Title
Jacobians and branch points of real analytic open maps

Permalink
https://escholarship.org/uc/item/96j8z7m2

Author
Hirsch, MW

Publication Date
2002-02-01

DOI
10.1007/s00010-002-8006-8

Peer reviewed
Jacobians and branch points of real analytic open maps

MORRIS W. HIRSCH∗

Summary. The main result is that the Jacobian determinant of an analytic open map \(f : \mathbb{R}^n \to \mathbb{R}^n \) does not change sign. A corollary of the proof is that the set of branch points of \(f \) has dimension \(\leq n - 2 \).

Mathematics Subject Classification (2000). Primary 26E05, 26B10; Secondary 54C10.

Keywords. Real analytic map, open map, branch points.

Introduction

The main object of this paper is to prove the following result:

Theorem 1. The Jacobian of a real analytic open map \(f : \mathbb{R}^n \to \mathbb{R}^n \) does not change sign.

One of the referees kindly pointed out that the special case of polynomial maps was proved by Gamboa and Ronga [3]:

Theorem 2 (Gamboa and Ronga). A polynomial map in \(\mathbb{R}^n \) is open if and only if point inverses are finite and the Jacobian does not change sign.

The proof of Theorem 1 is very similar to methods in [3], which are easily adapted to analytic maps; but as Theorem 1 does not seem to be known, a direct proof may be useful.

\(f : \mathbb{R}^n \to \mathbb{R}^n \) denotes a (real) analytic map in Euclidean \(n \)-space. We always assume \(f \) is open, that is, \(f \) maps open sets onto open sets. Denote the Jacobian matrix of \(f \) at \(p \in \mathbb{R}^n \) by \(df_p = \left[\frac{\partial f_i}{\partial x_j} (p) \right] \). The rank of \(df_p \) is called the rank of \(f \) at \(p \), denoted by \(\text{rk}_p f \); the determinant of \(df_p \) is the Jacobian of \(f \) at \(p \), denoted by \(Jf(p) \). When the analytic function \(Jf : \mathbb{R}^n \to \mathbb{R} \) is everywhere non-negative or everywhere non-positive (in a set \(X \)), we say \(Jf \) does not change sign (in \(X \)).

∗This research was partially supported by a grant from the National Science Foundation.
The following sets are defined for any C^1 map $g : M \to N$ between n-manifolds (without boundary):

- the set $R_k = \{ p \in M : \operatorname{rk}_p g \leq k \}$
- the critical set, $C = R_{n-1}$
- the branch set, $B = \{ p \in U : g$ is not a local homeomorphism at $p \}$

Note that $B \subset C$ by the inverse function theorem. When g is analytic, we also define:

- the critical analytic hypersurface $H \subset C$, comprising those points having a neighborhood in C that is an analytic submanifold of dimension $n - 1$
- the constant rank analytic hypersurface $V \subset H$, at which $g|_H$ has locally constant rank

The following results are byproducts of the proof of Theorem 1:

Theorem 3.

(i) The restricted map $f|V$ has rank $n - 1$,

(ii) f is a local homeomorphism at every point of V,

(iii) $B \subset R_{n-2}$,

(iv) $\dim R_{n-2} \leq n - 2$.

When $n = 2$, conclusions (iii) and (iv) imply B is a closed discrete set; thus in this case f is light, i.e., point inverses are 0-dimensional. From Stoilow [4], which topologically characterizes germs of light open surface maps, we obtain:

Corollary 4. When $n = 2$, the germ of f at any point is topologically equivalent to the germ at 0 of the complex function z^d for some integer $d \neq 0$.

A key role in our proofs is played by the following result, Theorem 1.4 of Church [2]:

Theorem 5 (Church). If $g : \mathbb{R}^n \to \mathbb{R}^n$ is C^1 and open with rank $\geq n - 1$ at every point, then g is a local homeomorphism.

Our results are close to some of those obtained by Church for C^n maps. It is interesting to compare Theorem 3 (iii) and Corollary 4 to the following results from paragraphs 1.5 to 1.8 of his paper [2]:

Theorem 6 (Church). Let $g : M \to N$ be a C^n map between n-manifolds.

(i) If $M = N = \mathbb{R}^n$ and g is light, the following conditions are equivalent:

(a) g is open,

(b) Jg does not change sign,

(c) $B \subset R_{n-2}$.

(ii) If M is compact and g is open, then g is light.
Proofs

Lemma 7. Assume the critical set of \(f \) is \(C = Jf^{-1}(0) = \mathbb{R}^{n-1} \times \{0\} \), and \(f|C \) has constant rank \(k \), \(0 \leq k \leq n-1 \). Then \(f \) is a local homeomorphism, \(k = n-1 \), and \(Jf \) does not change sign in \(\mathbb{R}^n \).

Proof. It suffices to prove that the conclusion holds in some neighborhood of each point, which we may take to be the origin.

It is convenient to denote points of \(\mathbb{R}^n \) as \((y, t) \in \mathbb{R}^{n-1} \times \mathbb{R}\).

By the rank theorem we assume that in some open cubical neighborhood \(N \) of the origin,
\[
f_i(y, 0) \equiv 0, \quad i = k + 1, \ldots, n. \tag{1}
\]
Identifying \(N \) with \(\mathbb{R}^n \) by an analytic diffeomorphism, we assume this holds for all \(y \in \mathbb{R}^n \).

Because \(f \) is analytic and open, there is a dense open set \(\Lambda \subset \mathbb{R}^{n-1} \) such that for every \(y \in \Lambda \), the map \(t \mapsto f_n(y, t) \) is not constant on any interval. For each \(y \in \Lambda \) there exists a maximal integer \(\mu(y) \geq 0 \) such that
\[
0 < j < \mu(y) \implies \left(\frac{\partial}{\partial t} \right)^j f_n(y, 0) = 0,
\]
Fix \(y_* \in \Lambda \) such that the function \(\mu: \Lambda \to \mathbb{N} \) takes its minimum value \(m \) at \(y_* \). Then \(\mu = m \) in a precompact open neighborhood \(W \subset \Lambda \) of \(y_* \).

By Taylor’s theorem there exists \(\epsilon > 0 \) such that for \((y, t) \) in the open set
\[
N = W \times] - \epsilon, \epsilon [\subset \mathbb{R}^{n-1} \times \mathbb{R}
\]
we have
\[
f_n(y, t) = t^m H(y, t), \quad H(y, t) \neq 0. \tag{2}
\]
Claim. If \(k \leq n - 2 \) and \((y_0, t_0) \in N \) is such that \(f_n(y_0, t_0) = 0 \), then \(f_{n-1}(y_0, t_0) = 0 \). For \(t_0 = 0 \) by (2), and \(k \leq n - 2 \) implies \(f_{n-1}(y_0, 0) = 0 \) by (1).

Now we assume \(k \leq n - 2 \) and reach a contradiction. Since \(f(N) \) is open and contains
\[
f(y_*, 0) = (a_1, \ldots, a_{n-2}, 0, 0),
\]
f\((N) \) also contains points \((a_1, \ldots, a_{n-2}, \delta, 0) \) with \(\delta > 0 \). But this contradicts the claim.

As \(f \) has rank \(n - 1 \) at every point of the critical set, \(f \) must be a local homeomorphism by Theorem 5. Therefore for every \(p \), the induced homomorphism of homology groups
\[
\mathbb{Z} = H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{p\}) \to H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{f(p)\}) = \mathbb{Z}
\]
is an isomorphism, hence is multiplication by a number \(\delta(p) \in \{+1, -1\} \).
Homology theory implies that each of the two level sets of $\delta: \mathbb{R}^n \to \{+1, -1\}$ is open. As \mathbb{R}^n is connected, $\delta(p)$ is constant. As $\delta(p)$ is the sign of $Jf(p)$ if $Jf(p) \neq 0$, we have proved Jf does not change sign.

Proof of Theorem 1. For any set $Y \subset \mathbb{R}^n$, we say the local theorem holds in Y if every point of Y has a neighborhood in Y in which Jf does not change sign.

Lemma 8. If the local theorem holds in a connected set Y, then Jf does not change sign in the closure \overline{Y}.

Proof. It suffices to prove Jf does not change sign in Y, because Jf is continuous. Define Y_+, Y_- to be the subsets of Y where Jf is respectively ≥ 0 and ≤ 0. These sets are closed in Y by continuity of Jf, and open in Y by hypothesis. As Y is connected, either $Y = Y_+$ or $Y = Y_-$. The local theorem obviously holds in the set $\mathbb{R}^n \setminus C$ of noncritical points. By Lemma 7, it also holds in the relatively open analytic hypersurface $V \subset C$ defined in the introduction. It remains to prove that every point of $C \setminus V$ has a neighborhood in which Jf does not change sign.

Lemma 9. Every point $p \in C \setminus V$ has a neighborhood $X_p \subset C \setminus V$ that is an analytic variety of dimension $\leq n - 2$.

Proof. Write $C \setminus V = (C \setminus H) \cup (H \setminus V)$

Suppose $p \in C \setminus H$. In this case we take X_p to be the union of the variety C_{sing} of singular points of C and those connected components of $C \setminus C_{\text{sing}}$ having dimension $\leq n - 2$.

Suppose $p \in H \setminus V$, or equivalently: $p \in H$ and some minor determinant of df vanishes at p but not identically in any neighborhood of p in H. We take X_p to be the intersection of C with the union of the zero sets of such minors.

Now consider any point $p \in C \setminus V$. By Lemma 9, p has a neighborhood $X_p \subset C \setminus V$ that is the union of finitely many smooth submanifolds of \mathbb{R}^n having dimensions $\leq n - 2$.

Choose a connected open neighborhood $N_p \subset \mathbb{R}^n$ of p such that $N_p \cap (C \setminus V) = N_p \cap X_p$. Then $N_p \setminus X_p \subset (\mathbb{R}^n \setminus C) \cup V$. Therefore the local theorem holds in $N_p \setminus X_p$.

Now $N_p \setminus X_p$ is connected, by a standard general position argument. Therefore from Lemma 8, with $Y = N_p \setminus X_p$, we infer that Jf does not change sign in $N_p \setminus X_p$, which equals X_p because X_p is nowhere dense. This completes the proof of Theorem 1.
Proof of Theorem 3. Parts (i) and (ii) of Theorem 2 are proved by applying Lemma 7 locally. Lemma 9 implies (iii), because $B \subset C \setminus V$ by (ii). For (iv), suppose $\dim R_{n-2} = n - 1$. Then the variety R_{n-2} contains an analytic hypersurface, which must meet V. As $R_{n-2} \subset C$, this implies $R_{n-2} \cap V \neq \emptyset$, contradicting (i).

References

M. W. Hirsch
7926 Hill Point Road
Cross Plains, WI 53528
USA
e-mail: hirsch@math.berkeley.edu

Manuscript received: February 10, 2000 and, in final form, October 17, 2000.

To access this journal online:
http://www.birkhauser.ch