-1)\text{NH}_3
\]

9.59 ± 0.02 eV

\[
(\text{NH}_3)_2^+ + (n-2)\text{NH}_3
\]

9.15 ± 0.04 eV

\[
(\text{NH}_3)_2^+ + (n-3)\text{NH}_3
\]

9.03 ± 0.04 eV

\[
(\text{NH}_3)_2^+ + (n-1)\text{NH}_3
\]

9.15 ± 0.04 eV

\[
(\text{NH}_3)_3^+ + (n-2)\text{NH}_3
\]

9.03 ± 0.04 eV

\[
(\text{NH}_3)_3^+ + (n-3)\text{NH}_3
\]

9.03 ± 0.04 eV

\[
(\text{NH}_3)_4^+ + (n-3)\text{NH}_3
\]

0.16 ± 0.04 eV

\[
(\text{NH}_3)_3^+ + (n-2)\text{NH}_3
\]

0.16 ± 0.04 eV

\[
(\text{NH}_3)_2^+ + (n-1)\text{NH}_3
\]

0.16 ± 0.04 eV

\[
(\text{NH}_3)_3^+ + (n-2)\text{NH}_3
\]

0.16 ± 0.04 eV

\[
(\text{NH}_3)_4^+ + (n-3)\text{NH}_3
\]

0.16 ± 0.04 eV

Fig. 5
Fig. 6

$\sigma - \sigma_0

E - E_T (eV)

NH_4^+$

127.2 nm
(9.75 eV)
\[(\text{NH}_4^+)\text{NH}_3\]

\[(\text{NH}_3)_4 \rightarrow (\text{NH}_4^+)\text{NH}_3 + \text{NH}_3 + \text{NH}_2 + \text{e}^-\]

\[\Delta E = 133.1\text{nm (9.31 eV)}\]

\[\Delta E \approx 132.7\text{nm (9.34 eV)}\]

\[\Delta E \approx 133.8\text{nm (9.26 eV)}\]

\[\sigma - \sigma_0\]

\[E - E_T (\text{eV})\]

\[0.01 \quad 0.05 \quad 0.10 \quad 0.50 \quad 1.00\]

\[0.5 \quad 1 \quad 5 \quad 10 \quad 50\]

Fig. 7
$\text{(NH}_4\text{)}^+\text{(NH}_3\text{)}_2$

$\text{(NH}_3\text{)}_5 \rightarrow \text{(NH}_4\text{)}^+\text{(NH}_3\text{)}_2 + \text{NH}_3 + \text{NH}_2 + e^-$

$\Delta E = 134.8 \text{ nm (9.19 eV)}$

134.4 nm (9.22 eV)

135.1 nm (9.17 eV)

Fig. 8
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.