Title
Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles.

Permalink
https://escholarship.org/uc/item/96w8k08s

Journal
Applied optics, 44(33)

ISSN
0003-6935

Authors
Dombrovsky, Leonid
Randrianalisoa, Jaona
Baillis, Dominique
et al.

Publication Date
2005-11-20

Peer reviewed
The use of Mie theory for analyzing experimental data to retrieve infrared properties of fused quartz containing bubbles

Leonid Dombrovsky

Institute for High Temperatures of the Russian Academy of Sciences, 111116 Moscow, Russia

Jaona Randrianalisoa, Dominique Baillis

Centre de Thermique de Lyon, Institut National des Sciences Appliqués Lyon, 69621 Villeurbanne, France

Laurent Pilon

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA

Abstract

An improved method for determining the absorption and scattering characteristics of a weakly absorbing substance containing bubbles is suggested. The identification procedure is based on a combination of directional-hemispherical measurements and predictions of the Mie scattering theory including approximate relations for a medium with polydisperse bubbles. A modified two-flux approximation is suggested for calculating directional-hemispherical transmittance and reflectance of refracting and scattering medium. The complete identification procedure gives not only the spectral radiative properties but also the volume fraction of bubbles and the characteristics of possible impurity of the medium. This procedure is used to obtain new data on near infrared properties of fused quartz samples containing bubbles.

1. INTRODUCTION
In many natural phenomena, materials processing and manufactural situations, the presence of bubbles affects the thermophysical and radiative properties of the two-phase system and hence the transport phenomena. It is well known that radiation scattering by bubbles in the visible and infrared spectral ranges affects the optical properties of semi-transparent substances. One can remember the influence of bubbles on scattering of light in the ocean\(^1\), the role of vapor bubbles in high-temperature radiative heating of boiling water\(^2\), the glass melting process in the industrial furnaces, where bubbles are generated by chemical reactions\(^3\). Similar structures with numerous bubbles or hollow microspheres in semitransparent host medium are considered as advanced thermal insulation materials\(^4,5\); many aerated foods containing gas bubbles represent the height of the culinary art\(^6\). Following the recent works by Pilon and Viskanta\(^7\) and Baillis \textit{et al.} \(^8\), the present paper focuses mainly on glass industry applications. At the same time, some methodological and physical results may be interesting in the other previously mentioned fields.

During the last decade, absorption and scattering of infrared radiation in semi-transparent disperse media has been intensively studied because of the importance of thermal radiation in many engineering applications. The most popular way of experimentally determining the radiative properties of such media is a formal identification procedure consisting of solving an inverse problem\(^9\). This technique is based usually on the radiation transfer theory. The coefficients of the radiation transfer equation (RTE)\(^10\) are determined from the measurements of directional-hemispherical and/or bidirectional transmittance and reflectance of semi-transparent samples.

Theoretical predictions of the radiative properties of materials containing numerous separate particles or fibers are usually based on the Mie theory or similar solutions for particles of different shape and structure\(^11\). In some cases, solving the inverse problem for the RTE is inappropriate because the radiation transfer theory is not valid such as for relatively dense disperse systems. At the same time, one can use the radiation diffusion approximation, which is treated not as a simplification of the RTE but as a phenomenological approach\(^12,13\). Similar methods (Kubelka–Munk theory and its modifications, four-flux model) are employed traditionally for studying the optical properties of paints and scattering coatings\(^14–17\).
It is known that simultaneous identification of several parameters including characteristics of anisotropic scattering using an inverse procedure for the RTE may lead to unreliable results due to the insufficient accuracy of the measurements and to the specific nature of the ill-posed inverse problem. To avoid such problem, one can simplify the radiation transfer model or, if possible, use a procedure combining experimental measurements with theoretical predictions of some radiative properties. Both approaches decrease the number of parameters to be identified, but the latter seems preferable as it gives more detailed information about the medium properties and structure.

Two types of transmittance and reflectance measurements can be used to provide the data for the identification process namely directional-hemispherical or directional-directional (bidirectional) measurements. Both measurement methods with normal incidence show advantages and drawbacks. Directional-hemispherical measurements are easily and rapidly acquired, but they only enable the identification of the extinction coefficient and albedo while the scattering (phase) function is assumed to be known. The bidirectional measurements contain much more information but are difficult to use for identification of the scattering function in the case of highly forward scattering media. Usually, one can only find an additional parameter: the asymmetry factor of scattering.

For the disperse systems considered in the present paper, a combination of a traditional identification procedure and theoretical predictions can be used. Spherical bubbles in a weakly absorbing medium are ideal objects for applying the Mie theory. Recent calculations by Dombrovsky for the most interesting range of parameters showed that scattering properties of polydisperse bubbles do not depend on radiation absorption whereas the absorption is insensitive to the size distribution of bubbles. These results are used to suggest an improved identification procedure for the directional-hemispherical measurements.

2. THEORETICAL DESCRIPTION OF RADIATIVE PROPERTIES OF A WEAKLY ABSORBING MEDIUM WITH BUBBLES

The bubbles in an absorbing and refracting medium are not exactly the same objects as those considered in the classical Mie theory, which deals with homogeneous spherical particles in vacuum. A
composite medium with bubbles consists of two different substances: a refracting and absorbing matrix and the gas phase inside the bubbles. We will assume that bubbles are randomly placed and there is no regular structure or bubble clusters. In the case of relatively small bubble concentration, the latter assumptions enable one to consider the bubbles as independent scatterers \(^9,^{11}\).

The spectral absorption coefficient and the transport scattering coefficient of the polydisperse medium of spherical bubbles of radius \(a\) with size distribution \(F(a)\) can be calculated as follows\(^2,^{11}\):

\[
\alpha_\lambda = \frac{4\pi\kappa_0}{\lambda} + 0.75\frac{f_v}{a_{30}}\int_0^\infty Q_a a^2 F(a) da ,
\]

(1)

\[
\sigma_\lambda^{tr} = 0.75\frac{f_v}{a_{30}}\int_0^\infty Q_a^{tr} a^2 F(a) da ,
\]

(2)

where \(\kappa_0\) is the absorption index of the matrix, \(f_v\) is the volume concentration of bubbles, and \(Q_a\) and \(Q_a^{tr} = Q_a(1 - \mu)\) are the efficiency factor of absorption and the transport efficiency factor of scattering, \(Q_s\) is the efficiency factor of scattering, \(\mu\) is the asymmetry factor of scattering\(^{11}\), while the parameter \(a_{30}\) can be computed from the following definition of \(a_y\):

\[
a_y = \int_0^\infty a^2 F(a) da / \int_0^\infty a^3 F(a) da .
\]

(3)

The spectral transport extinction coefficient is defined as \(\beta_\lambda^{tr} = \alpha_\lambda + \sigma_\lambda^{tr}\). The choice of the so-called transport (or reduced) characteristics of scattering and extinction is based on successful use of transport approximation for scattering (phase) function in many problems of radiation transfer in disperse systems\(^{11,21}\). If necessary, one can use a more detailed description of scattering by using the scattering function \(\Phi_\lambda(\mu)\) defined as:
\begin{equation}
\Phi_\lambda (\mu) \sigma_\lambda = 0.75 \frac{\int_{a_30}^{\infty} Q_x \phi_x (\mu) a^2 F(a) da}{a_30},
\end{equation}

where \(\phi_x (\mu)\) is the scattering function of a single bubble, \(\mu = \cos \theta\) is the director cosine with \(\theta\) is the angle of scattering whereas \(\sigma_\lambda\) is the usual scattering coefficient defined as:

\begin{equation}
\sigma_\lambda = 0.75 \frac{\int_{a_30}^{\infty} Q_x a^2 F(a) da}{a_30}.
\end{equation}

Note that asymmetry factor of scattering of polydisperse bubbles is defined as \(\mu_p = 1 - \sigma_\lambda^\mu / \sigma_\lambda^\sigma\).

The general scattering problem for particles in refracting and absorbing medium is considerably more complicated than the classic Mie problem. In several papers, which have considered spherical particles in absorbing medium \(^{22-27}\), two different kind of optical characteristics of particles have been analyzed: inherent properties calculated near the particle surface (in the near field) and the so-called apparent properties calculated at large distances from the particle (in the far field). Yang et al. \(^{26}\) showed that the apparent properties (and corresponding efficiency factors of absorption and scattering) should be used by calculating the coefficients of the radiation transfer equation. This conclusion confirms the common practice in radiation transfer calculations in disperse systems \(^{11}\).

The Mie solution for single spherical particle in vacuum is well known and can be found elsewhere \(^{11, 19, 20}\). The independent parameters of this solution (aside from the scattering angle) are the diffraction parameter \(x = 2na/\lambda\) and the complex index of refraction of the particle substance \(m = n - i\kappa\). Yang et al. \(^{26}\) showed that the same relations can also be used when the matrix is refracting and absorbing. For arbitrary value of the complex refraction index of the continuous phase \(m_0 = n_0 - i\kappa_0\), it is sufficient to replace the diffraction parameter \(x\) by the complex parameter \(m_0x\), and the complex index of refraction \(m\) by the corresponding relative value \(m/m_0\). The apparent efficiency factors of absorption and scattering of the particles are obtained by multiplying the resulting
values by $\exp(-2\kappa_0 x)/m_0^2$. In the present paper, as in recent calculations of radiative properties of hollow glass microspheres in absorbing polymer matrix28, we use a slightly modified computer codes from Appendix 3 of the monograph by Dombrovsky11.

One of the first theoretical analyses of radiative properties of glass with bubbles has been performed by Fedorov and Viskanta29. They considered large gas bubbles (compared with the wavelength of radiation) and used approximate analytical relations for absorption and extinction efficiency factors derived by Van de Hulst19 for the anomalous diffraction regime. The scattering characteristics including the scattering function of bubbles were assumed to be the same as the corresponding characteristics of glass particles. The same approximation was used in the calculations performed by Pilon and Viskanta7.

More recently, Dombrovsky2 calculated the efficiency factor of absorption Q_a and the transport efficiency factor of scattering Q_s^ν for spherical gas bubbles ($m=1$) embedded in an absorbing and refracting medium ($|m_0|>1$) using the Mie theory. The calculations were performed in the range of index of refraction $1.2 \leq n_0 \leq 1.5$ for two values of the absorption index: $\kappa_0 = 10^{-4}$ and 10^{-3}. It was shown that the efficiency factors of large bubbles can be approximated by the following simple asymptotic relations for $x >> 1$ and $2\kappa_0 x << 1$:

$$Q_a = -8\kappa_0 x/3 \quad \text{and} \quad Q_s^\nu = 0.9(n_0 - 1). \quad (6)$$

Equations (6) overestimate the absolute values of Q_a and Q_s^ν by less than 5% in the range $20 < x << 1/(2\kappa_0)$. The resulting approximate expressions for the absorption coefficient and transport scattering coefficients are as follows:2:

$$\alpha_s = (1 - f_v)\alpha_s^0 \quad \text{and} \quad \sigma_s^\nu = 0.675(n_0 - 1)(f_v/a_{32}), \quad (7)$$
where $\alpha^0 = 4\pi \kappa_0 / \lambda$ is the absorption coefficient of the matrix. It is important that absorption does not depend on the bubbles size distribution and scattering does not depend on the matrix absorption index. The only parameter related to the bubbles which affects the transport scattering coefficient of the medium is the ratio of volume fraction of bubbles to their average radius: f_v / a_{32}. Note that the asymmetry factor of scattering is the same for all large bubbles and $\bar{\mu} = \bar{\mu}$ where $\bar{\mu}$ is approximated as follows:

$$\bar{\mu} = 1 - 0.45(n_0 - 1).$$ (8)

To analyse the effects of possible impurities in the material containing bubbles we also consider the case of absorbing and refracting substance present inside the bubbles. We assume that this substance has comparably large absorption index $\kappa_i \gg \kappa_0$ because it is the only case for which a considerable effect on the absorption coefficient of the medium containing bubbles can be observed. Some results of calculations of relative efficiency factors for the simple case of homogeneous particle (when a substance with $m_i = n_i - i\kappa_i$ fills all the bubble volume) are shown in Figs. 1 and 2. We limit our consideration to cases when $n_i < n_0$, $\kappa_i << 1$, $2\kappa_i x << 1$ and plot the ratios of the efficiency factors to the following values:

$$Q^i_a = 0.9(3n_i/n_0 - 1)\kappa_i x \quad \text{and} \quad Q^\nu_s = 0.9(n_0/n_i - 1).$$ (9)

The latter approximation of Q^ν_s is not as exact for $n_i > 1$ as for $n_i = 1$ but it can be used as a first order approximation. The small matrix absorption coefficient has no effect on the applicability of approximate equations (9). In addition, the value of Q^ν_s is insensitive to the weak absorption of the particle substance. The approximate expression of Q^i_a in general form applicable for arbitrary values of $\kappa_i x$, can be written as follows:

$$Q^i_a = 0.9(3n_i/n_0 - 1)\kappa_i x.$$

In the cases when \(2\kappa_\lambda x \ll 1\), the resulting approximate relations for the absorption and transport scattering coefficients of a weakly absorbing media with bubbles can be expressed as:

\[
Q^i_\lambda = 1 - \exp\left[-0.9(3n_i/n_0 - 1)\kappa_\lambda x \right].
\]

where \(Q^i_\lambda\) is the resulting approximate absorption coefficient.

3. EXPERIMENTAL DATA ON VOLUME FRACTION AND SIZE DISTRIBUTION OF BUBBLES IN FUSED QUARTZ

The above analysis showed that size distribution of bubbles is not important but we have to know the total volume fraction of bubbles \(f_v\), the average radius \(a_{32}\), as well as the volume fraction \(f_v^i\) of possible bubbles filled by an absorbing substance. Note that one can use the volume averaged values of \(f_v\), \(f_v^i\), and \(a_{32}\) without accounting for their spatial variation because of the small optical thickness of the samples.

The total volume fraction \(f_v\) can be evaluated directly by measuring the sample density but one can also use indirect evaluation of the same value by calculating the surface concentration \(f_s\) of bubbles. It is clear that the concentration of bubbles on the sample surfaces (they are looked as defects of
the surface) is proportional to \(f_v \). For a large number of bubbles, the average surface concentration of bubbles \(f_s \) for arbitrary cut of the sample does not depend on the possible order in spatial distribution of the bubbles. For this reason, we can consider the simplest cubic structure. For samples with uniform volume distribution of polydisperse bubbles, one can write:

\[
 f_v = \frac{4\pi}{3}\frac{a_{30}}{d^3}, \tag{12}
\]

where \(d \) is the distance between neighbouring bubbles (step of the cubic structure). While “cutting” the sample by planes, which are parallel to one of the sides of the cubic structure, the probability that a bubble is located on the sample surface is \(p = 2a_{10}/d \) and the value of the average surface concentration of bubbles is determined by

\[
 f_s = \frac{2a_{10}}{d^3}. \tag{13}
\]

Comparison of Eqs. (12) and (13) gives the following relation between the volume fraction and the average surface concentration of bubbles:

\[
 f_v = \frac{2\pi}{3}f_s \frac{a_{32}}{a_{21}}. \tag{14}
\]

We consider two samples of different thickness: \(z_0=5\)mm and 10mm. The size distribution of bubbles for the thin sample was determined by analyzing high-resolution digital photographs taken with a Sony DSC F-828 camera. The resulting normalized distribution function based on measurements of \(N = 212 \) bubbles is shown in Fig. 3. Simple calculations give the following values of the average radii of bubbles: \(a_{21} = 0.56 \) mm and \(a_{32} = 0.64 \) mm. Note that previous measurements reported by Baillis et al.\(^8\) gave slightly greater values (\(a_{21} = 0.70 \) mm, \(a_{32} = 0.75 \) mm) mainly because the significant con-
tribution of small bubbles was ignored. In the case of thin samples, image analysis enables also the
direct determination of the volume fraction:

\[f_v = \left(\frac{4\pi}{3} \right) N a_{30} / (z_0 S), \]

where \(S \) is the sample surface area. The results of the different methods are as follows:

- \(f_v = (4.6 \pm 1.1)\% \) from density measurements,
- \(f_v \approx 3.2\% \) from measurements of surface defects,
- \(f_v = (4.3 \pm 0.2)\% \) from photographs.

The simplest method using surface defects underestimates the
volume fraction of bubbles because of the disappearance of small defects after polishing the surfaces
of samples. Both other methods give approximately the same results. In the analysis of experimental
data for infrared properties of fused quartz samples containing bubbles, we will use the approximate
value of \(a_{12} = 0.64 \text{ mm} \) and the range of volume fraction \(f_v = 3.5 - 5\% \).

The two maxima observed in the bubble size distribution shown in Fig. 3 can be interpreted as a re-
sult of strong compression of bubbles of average size before solidification of quartz melt. The surface
tension of the melt leads to significant increase in gas pressure inside the collapsing bubbles. Thus,
one can not exclude the possibility that the smallest bubbles contain a condensed substance which
absorbs radiation in the near infrared. We will consider this hypothesis by analyzing the experimental
results for the spectral absorption coefficient of fused quartz samples containing bubbles.

4. DIRECTIONAL-HEMISPHERICAL MEASUREMENTS

The samples of fused quartz containing bubbles are illuminated by a normally incident collimated
beam. The experimental set-up consists of two main parts: a BIO-RAD FTS 60A FTIR spectrometer
and a gold-coated integrating sphere CSTM RSA-DI-40D which collects hemispherically the radiation
crossing or reflected by the sample onto a detector placed on the wall of the sphere. The incident beam
is not parallel but convergent with an angle of 2.25°. The diameter of the sample area subjected to a
normally incident beam is about 28mm and 16mm for transmittance and reflectance measurements,
respectively. Fused quartz samples containing bubbles were prepared with special attention to the quality of their surfaces as described by Baillis et al. 8.

Transmittance and reflectance spectrum have been acquired several times for different position and orientation of the samples. Because of “noisy” transmittance and reflectance spectra, the data have been smoothed by using the BOXCAR procedure available in the WIN-IR PRO software. The parameters of smoothing were chosen to eliminate the numerical noise but not to affect the physical behaviour of the spectra. The results of directional-hemispherical measurements in the spectral range 2 < λ < 4 μm are presented in Fig. 4. Note that only the average values are shown. The standard absolute deviation is about 3–8% for transmittance and 8–15% for reflectance. The analysis of the experimental results is based mainly on the more reliable transmittance measurements whereas the reflectance data are used only for evaluating the volume fraction of bubbles.

Similar measurements were performed for determining the index of absorption κ₀ of fused quartz samples without bubbles cut from the same piece as that used for the samples containing bubbles. The absorption index was calculated from the transmittance data. The three-term dispersion relation suggested by Malitson31 for the index of refraction of fused quartz is used instead of the measurements of reflectance, which are too noisy. The standard absolute deviation of transmittance from the average values was less than 5%. Note that applicability of Malitson’s dispersion relation has been confirmed in several more recent papers32, 33. One can see in Fig. 5 that the values of the absorption index of fused quartz determined in the present study are in a good agreement with published data34–36.

5. INVERSE PROBLEM SOLUTION

Because of small volume fraction of randomly placed bubbles, the radiation transfer theory can be used for calculating the reflection and transmission of infrared radiation in glass with bubbles. Consider the problem of radiation transfer in plane-parallel slab of an absorbing, refracting and anisotropically scattering medium. We will limit our consideration to one-dimensional azimuthally symmetric problems when the front surface of the slab is uniformly illuminated along the normal direction by
randomly polarized radiation. In the case of homogeneous isotropic medium, the radiation transfer equation (RTE) and the associated boundary conditions can be written as follows10:

\[
\frac{\partial \tilde{I}}{\partial \tau} + \tilde{I} = \frac{\omega}{4\pi} \left[\tilde{I}(\tau, \mu') \left[\int_0^{2\pi} \Phi(\mu_0) d\psi' \right] d\mu' \right]
\]

(16)

\[
\tilde{I}(0, \mu) = R\tilde{I}(0, -\mu) + (1 - R) \delta(1 - \mu), \quad \tilde{I}(\tau_0, -\mu) = R_0\tilde{I}(\tau_0, \mu) \quad \text{for} \quad \mu > 0,
\]

(17)

where

\[
\tilde{I} = I_\lambda \left(n_0^2 \delta_{\mu} \right), \quad \omega = \sigma_\lambda / \beta_\lambda, \quad \tau = \beta_\lambda z,
\]

(18)

\[
\mu_0 = \mu \mu' + \left(1 - \mu^2 \right)^{1/2} \left(1 - \mu'^2 \right)^{1/2} \cos(\psi - \psi'),
\]

(19)

\(\mu = \cos \theta\), the angle \(\theta\) is measured from the normal directed into the medium, \(I_\lambda^e\) is the incident spectral radiation intensity, \(R(\mu)\) is the Fresnel's reflection coefficient10, 37. Note that the integral term on the right hand side of the RTE does not depend on the azimuthal angle \(\psi\) and one can set \(\psi = 0\) in Eq. (19).

The well-known difficulty in numerical solving the RTE is related to the complex scattering functions: one needs very fine angular discretization to take into account all the details of the angular dependency of \(\Phi(\mu_0)\). Various approximations of scattering functions are usually considered to simplify the calculations38, 39. In the case of large particles, which are characterised by the forward scattering peak, the simplest approach is the transport approximation11:

\[
\Phi(\mu_0) = 1 - \mu + 2\mu_0 \delta(1 - \mu_0),
\]

(20)

which enables one to reduce the problem into a form similar to that valid for isotropic scattering media:
\[
\mu \frac{\partial \tilde{I}}{\partial \tau_\nu} + \tilde{I} = \frac{\omega_\nu}{2} \int_{-1}^{1} \tilde{I} d\mu \quad \text{(21)}
\]

\[
\tilde{I}(0, \mu) = R\tilde{I}(0, -\mu) + (1 - R) \delta(1 - \mu), \quad \tilde{I}(\tau_\nu, -\mu) = R\tilde{I}(\tau_\nu, \mu), \quad \mu > 0, \quad \text{(22)}
\]

where \(\omega_\nu = \sigma_\nu / \beta_\nu \), \(\tau_\nu = \beta_\nu z \), \(\tau_\nu^0 = \beta_\nu^0 z_0 \). We will compare results obtained from the complete calculations with those based on the transport approximation applied to our problem. But all the subsequent relations are written for the problem stated in Equations (21) and (22).

The usual technique10, 11 expresses the radiation intensity \(\tilde{I} \) as a sum of a diffusion component \(\tilde{J} \) and a term corresponding to the collimated external radiation:

\[
\tilde{I} = \tilde{J} + \frac{1 - \tau_0}{1 - R_1} \{ \exp(- \tau_\nu) \delta(1 - \mu) + C \exp(\tau_\nu) \delta(1 + \mu) \},
\]

\text{(23)}

where \(C = R_1 \exp(- 2\tau_\nu^0) \) and \(R_1 = R(1) = (n_0 - 1)^2 / (n_0 + 1)^2 \). The mathematical problem statement for the diffuse component can be stated as follows:

\[
\mu \frac{\partial \tilde{J}}{\partial \tau_\nu} + \tilde{J} = \frac{\omega_\nu}{2} \left[\int_{-1}^{1} \tilde{J} d\mu + \frac{1 - \tau_0}{1 - R_1} \{ \exp(- \tau_\nu) + C \exp(\tau_\nu) \} \right]
\]

\text{(24)}

\[
\tilde{J}(0, \mu) = R(\mu)\tilde{J}(0, -\mu), \quad \tilde{J}(\tau_\nu^0, -\mu) = R(\mu)\tilde{J}(\tau_\nu^0, \mu) \quad \text{for} \ \mu > 0.
\]

\text{(25)}

The directional-hemispherical reflectance and transmittance can also be expressed as a function of the diffuse component of the radiation intensity:

\[
R_{d-h} = R_{d-h}^0 + \int_{0}^{1} [1 - R(\mu)] \tilde{J}(0, -\mu) \mu d\mu \quad \text{and} \quad T_{d-h} = T_{d-h}^0 + \int_{0}^{1} [1 - R(\mu)] \tilde{J}(\tau_\nu^0, \mu) \mu d\mu,
\]

\text{(26)}

where the first terms are given by the well-known equations10:
\[R_{d-h}^0 = \frac{R_t + (1 - R_t)^2 C}{1 - R_t C} \quad \text{and} \quad T_{d-h}^0 = \frac{(1 - R_t)^2}{1 - R_t C} \exp(-\tau_{d-h}^0). \] \hspace{1cm} (27)

A. Alternative models for radiation transfer

We consider two alternative models for calculating the diffuse component of the radiation intensity: (1) numerical solution by using the discrete ordinates method (DOM)\(^{10}\) and (2) the analytical solution based on the modified two-flux approximation (MDP\(_o\)) similar to that suggested by Dombrovsky\(^{40,41}\) for spherically symmetric problems in nonscattering media. In the first case, two approximations of scattering function are considered: the transport approximation given by Eq. (20) and the Heyney-Greenstein approximation\(^{10}\) expressed as:

\[\Phi(\mu_o) = \left(1 - \bar{\mu}^2 \right) \left(1 + \bar{\mu}^2 - 2\bar{\mu}\mu_o \right)^{\frac{3}{2}}. \] \hspace{1cm} (28)

The approximate MDP\(_o\) solution is given only for the transport approximation. It will be shown that it is sufficient for correct calculation of the hemispherical characteristics of optically thin samples considered in the present paper.

By using the DOM, the Fresnel reflection may cause the so-called ray effect associated with insufficiently fine angular discretization of the radiation intensity field\(^{42}\). Ray effects may be mitigated by refining the angular discretization or by using the modifications of the DOM. In our case, the adequate account of the angular dependence can be reached thanks to the composite DOM (CDOM) in which the integral over all directions is split into the integrals over three subintervals \(-1 < \mu < -\mu_c\), \(-\mu_c < \mu < \mu_c\), and \(\mu_c < \mu < 1\) defined using the critical angle. Finally, each subinterval uses its own set of quadrature points\(^{43}\).

The numerical procedure based on the DOM code is general and can be applied to rather complicated problems. But in our case, the angular dependencies of the diffuse radiation component are expected to be relatively simple. For this reason, we consider also an alternative approach, which is a
modification of the well-known two-flux approximation. Taking into account the effect of total internal reflection occurring at both interfaces of the slab we suggest the following approximation40, 41:

\[
\vec{J}(r_v, \mu) = \begin{cases}
\varphi_0 (r_v), & -1 \leq \mu < -\mu_c \\
\varphi_0 (r_v), & -\mu_c < \mu < \mu_c \\
\varphi_0^0 (r_v), & \mu_c < \mu \leq 1
\end{cases}
\] with \(\mu_c = \left(1 - 1/n_0^2\right)^{1/2} \). \quad (29)

Note that the case \(\mu_c = 0 \) corresponds to the usual two-flux model. The intermediate angle interval \(-\mu_c < \mu < \mu_c \) gives no contribution to the radiation flux and the words “two-flux” are applicable to the modified approximation too. It is clear that Equation (28) is just the same as in CDOM of zero order quadrature.

Integrating Eq. (24) separately over the above three intervals and after simple transformations, one can obtain the following boundary-value problem for the function \(g_0 = \varphi_0 + \varphi_0^0 \):

\[
- g_0^0 + \beta^2 g_0 = \beta^2 \chi \left[\exp(-r_v) + C \exp(r_v) \right],
\]

\[
(1 + \mu_c)g_0'(0) = 2\gamma g_0(0), \quad (1 + \mu_c)g_0'(r_v) = -2\gamma g_0(r_v),
\]

where

\[
\beta^2 = \frac{4}{(1 + \mu_c)^2} \frac{1 - \omega_v}{1 - \omega_v \mu_c}, \quad \gamma = (1 - R_1)(1 + R_1), \quad \text{and} \quad \chi = \frac{\omega_v}{1 - \omega_v} \frac{1 - R_1}{1 - R_1 C}.
\]

Thus, the approximate equations for the directional-hemispherical reflectance and transmittance of the medium simplify as follows:

\[
R_{d-h} = R_{d-h}^0 + \gamma \left(1 - \mu_c^2\right) g_0(0)/2 \quad \text{and} \quad T_{d-h} = T_{d-h}^0 + \gamma \left(1 - \mu_c^2\right) g_0(r_v)/2.
\]

The boundary-value problem formulated in Eq. (30) can be solved analytically. The resulting expressions for \(R_{d-h} \) and \(T_{d-h} \) can be written as:
\[
R_{d-h} = R_{d-h}^0 + D(1 + B/\beta + C)/2 \quad \text{and} \quad T_{d-h} = T_{d-h}^0 + D\left[(1 + R_1)\exp(-\tau_{\chi}^0) + A/\beta\right]/2, \tag{33}
\]

where

\[
D = \gamma(1 - \mu_c^2)\chi\beta^2/(\beta^2 - 1),
\]

\[
A = (\gamma_1 - \gamma_2 R_1)(s + \gamma_2 C)/(1 + \phi^2) s + 2\phi c,
\]

\[
B = (\gamma_1 - \gamma_2 R_1)(s + \gamma_2 C)/(1 + \phi^2) s + 2\phi c,
\]

\[
\gamma_1 = 1 - 2\bar{\gamma}, \quad \gamma_2 = 1 + 2\bar{\gamma}, \quad \phi = 2\bar{\gamma}/\beta, \quad \bar{\gamma} = \gamma/(1 + \mu_c), \quad s = \sinh(\beta\tau_{\chi}^0), \quad c = \cosh(\beta\tau_{\chi}^0). \tag{34}
\]

Comparison between the analytical solution given by Eqs. (33) and (34) in MDP0 and the numerical results obtained using the high-order CDOM for transport approximation of scattering function is given in Table 1. We limit our consideration to the range of albedo and optical thickness typical of the present problem. One can see that the modified two-flux approximation gives rather accurate predictions. The error of this approximation is less than 0.3\% for the hemispherical transmittance and 5\% for the hemispherical reflectance.

The effect of the scattering function on the hemispherical characteristics is illustrated by the CDOM calculations shown in Fig. 6. The error of the transport approximation increases with optical thickness but it is insignificant in the range of weak extinction which is the most important for the problem under consideration in this paper. Good agreement between calculations using the Heyney-Greenstein and the transport approximation shows that separate determination of the scattering coefficient and of the asymmetry factor using hemispherical measurements is practically impossible. Fortunately, one does not need these data in the usual radiation heat transfer calculations11, 21.

The above analysis showed that the modified two-flux approximation (and the corresponding analytical solution) can be used in analyzing the experimental data for the directional-hemispherical transmittance and reflectance of fused quartz samples containing bubbles.

\textbf{B. Identification procedure and results of calculations}
It was shown previously that the scattering characteristics of weakly absorbing medium containing bubbles do not depend on the absorption characteristics of the continuous or dispersed phases (see Eq. (7)). This is very important because small impurities in either phase can affect the absorption coefficient in the semi-transparency region of the spectrum and one cannot be sure of the theoretical predictions based on the absorption properties of the medium components. For this reason, it is suggested using only the predictions for the scattering characteristics but not for the absorption in the identification procedure.

Let us assume that the scattering characteristics of the heterogeneous medium can be determined from the approximate relations suggested above. Three values of the volume fraction of bubbles are considered: \(f_v = 3.5\% \), 4\%, and 4.5\% and a fixed value of \(a_{32} = 0.64 \mu m \). It is also assumed that \(f_v^i = 0 \). The choice of \(f_v \) is based on the estimates that give the best curve fit for the measured reflectance spectra. The averaged experimental values of the directional-hemispherical transmittance at each wavelength are considered to be exact. The spectral dependency of \(T_{d-h}(\lambda) \) is used for determining the transport albedo and the absorption coefficient of the heterogeneous medium. It should be noted that this procedure does not require solving the ill-posed inverse problem as in the case of several unknown optical parameters \(^8\). All the calculations are performed using the analytical solution of the MDP\(_0\) approximation.

Comparison between the calculated reflectance and the experimental measurements shown in Fig. 7 enables the evaluation of the bubble volume fraction: it is of the order of 4\% for both samples. Note that it is difficult to curve fit \(R_{d-h}(\lambda) \) by choosing the value of \(f_v \). But one should have in mind that experimental error associated to the reflectance measurements is much greater than that for the transmittance. Therefore, the reflectance measurements were used only to evaluate the volume fraction of bubbles \(f_v \). It is important that this value be in a good agreement with independent estimations based on density measurements and on image analysis of high-resolution photographs of the thin sample.

The values of the transport albedo and of the absorption coefficient determined by the identification procedure for \(f_v = 4\% \) are presented in Figs. 8 and 9. In the latter, theoretical value of the absorp-
tion coefficient predicted by Eq. (7) is also shown. One can see that the difference between experimental and theoretical values of the absorption coefficient $\Delta \alpha_d$ is relatively small except around the narrow absorption peak near $\lambda = 2.7 \mu m$. This result can provide an estimate of the maximum value of the integral parameters in the event impurities are present in the medium containing bubbles. Assuming the presence of an absorbing medium inside the bubbles, one can obtain from Eq. (11) the following approximate relation:

$$\Delta \alpha_d = 4 f_v \kappa_i (3n_i/n_0 - 1)/\lambda.$$ \hspace{1cm} (34)

It should be noted that even the presence of molecular water impurity in the fused quartz should be accounted for in the absorption spectrum of a glass. To obtain some quantitative estimates, consider water as a model condensed substance inside some part of small bubbles. Using the data by Hale and Querry (n_i = 1.3, $\kappa_i = 10^{-3}$ at $\lambda = 2 \mu m$ and n_i = 1.2, $\kappa_i = 0.02$ at $\lambda = 2.7 \mu m$) and assuming $f_v = 0.4\%$ we find $\Delta \alpha_d \sim 1 m^{-1}$ at $\lambda = 2 \mu m$ and $\Delta \alpha_2 \sim 30 m^{-1}$ at $\lambda = 2.7 \mu m$. These evaluations correlate rather well with the level of differences between experimental data for fused quartz containing bubbles and the theoretical predictions based on the assumption $f_v = 0$. This suggests that the experimental data for the absorption coefficient of fused quartz samples containing bubbles does not exclude the presence of some radiation absorbing impurities entrapped in the bubbles.

6. CONCLUSIONS

The research of absorption and scattering of near infrared radiation by fused quartz containing bubbles is based on a combination of experimental measurements and theoretical analysis using the Mie theory. The Mie calculations over a wide range of parameters enables the formulation of approximate relations for the main radiative characteristics of semi-transparent media containing large polydisperse bubbles, including those filled with an absorbing and refracting substance. It is shown that radiation scattering by bubbles is independent of the weak absorption by the matrix and the potential absorbing
substance inside the bubbles. The use of theoretically predicted scattering characteristics of the heterogeneous medium makes it possible to avoid large errors in the identification procedure caused by noisy experimental data for the small values of reflectance.

A modified two-flux approximation taking into account the total internal reflection of radiation at both interfaces of the plane-parallel slab samples is suggested for radiation transfer calculations. The corresponding analytical solution for directional-hemispherical transmittance and reflectance is derived. In transport approximation, comparison with exact numerical calculations based on the composite discrete ordinate method showed that error of the modified two-flux approximation is less than 5% in the most important range of the problem parameters. It is shown also that the transport approximation is sufficiently accurate in the case of small optical thickness of the sample and it is not necessary to use the more complex Henyey-Greenstein approximation for the scattering function.

Application of the suggested identification procedure for studying the near infrared properties of fused quartz samples containing bubbles provides new data on spectral single-scattering albedo and for the absorption coefficient of the heterogeneous medium in the spectral range from 2 to 4µm. The volume fraction of bubbles obtained from directional-hemispherical reflectance of fused quartz samples are in good agreement with both density measurements and image analysis of high-resolution photographs of the thin sample. Comparison between experimentally determined and predicted values of the absorption coefficient of fused quartz containing bubbles enables the evaluation of the integral characteristic of possible impurities which are treated as an absorbing substance entrapped inside the bubbles.

The suggested procedure combining experimental measurements and theoretical analysis of infrared radiative properties of semi-transparent substances containing bubbles can be used for both controlling the optical purity of the medium and estimating the volume fraction of polydisperse bubbles in various applications.

ACKNOWLEDGEMENTS
This work is a continuation of the study started in collaboration with Prof. R. Viskanta. The authors thank him for initiating the research. The first author is grateful also to the French National Centre for Scientific Research (CNRS), Centre Thermique de Lyon, and the Russian Foundation for Basic Research (Grant No.04-02-16014) for their partial financial support of the work. The PhD studies of the second author were supported by the French Government.

Corresponding author Leonid Dombrovsky’s e-mail address is dombr@online.ru.

REFERENCES

34. E.C. Beder, C.D. Bass, and W.L. Shackleford, “Transmissivity and absorption of fused quartz between 0.2µm and 3.5µm from room temperature to 1500 degree C,” Appl. Optics 10, 2263-2268 (1971).

Table 1. Directional-hemispherical characteristics for $n_0 = 1.4$.

<table>
<thead>
<tr>
<th>ω_{ν}</th>
<th>T_{d-h}(%)</th>
<th>R_{d-h}(%)</th>
<th>$\tau_{\nu} = 0.2$</th>
<th>$\tau_{\nu} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDP</td>
<td>CDOM</td>
<td>MDP</td>
<td>CDOM</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>78.0</td>
<td>78.0</td>
<td>35.9</td>
<td>35.9</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>5.1</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>0.4</td>
<td>78.8</td>
<td>78.8</td>
<td>37.7</td>
<td>37.7</td>
</tr>
<tr>
<td></td>
<td>5.9</td>
<td>5.9</td>
<td>6.6</td>
<td>6.4</td>
</tr>
<tr>
<td>0.6</td>
<td>80.0</td>
<td>80.0</td>
<td>40.7</td>
<td>40.6</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>7.1</td>
<td>10.0</td>
<td>9.6</td>
</tr>
<tr>
<td>0.8</td>
<td>82.1</td>
<td>82.0</td>
<td>46.6</td>
<td>46.6</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>9.2</td>
<td>16.8</td>
<td>16.0</td>
</tr>
</tbody>
</table>
Figure captions

Fig. 1. Effect of the absorbing and refracting medium inside a bubble on its efficiency factor of absorption for $n_0 = 1.4$: a – $\kappa_i = 10^{-4}$, b – $\kappa_i = 10^{-3}$; 1 – $n_i = 1.1$, 2 – $n_i = 1.2$.

Fig. 2. Effect of refracting medium inside a bubble on its transport efficiency factor of scattering: a – $n_0 = 1.4$, b – $n_0 = 1.5$; 1 – $n_i = 1$, 2 – $n_i = 1.2$, 3 – $n_i = 1.3$.

Fig. 3. Normalized size distribution of bubbles in the fused quartz sample.

Fig. 4. Directional-hemispherical transmittance and reflectance for two samples of fused quartz containing bubbles: 1 – $z_0 = 5$ mm, 2 – 10 mm.

Fig. 5. Comparison of different experimental data for the absorption index of fused quartz: 1 – Beder et al. 34, 2 – Touloukian and DeWitt 35, 3 – Khashan and Nassif 36, 4 – present paper.

Fig. 6. Effect of the scattering function on the directional-hemispherical transmittance and reflectance. CDOM calculations for $n_0 = 1.4$: a – transport approximation, b – Heyney–Greenstein approximation; $1 - r_\nu^0 = 0.2$, $2 - r_\nu^0 = 0.5$, $3 - r_\nu^0 = 1$.

Fig. 7. Directional-hemispherical reflectance for two samples of fused quartz containing bubbles: a – $z_0 = 5$ mm, b – 10 mm; 1 – measurement, 2 – calculation for $f_v = 3.5\%$, 3 – for $f_v = 4.5\%$.

Fig. 8. Transport albedo of fused quartz containing bubbles ($f_v = 4\%$): 1 – $z_0 = 5$ mm, 2 – 10 mm.

Fig. 9. Absorption coefficient of fused quartz containing bubbles ($f_v = 4\%$): a – $z_0 = 5$ mm, b – 10 mm; 1 – experiment, 2 – theoretical prediction.
Fig. 1. Effect of absorbing and refracting medium inside a bubble on its efficiency factor of absorption for $n_0 = 1.4$: a – $\kappa = 10^{-4}$, b – $\kappa = 10^{-3}$; 1 – $n_i = 1.1$, 2 – $n_i = 1.2$.
Fig. 2. Effect of refracting medium inside a bubble on its transport efficiency factor of scattering: a – $n_0 = 1.4$, b – $n_0 = 1.5$; 1 – $n_i = 1$, 2 – $n_i = 1.2$, 3 – $n_i = 1.3$.
Fig. 3. Normalized size distribution of bubbles in the fused quartz sample.
Fig. 4. Directional-hemispherical transmittance and reflectance for two samples of fused quartz containing bubbles: 1 – $z_0 = 5$ mm, 2 – 10mm.
Fig. 5. Comparison of different experimental data for the absorption index of fused quartz:

1 – Beder et al. 34, 2 – Touloukian and Dewitt 35, 3 – Khashan and Nassif 36, 4 – present paper.
Fig. 6. Effect of the scattering function on the directional-hemispherical transmittance and reflectance. CDOM calculations for $n_0 = 1.4$: a – transport approximation, b – Heyney–Greenstein approximation; $1 - r_\nu^0 = 0.2$, $2 - r_\nu^0 = 0.5$, $3 - r_\nu^0 = 1$.
Fig. 7. Directional-hemispherical reflectance for two samples of fused quartz containing bubbles: a – $z_0 = 5$ mm, b – 10mm; 1 – measurement, 2 – calculation for $f_v = 3.5\%$, 3 – for $f_v = 4.5\%$.
Fig. 8. Transport albedo of fused quartz containing bubbles ($f_v = 4\%$): 1 – $z_0 = 5$ mm, 2 – 10mm.
Fig. 9. Absorption coefficient of fused quartz containing bubbles ($f_v = 4\%$):

a – $z_0 = 5$ mm, b – 10mm; 1 – experiment, 2 – theoretical prediction.