Title
NUMERICAL ANALYSIS OF THE MULTIPLE BEAM EQUATIONS FOR ELECTRON DIFFRACTION

Permalink
https://escholarship.org/uc/item/95q9p6q8

Authors
Bell, W.L.
Thomas, G.

Publication Date
1969-04-01
NUMERICAL ANALYSIS OF THE MULTIPLE BEAM EQUATIONS
FOR ELECTRON DIFFRACTION

W. L. Bell and G. Thomas

April 1969

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
NUMERICAL ANALYSIS OF THE MULTIPLE BEAM EQUATIONS FOR ELECTRON DIFFRACTION

W. L. Bell and G. Thomas

Inorganic Materials Research Division, Lawrence Radiation Laboratory, and Department of Materials Science and Engineering, College of Engineering, University of California, Berkeley,

The differential equations of the n-beam dynamical theory of electron diffraction are, neglecting absorption and common phases,

\[
\frac{d\psi_i}{dz} = 2\pi i s_i \psi_i + \sum_{j=0}^{n-1} \frac{\pi i}{\xi_{j-1}} \psi_j e^{2\pi i \bar{g}_{j-1} \cdot \bar{R}}
\]

(1)

where the subscript i is taken from zero to (n-1) to yield the n differential equations. \(\psi_0\) is the forward diffracted wave and \(\psi_1, \psi_2, \ldots, \psi_{n-1}\) are the other \((n-1)\) diffracted waves; \(s_i\) is the macroscopic deviation parameter of the \(i^{th}\) reciprocal lattice point; \(\bar{g}_{j-1}\) is the reciprocal lattice vector connecting the \(i^{th}\) and the \(j^{th}\) reciprocal lattice points and \(\xi_{j-1}\) is the extinction distance corresponding to two-beam dynamical diffraction by the planes for which \(\bar{g}_{j-1}\) is the reciprocal lattice vector.

For numerical analysis of these equations, Howie and Whelan have suggested the use of alternate wave functions given by

\[
\psi_i' = \psi_i e^{2\pi i \bar{g}_i \cdot \bar{R}} = \psi_i e^{2\pi i \beta_i}
\]

(2)

The differential equations then become

\[
\frac{d\psi_i'}{dz} = 2\pi i (s_i + \beta_i') \psi_i' + \sum_{j=0}^{n-1} \frac{\pi i}{\xi_{j-1}} \psi_j'
\]

(3)

where

\[
\beta_i' = \frac{d}{dz} (\bar{g}_i \cdot \bar{R}).
\]

(4)
The matrix representation of this set of equations is

$$\frac{d}{dz} [\psi'] = 2\pi i (A + \{\beta_1\}) [\psi']$$

(5)

where $[\psi']$ is a column matrix with elements ψ_1. A is the eigenvalue matrix (nxn) for the perfect crystal, and $\{\beta_1\}$ is an nxn diagonal matrix with elements β_1'. In this form, the equations are suitable for numerical analysis and, for a slab of thickness Δz,

$$[\psi'(z + \Delta z)] = (I + 2\pi i \Delta z (A + \{\beta_1\})) [\psi'(z)]$$

(6)

where I is the nxn identity matrix. Rearranging terms, this becomes

$$[\psi'(z + \Delta z)] = ([1 + 2\pi i \Delta z (s_i + \beta_1')] + 2\pi i \Delta z B) [\psi_i(z)]$$

(7)

where B is the nxn matrix $(A - \{s_i\})$ and has zeroes for its elements on the main diagonal. Equation (7) is equivalent to the n equations

$$\psi_1'(z + \Delta z) = \left(1 + 2\pi i \Delta z (s_i + \beta_1')\right) \psi_1'(z) + \sum_{j \neq i} \frac{\pi \Delta z}{\xi_{j-1}} \psi_j'(z)$$

(8)

obtainable directly from equation (5) using incremental equations rather than differential equations. Equation (8) can easily be programmed for a computer if Δz, s_i, β_i', ξ_{j-1} and initial conditions are specified, and repetition of equation (8) m times can be used to obtain the amplitude of ψ_1 for a foil of thickness $m\Delta z$. Although the differential equations used to obtain equation (8) are in perfect accord with the dynamical theory, equation (8) itself is not conservative in that the intensity of the ith diffracted beam is multiplied by a factor $[1 + (2\pi \Delta z)^2(s_i + \beta_1')^2]$. This is not a serious effect provided Δz is chosen small enough. However, a slab thickness, Δz, suitable for a two beam calculation will be too large for the general multiple beam case, particularly one involving syste-
matic reflections, because of the large values of s_i associated with higher order beams and the large $\vec{g}_i \cdot \vec{b}$ products appearing in β_i'. Also, equation (8) is particularly unsuitable to the situations where β_i' is a δ-function, such as in the cases of stacking faults and antiphase boundaries where $\vec{g} \cdot \vec{R}$ has an abrupt change and in situations involving delta boundaries where the value of s_i changes abruptly. In order to overcome the non-conservative nature of the numerical solution of the dynamical equations, a substitution other than equation (2) can be used. If

$$\psi''_i = \psi_i e^{-2\pi i s_i z}$$

then

$$\frac{\partial \psi''}{\partial z} = \sum_{j \neq i} \frac{\pi}{2} \psi''_j e^{2\pi i (s_{j-1} z + \vec{g}_{j-1} \cdot \vec{R})}$$

(10)

In matrix notation this becomes

$$\frac{d}{dz} [\psi'] = (e^{-2\pi i (s_i z + \vec{g}_i \cdot \vec{R})}) (2\pi i B) (e^{2\pi i (s_i z + \vec{g}_i \cdot \vec{R})}) [\psi''(z)]$$

(11)

where the diagonal matrices are termed "shift" matrices by Amelinckx and B is the same matrix as introduced in equation (7). For a numerical analysis, equation (11) will give

$$[\psi''(z+\Delta z)] = (I + (e^{-2\pi i (s_i z + \vec{g}_i \cdot \vec{R})}) (2\pi i B) (e^{2\pi i (s_i z + \vec{g}_i \cdot \vec{R})}) [\psi''(z)]$$

(12)

If $[\psi''(z)]$ is considered as the waves incident on a crystal slab at depth z, then

$$[\psi'(z)] = (e^{2\pi i (s_i z + \vec{g}_i \cdot \vec{R})}) [\psi''(z)]$$

(13)

might be considered as waves transformed upon entering the slab, and

$$[\psi'(z+\Delta z)] = (e^{2\pi i (s_i \Delta z + \vec{g} \cdot \Delta \vec{R})}) (I + 2\pi i \Delta B) [\psi'(z)]$$

(14)
The corresponding system of equations is then

\[\psi'_i(z+\Delta z) = e^{2\pi i (s_i \Delta z + \vec{g}_i \cdot \Delta \vec{R})} [\psi'_i(z) + \sum_{j \neq i} \frac{i \pi \Delta z}{\xi_{j-i}} \psi'_j(z)]. \]

These equations can also be handled easily by a computer provided the exponential functions can be defined conveniently. The primary advantage of using equation (15) rather than equation (8) is the elimination, for the most part, of the non-conservative nature of the numerical solution. \(\psi'_i \) is the same wave function in both equations, i.e., equations (9) and (13) equal equation (2). Furthermore, for small phase angles, \(2\pi i (s_i \Delta z + \vec{g}_i \cdot \Delta \vec{R}) \), equation (15) can be converted into equation (8), if terms involving \((\Delta z)^2 \) are neglected, since

\[\vec{g} \cdot \Delta \vec{R} \approx \frac{d}{dz} (\vec{g} \cdot \vec{R}) \Delta z. \]

The modified wave functions, \(\psi'_i \) were defined for equation (15) after numerical approximations to the differentials equations where made rather than before, and the result was a greater degree of conservation of electron intensity than is possible with equation (8).

Absorption has been neglected for simplicity's sake, but it can be introduced easily into equation (15) by representing mean absorption in a slab as a coefficient of the exponential function and anomalous absorption can be duplicated by replacing the reciprocals of the extinction distances with suitable real and imaginary terms.

Acknowledgements

We wish to thank the United States Atomic Energy Commission for continued financial support of the research.
REFERENCES

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.