Title
IMPLICATIONS OF NEW DATA ON THE HEAT CAPACITY OF TUNGSTEN FOR THE POWDERED CERIUM MAGNESIUM NITRATE TEMPERATURE SCALE

Permalink
https://escholarship.org/uc/item/9580451g

Authors
Phillips, N.E.
Thorp, T.L.
Triplett, B.B.

Publication Date
1973-02-01
IMPLICATIONS OF NEW DATA ON THE HEAT CAPACITY OF TUNGSTEN FOR THE POWDERED CERIUM MAGNESIUM NITRATE TEMPERATURE SCALE

N. E. Phillips, T. L. Thorp, and B. B. Triplett

February 1973

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Implications of New Data on the Heat Capacity of Tungsten for the Powdered Cerium Magnesium Nitrate Temperature Scale *

N. E. Phillips, T. L. Thorp,† and B. B. Triplett‡

Inorganic Materials Research Division of the Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

The tungsten critical field data obtained by Black, Johnson and Wheatley on the CMN temperature scale are reanalysed, using a new value of γ. The analysis requires $\Delta \neq 0$ at $T \leq 4.5$ mK, and positive temperature-independent values of Δ are ruled out.
A number of properties of He^3 and of dilute solutions of He^3 in He^4 have been measured on a magnetic temperature scale T^* that is based on the susceptibility of a cylinder of powdered CMN (cerium magnesium nitrate). The difference between this scale and the thermodynamic scale T, is usually represented by $\Delta = T - T^*$. Black, Johnson, and Wheatley (BJW) have reported measurements of the critical field for superconductivity in tungsten on the same scale to $T^* = 2 \text{ mK}$, and it has been pointed out that the data can be used to test values of Δ derived in other ways. The test is based on the thermodynamic relation

$$H_c^2 = H_0^2 - (4\pi\gamma/V) T^2 \quad (1)$$

which holds for $T \lesssim 0.3 T_c$. (T_c is the critical temperature, H_c is the critical field and H_0 is its value at 0 K, V is the molar volume, and γ is the coefficient of the electronic heat capacity.) The test is most useful if an accurate independent value of γ is available, and the purpose of this letter is to report on the implications for the T^* scale of a new calorimetric γ value.

The heat capacity of tungsten has been measured between 0.35 and 25 K and analysis of the data gave $\gamma = 1.008 \pm 0.010 \text{ mJ/mole K}^2$. This value agrees to within the combined estimated uncertainties with several other values, but is considerably higher than the value 0.90 mJ/mole K2 obtained by fitting the H_c data between 3 and 4.5 mK to Eq. (1) with $\Delta = 0$. (The critical field of tungsten has also been measured to 5.5 mK using a γ-ray anisotropy thermometer. The H_c values are higher than those obtained by BJW but the difference could
be produced by different concentrations of magnetic impurities in the
two samples and the new data are interpreted as confirmation of the
temperature dependence reported by BJW).

In Figs. 1(a) and (b), the H_c data obtained by BJW below $T^* = 4.5$
mK are plotted as H_c^2 vs. $(T^* \Delta)^2$ for five choices of $\Delta(T)$. Straight
lines with the slope required by Eq.(1) are included for comparison.

As shown in (a), the assumption $\Delta = 0$ leads to a significant discrepancy
between the H_c data and Eq.(1), even in the range $T^* = 3$ to 4.5 mK.

Positive, temperature-independent values of Δ increase the discrepancy
as shown for $\Delta = 0.4$ mK, also in (a). Black3 has already noted the
inconsistency of the tungsten H_c data with the positive constant value
of Δ inferred6 from the temperature dependence of the heat capacity of
CmN, and the inconsistency is even more apparent when the calorimetric
γ value is used in the comparison. In fact, positive values of Δ can
be consistent with Eq.(1) and the H_c data only if Δ decreases with
increasing T more rapidly than T^{-1}. One relation for $\Delta(T)$ that gives
positive values and reasonable agreement with Eq.(1), $\Delta T^2 = 9$ mK2, is
represented in (b). On the other hand, it is possible to find a
negative constant value of Δ, -0.4 mK, that is in reasonable accord
with Eq.(1), as shown in (a).

Webb, Giffard and Wheatley7 have determined Δ by comparing a CmN
thermometer with a Johnson noise thermometer. They found $\Delta = 0.4$ mK
at $T^* = 2$ mK and $\Delta = 0 \pm 0.12$ mK for $8 < T^* < 20$ mK. A qualitatively
similar temperature dependence for Δ that is consistent with Eq.(1)
is \((\Delta + 0.2)T^2 = 3.5 \text{ mK}^3\), represented in (b). This relation agrees with the noise thermometer data to within approximately 0.1 mK in the temperature interval included in Fig. 1 (the only region in which the \(H_C\) data give a useful test of \(\Delta\)) but gives \(\Delta = -0.15\) and \(-0.20 \text{ mK}\) at 8 and 20 mK, respectively.

In summary, reanalysis of the tungsten \(H_C\) data using the calorimetric \(\gamma\) value confirms that positive temperature independent values of \(\Delta\) can be ruled out and shows that \(\Delta \neq 0\) at temperatures as high as \(T^* = 4.5 \text{ mK}\). The \(H_C\) data do not determine a unique \(\Delta(T)\) relation (the criterion of conformity to the BCS expression for \(H_C\) is not useful because of the possible influence of magnetic impurities\(^4\)) but they are consistent with \(\Delta(T)\) relations qualitatively similar to that determined by noise thermometry.
References

* Work supported by the U. S. Atomic Energy Commission

† Present address: Royal Radar Establishment, Malvern, Worcestershire, U. K.

‡ Present address: Department of Physics, Stanford University, Stanford, California 94305.

4. B. B. Triplett et al., to be published.

Figure Caption

Figure 1 The critical field of tungsten as reported by Black, Johnson and Wheatley, plotted as H_c^2 vs. $(T^*+\Delta)^2$ for different $\Delta(T)$ relations. The straight lines have the slope required by Eq.(1) and the calorimetric γ value.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.