Title
MOSSBAUER SPECTROSCOPY and MAGNETOCHEMISTRY OF METALLOPORPHYRINS

Permalink
https://escholarship.org/uc/item/95k931jv

Author
Hambright, Peter

Publication Date
1978-04-05
MOSSBAUER SPECTROSCOPY AND MAGNETOCHEMISTRY OF METALLOPORPHYRINS

Peter Hambright
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MÖSSBAUER SPECTROSCOPY AND MAGNETOCHEMISTRY OF METALLOPORPHYRINS

PETER HAMBRIGHT

Department of Chemistry, Howard University, Washington, D.C. 20059, USA

and

ALAN J. BEARDEN

Donner Laboratory, University of California, Berkeley, California 94720, USA

12.1. Mössbauer Spectroscopy

12.1.1. Introduction

Mössbauer spectroscopy, in contrast to electron paramagnetic resonance or magnetic susceptibility measurements, can give detailed information about electronic configurations of diamagnetic as well as paramagnetic states\(^1\)\(^-\)\(^3\). A serious limitation of the method is that a nuclide having a low-lying isomeric nuclear energy must be employed as an absorbing nucleus and the excited state of that same nuclear isomer must be populated as a result of a nuclear reaction or decay. \(^{57}\)Fe, \(^{119}\)Sn and \(^{129}\)I Mössbauer studies have been used to probe the electronic environment in the vicinity of the coordinated metal ion or axial ligand in metalloporphyrin systems.

For \(^{57}\)Fe Mössbauer spectroscopy, \(^{57}\)Co sources with activities of 1 to 50 mCi are commercially available. The spectroscopic arrangement then consists of a source, an absorber, a detector of the transmitted 14.4 keV gamma radiation (a proportional gas counter or a scintillation counter), and some means of providing a relative velocity between the source and absorber (to vary the energy of the gamma ray). Both the source and absorber must be in solid form to insure that the recoil free gamma transition will be favored. The minimum in the transmission of 14.4 keV gamma rays will only occur at zero relative velocity when both the source and absorber are in the same identical chemical state. If however a ‘standard’ source material is used with a variety of absorbers, chemical information about the absorber can be obtained.

Porphyirins and Metalloporphyrins, ed. Kevin M. Smith
© 1975, Elsevier Scientific Publishing Company, Amsterdam, The Netherlands
Since the discovery of Mössbauer spectroscopy (MS) in 1958, several thousand research papers have appeared, most dealing with applications to solid-state physics, chemistry, geochemistry, and biochemistry. Introductory descriptions of Mössbauer spectroscopy are to be found in books by Frauenfelder4, Danon5 and Wertheim6; applications to chemistry are stressed in books by Goldanski and Herber7, and by Greenwood and Gibb8. Monographs on specific applications of Mössbauer spectroscopy are found in the series edited by Gruverman9. A MS data index10 for the years 1958–1965 and an updated listing of biological MS publications11 are available.

Information about the chemical surroundings of the Mössbauer nuclide is contained in the fact that small changes in the local symmetry and magnitude of electronic wave functions affect to an observable degree the energies of the nuclear energy levels connected by the Mössbauer absorption (or emission) line(s). The observation of these small energy shifts or splittings is made possible by the high monochromaticity of Mössbauer emission lines, typically 1 : 1013 for 57Fe. Although the data are best discussed in terms of an appropriate ‘spin-only’ Hamiltonian, it is useful to describe Mössbauer spectra in terms of four distinct types of interactions. These are: the electric monopole interaction (isomer shift or chemical shift); the electric quadrupole interaction; the nuclear Zeeman interaction; and the nuclear hyperfine interaction.

The nuclear monopole interaction which gives rise to the isomer shift (δ_0) has its origin in the Coulombic interaction between electronic charge density at the Mössbauer nuclide position and the intranuclear charge distribution. As only s-orbitals have electron density at the nucleus, the relative isomer shift will be dependent on the extent of s-character of the electronic wave function. This is related to the shielding of s electrons by p and d electrons, and the bonding properties of ligands surrounding the nuclide. Both free atom12 and covalency13 calculations have been made for 57Fe.

The nuclear quadrupole interaction in 57Fe occurs between the nuclear quadrupole moment of the I = 3/2 excited state (57m0Fe, 14.4 keV) and nonzero electric field gradients present at the nuclear position due to either atomic charge configurations, ligand charge configurations, or both14. In the absence of other interactions, materials displaying a nuclear quadrupole interaction show two Mössbauer absorption lines. The separation between lines, the quadrupole splitting (ΔE), is a measure of the energy difference between the $m_1 = \pm 1/2$ and the $m_1 = \pm 3/2$ nuclear energy states. The nuclear quadrupolar interaction is also described by the asymmetry parameter, η, which is defined as, $\eta = (V_{xx} - V_{yy})/V_{zz}$ where V_{xx}, V_{yy}, and V_{zz} represent the second derivatives of the electric potential along orthogonal crystal axes with the origin at the Mössbauer nuclide. The sign of η can be determined by the application of an external magnetic field of sufficient intensity (30 to 50 kG) to produce observable differences in the nuclear Zeeman interaction of the $m_1 = \pm 1/2$ and $m_1 = \pm 3/2$ states15.
The nuclear Zeeman interaction is the Mössbauer analog of the optical Zeeman Effect in which degenerate nuclear paramagnetic states show splittings in the presence of an applied magnetic field\(^7\). An additional magnetic interaction, the magnetic hyperfine interaction, occurs when there is unpaired spin density near the Mössbauer nuclide. The interaction is of the form \(a I \cdot S\) where \(I\) is the nuclear spin (\(1/2\) and \(3/2\) for the ground and first excited state of \(^{57}\)Fe), and \(S\) is the unpaired electron spin. The nuclear hyperfine coupling constant, \(a\), is a measure of the strength of the interaction\(^7\). Observation of the nuclear hyperfine interaction is facilitated by imposing a small external magnetic field either parallel or perpendicular to the direction of the Mössbauer gamma radiation; this magnetic field produces a polarization of electronic magnetic moments dependent on \(H/T\). The external field strength can usually be chosen such that it does not produce an observable direct nuclear Zeeman splitting.

In general all four interactions may be present in a Mössbauer spectrum; judicious use of external parameters such as sample temperature and applied magnetic field are often necessary to sort out the interactions and to determine which electronic configurations might give rise to the observed spectrum. Calculation of expected Mössbauer spectra is in many cases essential to an understanding of the experimental data. There may be important time dependencies in the effects of these interactions, particularly for the nuclear hyperfine component. It is well to remember that Mössbauer spectroscopy senses the energy of nuclear energy levels for times of the order of \(10^{-9}\) to \(10^{-6}\) sec. \(^{57}\)Fe Mössbauer spectroscopy has a characteristic time of \(10^{-7}\) sec, the lifetime of the \(^{57}\)Fe excited state. Time dependencies such as those due to electronic-spin relaxation can often be seen by working in the liquid helium range.

With \(^{57}\)Fe, spectra taken in zero magnetic field can only sort out high-spin Fe(II) from the other spin states of Fe(II) and Fe(III), as the quadrupole splittings and isomer shifts for the other three common spin states lie too close to each other and can be identical for many combinations of ligand symmetry and ligand-field strength. In the case of high-spin Fe(III)porphyrins, the spin state \(6S_{5/2}\) is well-established by other techniques, particularly the observation of electron paramagnetic resonance spectra\(^6\) with \(g\)-values of 6.6 and 2 and low temperature susceptibility data\(^7\). Therefore the important role of Mössbauer spectroscopy of high-spin iron-porphyrins is to supply precise values of the nuclear isomer shift and the nuclear quadrupole interaction coupling constant for comparison with theoretical values calculated on the basis of modern quantum mechanical methods for the electronic configuration of the iron-porphyrin structure\(^{18-21}\).

12.1.2. High-spin ferric porphyrins

Mössbauer spectra of protohemin chloride have been obtained almost from the beginning of the chemical application of this spectroscopy\(^{22-30}\).

References, p. 551
Fig. 1. Typical Mössbauer spectra of a high-spin five coordinated ferric porphyrin. The dashed lines show the computer resolution of the unresolved quadrupole doublet at 77°K. ΔE is the quadrupole splitting and δ₀ is the isomer shift, relative to sodium nitroprusside (δ₀ = 0.00 mm/sec). See Ref. 27.

The most striking feature of the spectra is that a quadrupole doublet is only observed at temperatures below about 10°K. Above this temperature, the lines have equal absorption areas, and widths approach the ratio 3:1 (Fig. 1). Blume³ has explained this phenomenon as arising from electron spin-spin relaxation as a consequence of the large zero field splitting (D) for such ferric porphyrins². (2D is ~10 cm⁻¹ rather than ~0.1 cm⁻¹ as is usually found for high-spin ferric complexes). The crystal field produces three doublets; the ground Sz = ±1/2 state, an intermediate Sz = ±3/2 level and the upper Sz = ±5/2 state, which are separated by 2D and 4D, respectively. D can be obtained very accurately in the far infrared³, and approximate values are found by Mössbauer⁰ and PMR measurements. At helium temperatures, the spin relaxation is fast in the ±1/2 state, and the effective field at the nucleus averages to zero. Thus no magnetic hyperfine spectra are expected, and a well resolved quadrupole doublet is obtained. As the temperature increases, the ±3/2 and ±5/2 states become occupied. These states have slower relaxation rates than the ±1/2 level, and produce asymmetric spectra. Thus as the temperature increases, states that produce asymmetric behavior increase, and the quadrupole lines broaden³¹. The sign of the electric field gradient is positive since the highest energy peak displays the broadening at 300°K.
Johnson has demonstrated the existence of an internal field in protohemin chloride. For Mössbauer measurements at high \(H/T \) (30 kG, 1.6–4.2°K), the doublet splits into six hyperfine components. 10⁻³ M protohemin chloride in tetrahydrofuran at 4.2°K is magnetically dilute, and shows a hyperfine spectrum which was better resolved in an applied magnetic field.

Other high-spin ferric porphyrins behave in essentially the same manner as protohemin chloride (Table 2). Work has been done with TPP, (p-Cl)₃, (p-F)₃ and (p-No₂)₃, various substituted deuterohemins and meso-tetrapyridylporphyrin coordinated by different axial ligands. At about 5°K, the isomer shifts (with respect to sodium nitroprusside) range from 0.58–0.77 mm/sec, and average to ~0.67 mm/sec. This is typical for high-spin ionic Fe(III) in a five coordinate environment. With a given porphyrin type, \(\delta_0 \) increases in the order \(I^- > CH_3CO_2^- > N_3^- > NCS^- > Br^- > CF_3CO_2^- > Cl^- > F^- \), which parallels their pi-bonding interactions with iron.

In general, the quadrupole splitting with hemins increases slightly with decreasing temperature, and values at 4°K are about 10–15% greater than at 300°K. For chloro, bromo and iodo complexes, \(\Delta E \) increases, as (p-OMe)TPP > (p-F)TPP > (p-Cl)TPP > TPP. The axial ligand also affects \(\Delta E \), and the trend with (p-OMe)TPP is \(I^- > CF_3CO_2^- > Br^- > Cl^- > CH_3CO_2^- > N_3^- > F^- \). Similar results have been found with Deutero-IX-DME. The order follows the directly observed zero-field splitting parameters found for the deuterohemin complex: \(I^- (D = 16.4 \text{ cm}^{-1}) > Br^- (11.8) > Cl^- (8.95) > N_3^- (7.32) > F^- (5.55) \). Such \(D \) values can also be determined by computer simulation of the temperature dependence of the spectrum, which was assumed to be composed of three pairs of Lorentzian lines representing thermal populations of the three zero-field states. The origin of the frequently observed reversal in intensities of the quadrupole lines as the temperature decreases has been attributed to a thermally induced change in the magnetic field direction.

MS studies on Fe(III)Hemato-IX and a hematothe–internal histidine complex with the axial ligand indicated that the Fe–I bond is extremely covalent in both derivatives. While the net charge on F⁻ in the ionic (P)Fe-F is ~0.95e⁻, that of I⁻ in (P)Fe-I is ~0.1e⁻. This charge is localized in the porphyrin ring, not on the iron. The electron capture decay of I²⁻ was used to produce a Te axial ligand in hematohe.

Low spin bis-amine hemichromes show quadrupole-split doublets at 300°K, which increase slightly in width at lower temperatures. The asymmetric \(d^5 \text{S} = 1/2 \) configuration produces \(\Delta E \) values in the range 1.9 to 2.5 mm/sec, much larger than found with the symmetric \(d^5 \text{S} = 5/2 \) ferric porphyrins (0.4–1.3 mm/sec). The pyridine hemichromes have a smaller \(\Delta E \) than the imidazoles, which are better pi donor ligands and \(\Delta E \) is insensitive to the counter ion. The isomer shifts range from 0.37 to 0.47 mm/sec.

References, p. 551
TABLE 1

Mössbauer parameters for selected iron porphyrins

<table>
<thead>
<tr>
<th>Spin State</th>
<th>Porphyrin</th>
<th>Isomer shift (\delta_0) mm/sec (^a)</th>
<th>Quadrupole splitting (\Delta E) mm/sec (^a)</th>
<th>Temp. (^b)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(III), (S = 5/2)</td>
<td>Fe(Proto-IX)Cl</td>
<td>0.61</td>
<td>0.83</td>
<td>H</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Fe(Meso-IX)Cl</td>
<td>0.58</td>
<td>0.93</td>
<td>H</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Fe(TPP)I</td>
<td>0.72</td>
<td>0.75</td>
<td>H</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Fe(p-Me · TPP)I</td>
<td>0.76</td>
<td>1.33</td>
<td>H</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Fe(p-Me · TPP)−CF (_3)CO (_2)</td>
<td>0.65</td>
<td>1.10</td>
<td>H</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Fe(p-Me · TPP)−Br</td>
<td>0.65</td>
<td>1.07</td>
<td>H</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Fe(p-Me · TPP)−Cl</td>
<td>0.64</td>
<td>1.03</td>
<td>H</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Fe(p-Me · TPP)−CH (_3)CO (_2)</td>
<td>0.73</td>
<td>0.92</td>
<td>H</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Fe(p-Me · TPP)−N(_3)</td>
<td>0.71</td>
<td>0.67</td>
<td>H</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Fe(p-Me · TPP)−NCS</td>
<td>0.69</td>
<td>0.63</td>
<td>H</td>
<td>37</td>
</tr>
<tr>
<td>Fe(III), (S = 1/2)</td>
<td>(p−OMe · TPP)Fe(Im)(_2) (^c), Cl</td>
<td>0.44</td>
<td>2.06</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(p−OMe · TPP)Fe(Im)(_2),Br</td>
<td>0.43</td>
<td>2.05</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(TPP)Fe(Im)(_2),Cl</td>
<td>0.40</td>
<td>2.11</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(p−Cl · TPP)Fe(Im)(_2),Cl</td>
<td>0.42</td>
<td>2.11</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td>Fe(II), (S = 0)</td>
<td>(p−OMe · TPP)Fe−(Pip)(_2) (^c)</td>
<td>0.69</td>
<td>1.49</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(p−Me · TPP)Fe−(Pip)(_2)</td>
<td>0.69</td>
<td>1.53</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(Pip)(_2)−Fe(Proto−IX)</td>
<td>0.67</td>
<td>1.47</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(Py)(_2)−Fe(Proto−IX)</td>
<td>0.63</td>
<td>1.27</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(Eim)(_2)−Fe(Proto−IX)</td>
<td>0.64</td>
<td>1.03</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(Morp)(_2)−Fe(Proto−IX)</td>
<td>0.68</td>
<td>1.52</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td>Fe(III), (S = 5/2)</td>
<td>[(p−OMe · TPP)Fe](_2)−O (^d)</td>
<td>0.68</td>
<td>0.63</td>
<td>N</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>[(O−OMe · TPP)Fe](_2)−O (^d)</td>
<td>0.59</td>
<td>0.65</td>
<td>N</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>[2-PyridylPFe(_2)]−O (^d)</td>
<td>0.70</td>
<td>0.64</td>
<td>N</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>[3-PyridylPFe(_2)]−O (^d)</td>
<td>0.69</td>
<td>0.63</td>
<td>N</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>[4-PyridylPFe(_2)]−O (^d)</td>
<td>0.69</td>
<td>0.67</td>
<td>N</td>
<td>46</td>
</tr>
</tbody>
</table>

\(^a\) Reported with respect to sodium nitroprusside, \(\delta_0 = 0.0 \) mm/sec.

\(^b\) H, 4.2−6°K; A, 295−300°K; N, 77−80°K.

\(^c\) Im, imidazole; Pip, piperidine; Py, pyridine; Eim, ethylenimine; Morp, morpholine.

\(^d\) meso-tetrakis(2-Pyridyl)porphyrin.

(versus nitroprusside), and are consistent with hexacoordination. \(\delta_0 \) is rather insensitive to porphyrin basicity. The pi-bonding characteristics of low spin ferric porphyrins, where the iron is in the porphyrin plane, might suggest that the iron delocalizes added charge into both the porphyrin and ligand orbitals, and maintains an effective electroneutrality.

The spectra of protohemin chloride have been studied in applied pressures up to 170 k bar\(^4\). Both \(\delta_0 \) and \(\Delta E \) increase with pressure, indicating reduction of the initial Fe(III) to intermediate or mixed spin states of Fe(II). At
high temperatures and low pressures, the bis-imidazole(Proto-IX)chloro complex is 30% reduced to low spin Fe(II), while high pressures favor low and intermediate Fe(II) states. The complex itself is in a mixed spin state\(^4\) at \(300^\circ\)K.

12.1.3. Ferrous porphyrins

Low spin bis-amine hemochromes are readily prepared due to the spontaneous reduction of the Fe(III) form in many amine solvents. Well defined quadrupole doublets are obtained at 300\(^\circ\)K, and \(\Delta E\) is fairly insensitive to temperatures\(^3,6,40\). For a number of porphyrin types and axial substituents, \(\delta_0\) (300\(^\circ\)K) is in the narrow range 0.64–0.72 mm/sec; an indication that the Pauling electroneutrality principle outlined for the hemichromes may also apply to the d\(^6\) hemochromes. With a given porphyrin, \(\Delta E\) depends somewhat on the coordinated ligand, and values from 1.2 to 1.6 mm/sec are common for related nitrogenous bases\(^4\). Little variation of \(\Delta E\) is found for the same ligand with various (p-X)TPP complexes. Some work has been done on \(S = 2\) Fe(TPP) and Fe(TPP)(THF)\(_2\) complexes\(^4\) and with mono-amine ferrous porphyrins that carry molecular oxygen\(^4\).

12.1.4. Oxy-bridged ferric porphyrin dimers

The MS parameters\(^3,8,45,46\) of these \(S = 5/2\) antiferromagnetically coupled \(\mu\)-oxy dimers were essentially the same for seven different meso-tetra-arylporphyrin types\(^4\), \(\delta_0 = 0.70 \pm 0.02\) mm/sec (nitroprusside) and \(\Delta E = -0.67 \pm 0.05\) mm/sec at both 77\(^\circ\) and 4.2\(^\circ\)K.

Twelve Sn(IV) derivatives in the meso-tetra-arylporphyrin series with bis-chloro, fluoro or hydroxy ligands were studied by \(^\text{119}\)Sn spectroscopy\(^4,7\). Only in the case of Sn(p-Me)TPP(OH)\(_2\) was a quadrupole splitting observed. The isomer shifts varied with the electronegativity of the axial group, and the corresponding phthalocyanines had larger quadrupole interactions. Other tin porphyrin work has been reported in relation to the sitting-a-top complex problem\(^4,8\). Doublets have been found in the Sn(p-X)TPP(Cl)\(_2\) series\(^1,15\).

12.2. Magnetic susceptibility

12.2.1. Introduction

Magnetic susceptibility measurements are routinely used by inorganic chemists to probe the stereochemistry and electronic state of metal ions in coordination compounds. Many excellent monographs have been devoted to this subject\(^4,9-5\,3\). The susceptibility of solids or solutions can be measured on large (>100 mg) samples by the Gouy method. The Faraday technique, however, is more useful for porphyrin studies, where only a limited amount of solid material (<5 mg) is available. Balances for measurements from ambient temperatures to 77\(^\circ\)K can be inexpensively constructed\(^5,4,5\). Either method requires a standard of known susceptibility and Hg[Co(SCN)\(_4\)]\(^5,6\).

References, p. 551
has been most widely used. Several groups54,57 have shown that the temperature dependence of the susceptibility of this complex when measured by the Faraday method differs from that obtained by the Gouy technique.

Many workers determine metalloporphyrin susceptibilities in solution by the Evans58 PMR method59. The shift of a proton resonance line of an inert reference substance due to a paramagnetic species is given by $(\Delta H/H) = (2\pi/3)\Delta \kappa$, where $\Delta \kappa$ is the change in volume susceptibility. The same precision60 in the measurement of the paramagnetic susceptibility can be obtained by a PMR study on 50 mg of material at 60 MHz as with the Gouy method on 400 mg. At 220 MHz only 7 mg is required under favorable conditions.

When the observed susceptibility is corrected for ferromagnetic impurities, temperature independent paramagnetism and diamagnetic contributions, the temperature dependence of the molar paramagnetic susceptibility (χ_p) usually follows the Curie law, $\chi_p = C/T$ or the Curie–Weiss law, $\chi_p = C/(T + \theta)$. C is the Curie constant. The Weiss constant, θ, does not often have a simple interpretation.52 The effective magnetic moment (μ_{eff}) in units of Bohr Magneton (BM) is given by the expression

$$\mu_{\text{eff}} = 2.83 (\chi_p T)^{1/2}$$

and results should be reported in this form.52 The aim of most metalloporphyrin susceptibility measurements is to confirm or establish the oxidation state of the metal ion, and to find if any peculiar magnetic interactions are present. For this purpose, μ_{eff} is compared with the ‘spin only’ value computed from the equation $\mu_{\text{so}} = (N(N + 2))^{1/2}$, where N is the number of unpaired electrons. Many tabulations show the range of μ_{eff} values to be expected from a particular magnetically dilute metal ion in a given environment.50 More information can of course be obtained from susceptibility studies at low temperatures and high field strengths, using single crystals. In the following sections, we will briefly describe magnetic studies on porphyrin compounds under the general categories (A) oxidation state determinations, (B) testing theoretical predictions, and (C) spin-state equilibria and magnetic exchange phenomena.

12.2.2. Oxidation states

Most metalloporphyrines61 obey the Curie law to 77\textdegree{}K, and the resulting magnetic moments (Table 2) are fairly unambiguous indications of the metal ions’ oxidation state. Earlier work in this area has been reviewed62,63. Phthalocyanines64 have more complicated magnetic properties. Difficulties arise when the purity65 or form of the complex is in question. The low moments for protohemin both in basic solution and as solids isolated under basic conditions66 could arise from aggregation and oxy-bridge dimerization.45,67 Decarboxylation of protohemin chloride at high temperatures17
Table 2

Representative magnetic susceptibility results for metalloporphyrins

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Complex (^a)</th>
<th>Coordination number</th>
<th>Unpaired (\mu) (spin only)</th>
<th>(\mu) (obs.)</th>
<th>Temp. (^b)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d(^9)</td>
<td>Cu(II)Hemato-IX-DME</td>
<td>4 1</td>
<td>1.73</td>
<td>1.93</td>
<td>N</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Ag(I)Hemato-IX-DME</td>
<td>4 1</td>
<td>1.73</td>
<td>1.94</td>
<td>N</td>
<td>61</td>
</tr>
<tr>
<td>d(^8)</td>
<td>Ni(II)Hemato-IX-DME</td>
<td>4 0</td>
<td>0</td>
<td>diam</td>
<td>N</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Pd(II)Hemato-IX-DME</td>
<td>4 0</td>
<td>0</td>
<td>diam</td>
<td>N</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Pt(II)Etio-I</td>
<td>4 0</td>
<td>0</td>
<td>diam</td>
<td>N</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Na[Co(I)TPP]</td>
<td>4 0</td>
<td>0</td>
<td>diam</td>
<td>R</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Ag(III)OEP</td>
<td>4 0</td>
<td>0</td>
<td>diam</td>
<td>R</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>H[Rh(I)TPP]</td>
<td>4 0</td>
<td>0</td>
<td>diam</td>
<td>R</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Ni(II)TPP-Pip</td>
<td>5 0</td>
<td>0</td>
<td>diam</td>
<td>R</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Ni(II)TMPyP-(Im)(_2)</td>
<td>6 2</td>
<td>2.84</td>
<td>3.3</td>
<td>R</td>
<td>73</td>
</tr>
<tr>
<td>d(^7)</td>
<td>Co(I)Meso-IX-DME</td>
<td>4 1</td>
<td>1.73</td>
<td>2.89</td>
<td>N</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Na[Fe(I)TPP]-(THF)(_2)</td>
<td>6 3</td>
<td>3.87</td>
<td>c</td>
<td>N</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Fe(I)TPP</td>
<td>4 1</td>
<td>1.73</td>
<td>1.8</td>
<td>R</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Rh(II)TPP</td>
<td>4 1</td>
<td>1.73</td>
<td>1.2</td>
<td>R</td>
<td>103</td>
</tr>
<tr>
<td>d(^6)</td>
<td>Fe(II)TPP</td>
<td>4 4</td>
<td>4.89</td>
<td>4.85</td>
<td>R</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Fe(II)TPP(Py)(_2)</td>
<td>6 0</td>
<td>0</td>
<td>diam</td>
<td>R</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Fe(II)TPP(THF)(_2)</td>
<td>6 4</td>
<td>4.89</td>
<td>5.02</td>
<td>R</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Fe(II)TPP(NO)</td>
<td>5 4</td>
<td>4.89</td>
<td>4.75</td>
<td>R</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Rh(III)TPP(CO,Cl)</td>
<td>6 0</td>
<td>0</td>
<td>diam</td>
<td>R</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Ir(III)Hemato-IX-DME-(Cl,CO)</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Rh(III)Meso-IX-DME(Cl)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Co(III)Hemato-IX(Cl,H(_2)O)</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0.23</td>
<td>N</td>
</tr>
<tr>
<td>d(^5)</td>
<td>Fe(III)Proto-IX-Cl</td>
<td>5 5</td>
<td>5.92</td>
<td>5.89</td>
<td>N</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Fe(III)TPP-(Im)(_2)</td>
<td>6 1</td>
<td>1.94</td>
<td>2.36</td>
<td>H</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Mn(II)TPP-(Py)(_2)</td>
<td>6 5</td>
<td>5.92</td>
<td>6.02</td>
<td>R</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Rh(IV)TPP-(C(_6)H(_5),Cl)</td>
<td>6 1</td>
<td>1.94</td>
<td>1.95</td>
<td>R</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>K[Ru(III)TPP(CN)(_2)]</td>
<td>6 1</td>
<td>1.94</td>
<td>1.9</td>
<td>N</td>
<td>65</td>
</tr>
<tr>
<td>d(^4)</td>
<td>Mn(III)Hemato-IX-Cl</td>
<td>5 4</td>
<td>4.89</td>
<td>4.88</td>
<td>N</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Fe(IV)TPP(^+)</td>
<td>? 4</td>
<td>4.89</td>
<td>c</td>
<td>R</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Cr(II)TPP</td>
<td>4 4</td>
<td>4.89</td>
<td>4.9</td>
<td>R</td>
<td>70</td>
</tr>
<tr>
<td>d(^3)</td>
<td>Cr(III)TPP-OCH(_3)</td>
<td>5 3</td>
<td>3.87</td>
<td>3.61</td>
<td>N</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Mn(IV)Hemato-IX-(OH)(_2)</td>
<td>6 1</td>
<td>1.73</td>
<td>2.0</td>
<td>R</td>
<td>113</td>
</tr>
<tr>
<td>d(^1)</td>
<td>VO-Hemato-IX-DME</td>
<td>5 1</td>
<td>1.73</td>
<td>1.79</td>
<td>N</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>O=MoTPP-Cl</td>
<td>6 1</td>
<td>1.73</td>
<td>1.71</td>
<td>N</td>
<td>113</td>
</tr>
</tbody>
</table>

\(^a\) Im, imidazole; Py, pyridine; THF, tetrahydrofuran.

\(^b\) N, 77–300°K; R, 298°K; H, 4.2–50°K.

\(^c\) Observed magnetic moment not reported.

References, p. 551
could account for the unusual magnetic behavior found in this range. The low moment of 2.84 BM shown by Cr(II)Meso-IX-DME in the solid state indicates magnetic interactions that are absent in solution, where \(\mu_{\text{eff}} = 5.19 \) BM. This interaction is not found with solid Cr(II)TPP \((\mu_{\text{eff}} = 4.9 \) BM) where the phenyl rings may inhibit close contact between the metal centers. Magnetic measurements have elucidated the equilibria in nickel-porphyrin solutions due to complexation by pyridine or water molecules (see Chapter 6).

The high spin-low spin transition and the resulting movement of the iron atom upon oxygen addition to ferrous hemoglobin may account for the cooperative subunit interactions. Both diamagnetic \((O_2-\text{Fe(II)P-}(1\text{-MeIm})) \) and paramagnetic \((O_2-\text{Fe(II)P-THF}) \) dioxygen complexes have been synthesized. In the coboglobin system where only a formal spin change is realized upon dioxygen formation \((\text{low spin } d^7 \rightarrow d^6) \), the doming of the entire porphyrin framework has been suggested as the stereochemical trigger.

The following molar diamagnetic susceptibilities have been reported. \(H_2(\text{TPP})^6 = -386 \times 10^{-6} \) cgs units, \(H_2(\text{Proto-IX-DME})^7 = 585 \times 10^{-6} \) and \(H_2(\text{Meso-IX-DME})^7 = 595 \times 10^{-6} \) cgs units.

12.2.3. Theoretical predictions

Figure 2 shows that protohemin chloride deviates markedly from Curie behavior below 40°K, and the Curie-Weiss law with \(C = 7.09 \times 10^{-3} \) and \(\theta = 3.1 \) is a good representation of the data. Such deviations may be a reflection of differing populations of the \(^6 A_1 \), zero-field states with temperature, and the Kotani-Griffith equation shows a relationship between the observed moments \((\mu^2) \) and the zero-field splitting parameter \(D \), where \(x = D/kT \).

\[
\mu^2 = \frac{19 + [6x^{-1} \exp(-2x)(19-11x^{-1})] + \exp(-6x)(25-5x^{-1})}{1 + \exp(-2x) + \exp(-6x)}
\]

At high temperatures where \(kT \gg 2D \), the moment will reach the spin-only value of 5.92 BM, and at low temperature where only the \(\pm 1/2 \) state is populated \((2D \gg kT) \), \(\mu \) should approach 4.36 BM. Studies of protohemin chloride by several groups show that \(\mu = 5.92 \) or 5.89 BM at 293°, 5.86 BM at 77°K, and 4.58 BM at 4°K. The chloride, bromide and SCN salts of Fe(III)TPP behave in a similar fashion. With the exception of possibly Fe(TPP)Br, the observed results are not well represented by the Kotani-Griffith equation for any value of \(D \), and similar deviations at low temperature are found for other hemoproteins. The origin of these deviations has been discussed. The temperature dependence of the moments are in fair agreement with the Harris-Loew calculations. At high values of \(H/T \) (22 kG, 2°K), 90% magnetic saturation was demonstrated for protohemin chloride.
Fig. 2. Temperature dependence of the magnetic susceptibility of Cl—Fe(III)—Protoporphyrin-IX, (hemin chloride) from 4.5 to 300°K. The results are expressed in terms of the Curie—Weiss law, $\chi = C/(T + \theta)$. $\theta = 0$ is the observed data and $C = 7.09 \times 10^{-3}$, $\theta = 3.1$ are the best-fit parameters to the equation. See Ref. 17.

12.2.4. Spin state equilibria and magnetic exchange

The magnetic susceptibility of the protohemin dimer $[\mu$-oxy-bis(Protoporphyrin IX-DME)Fe(III)] was studied from 1.5 to 300°K at field strengths from 2 to 18 kG. Antiferromagnetism was indicated, as the moments increased with increasing temperature ($\mu^2 = 2.4$ BM at 296°K, 1.5 at 213°, and 0.09 at 78°K). By using the Heisenberg $2JS_1S_2$ model, a coupling constant $2J$ of 380° was found for the interaction between two high spin ($S = 5/2$) ferric ions in the dimer. The temperature dependence of the Knight shifts of the pyrrole protons of ferric porphyrin dimers 8 was used to determine isotopic exchange parameters ($-J$) of 309 cm$^{-1}$ for O-[Fe(III)TPP]$_2$ and 335 cm$^{-1}$ for O-[Fe(III)(p-Me·TPP)]$_2$. However, PMR results on related porphyrin 8 dimers indicate that dipolar interactions and zero field splitting parameters are not negligible, and thus the TPP dimer results 8 are probably inaccurate.

Mn(III) 8, Mo and W 8 porphyrins also form oxybridged adducts. The nature of the interactions have not been studied in detail. Several solid vanadyl porphyrins have low room temperature moments, which have been attributed to antiferromagnetic interactions 8.

The magnetic properties of an aligned crystal 8 of Cu(TPP) has been determined at low temperature. The hyperfine interactions between the nuclear and electronic spins of copper affect the perpendicular susceptibility, and the parallel susceptibility obeyed the Curie—Weiss law above 20°K with $\theta = 3°$.

The spin-state equilibrium behavior found in many heme proteins 8 and inorganic complexes 8 has also been observed with iron porphyrins. PMR measurements have demonstrated that bis-pyridine Fe(III)Proto-IX may be

References, p. 551
an \((S = 1/2 \rightarrow S = 3/2)\) system, with the singlet state predominant at low temperature. Similar results are found with substituted pyridines in methanol solutions. Low spin bis-pyridine Fe(II) and Fe(III) complexes exchange electrons rapidly, and the addition of CO to form \((CO-Fe(II)P-Py)\) blocks the exchange. The higher spin ferric forms do not exchange electrons with the low spin complexes. The \([H_2O-Fe(III)-P-Py]\) Proto-IX derivative is about 20% in the \(S = 5/2\) form at 300 K, and the monoimidazole complex of Fe(III)TPP may be high spin. The nature of the species present in pyridine solutions of ferric porphyrins are not well understood. The high spin complex \([Py-Fe(III)P-Cl]\) is present at 300 K in pure pyridine, in agreement with monopyridinate stability constant results. The transformation of metmyoglobin-hydroxide between its high and low spin states was found to be a very rapid process. Therefore the much slower rates that have been attributed to spin state equilibrium in porphyrin systems may in fact involve axial ligand substitution at the iron center.

In the solid state, monoamine adducts of Fe(III)OEP-ClO\(_4\) have been prepared. The monopyridinate is low-spin between 77 and 240 K, while the 4-CHO and 4-CN pyridine derivatives have moments higher (4.3 and 3.3 BM) than the low spin value of 2.2 BM at 77 K. The perchlorate complex itself had a moment of 4.8 BM, and ClO\(_4^-\) was probably coordinated to the iron. The solid bis-imidazole \([Fe(III)Proto-IX]\) chloride is low spin at 77 K, and 23% in the assumed \(S = 5/2\) spin state at 300 K. Upon heating to 530 K, only one imidazole is lost, and the resulting complex was shown to be high spin. In contrast, the bisimidazole (Meso-IX) and (Deut-IX) derivatives are low spin at 300 K.

In a novel approach, 2 moles of Fe(III)TPP-N\(_3\) and 1 mole of Fe(II)TPP were reacted to form 2 : 1 complexes that could be represented as either \([-Fe(III)-NNN-Fe(II)-NNN-Fe(III)-]_2\), \([N_3-Fe(III)-Fe(II)-Fe(III)-N_3]_2\), \([Fe(III)-N_3-Fe(II)-N_3-Fe(III)]\) \((-N-\)configuration). The magnetic moment was unchanged from 77 to 300 K, with \(\mu_{\text{eff}} = 5.0\) BM. The interpretation was that Fe(II) is diamagnetic, and each Fe(III) has a normal spin-only moment of four unpaired electrons \((S = 2)\). The fifth electron from each ferric ion was paired in an orbital that extended across the entire system. The polymer \([-Fe(TPP)-(imidazolate)-]_n\) has been shown by magnetic techniques to involve spin coupling through the imidazolate ion.

\textit{Acknowledgements}

We thank the following agencies for their support. NSF GB-37881 (AJB) and USPHS, Research Career Development Award (AJB), K 04 GM 24494 GMS, and USAEC, AT-(40-1)-4047 (PH).
References

33. (a) G. Lang, T. Asakura, and T. Yonemura, Phys. Rev. Lett., 24, 981 (1970);
(b) A. Amusa, P. Debrunne, H. Frauenfelder, E. Münck, and G. Depasqua, J. Phys. C, 7, 1881 (1974);
(c) J.C. Chang, T.P. Das, and K.J. Duff, Bull. Am. Phys. Soc., 20, 482 (1975);
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.