Title
RESISTANCE FOR FLOW OF CURRENT TO A DISK

Permalink
https://escholarship.org/uc/item/96z6t5r3

Author
Newman, John.

Publication Date
1965-11-01
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
RESISTANCE FOR FLOW OF CURRENT TO A DISK

John Newman

November 1965
Resistance for Flow of Current to a Disk

John Newman
Inorganic Materials Research Division
Lawrence Radiation Laboratory, and
Department of Chemical Engineering
University of California, Berkeley

November, 1965

The total current to an equipotential disk imbedded in an infinite, insulating plane is \(I = 4 \pi \kappa a \phi_0 \), where \(\kappa \) is the conductivity, \(a \) is the disk radius, and \(\phi_0 \) is the potential of the disk relative to infinity.

In order to obtain the concentration and activation overpotential for a rotating disk electrode it is necessary to subtract from the measured overpotential the ohmic potential drop between the reference electrode probe and the disk. The ohmic drop for a small disk is concentrated in the solution near the disk. Rather than try to put the probe from a reference electrode very near the surface and thus distort the potential and velocity distributions, one can estimate the ohmic drop from the resistance between a disk imbedded in the surface of an insulator and a counter electrode at infinity. This procedure does not account for deviations from the primary current distribution.

For the purpose of calculating the potential distribution from Laplace's equation, we use elliptic coördinates* \(\xi \) and \(\eta \) related to cylindrical coordinates:

* These are related to "oblate spheroidal coordinates" by \(\xi = \sinh \mu \) and \(\eta = \cos \theta \).
coordinates by
\[z = a \xi \eta \]
\[r = a \sqrt{(1+\xi^2)(1-\eta^2)} \]
where \(a \) is the radius of the disk, \(z \) is the normal distance from the disk, and \(r \) is the distance from the axis of symmetry. In this coordinate system Laplace's equation is
\[\frac{\partial}{\partial \xi} \left[(1+\xi^2) \frac{\partial \phi}{\partial \xi} \right] + \frac{\partial}{\partial \eta} \left[(1-\eta^2) \frac{\partial \phi}{\partial \eta} \right] = 0 , \]
and the boundary conditions are
\[\phi = \phi_0 \text{ at } \xi = 0 \text{ (on the disk electrode)} , \]
\[\frac{\partial \phi}{\partial \eta} = 0 \text{ at } \eta=0 \text{ (on the insulating annulus)} , \]
\[\phi = 0 \text{ at } \xi = \infty \text{ (far from the disk)} , \]
\[\phi \text{ well behaved at } \eta=1 \text{ (on the axis of the disk)} . \]

To obtain a solution by the method of separation of variables we set
\[\phi = P(\eta)Q(\xi) . \]
The differential equations for \(P \) and \(Q \) are
\[\frac{d}{d\eta} \left[(1-\eta^2) \frac{dP}{d\eta} \right] + nP = 0 , \quad \frac{d}{d\xi} \left[(1+\xi^2) \frac{dQ}{d\xi} \right] - nQ = 0 , \]
where \(n \) is the separation constant. The solutions of these equations are Legendre functions. In order to have well behaved solutions, \(n \) is restricted to values \(n = l(l+1) \) where \(l = 0, 1, 2, \ldots \). In order to satisfy the condition on the insulating surface, \(l \) must be even. It turns out that the condition \(\phi = \phi_0 \) on the disk can be satisfied simply with the solution for \(n = 0 \). Integration thus yields
\[\phi/\phi_0 = 1 - (2/\pi) \tan^{-1} \xi . \]

The current density at the disk surface can then be evaluated as follows:
\[I = -\kappa \frac{\partial \phi}{\partial z} \bigg|_{z=0} = \frac{-\kappa}{a^2} \frac{\partial \phi}{\partial \xi} \bigg|_{\xi=0} = \frac{2\kappa \phi_0}{\pi \sqrt{a^2 - r^2}} = \frac{2\kappa \phi_0}{\pi \sqrt{a^2 - r^2}} . \]
Hence the total current to the disk is

\[I = 2\pi \int_0^a r \, dr = 4\kappa a \Phi_0, \]

and the resistance is

\[R = \Phi_0 / I = 1 / 4\kappa a. \]

This result agrees satisfactorily with that of Gröber for the analogous heat conduction problem. The resistance of a hemisphere of radius \(a \) mounted on an insulating plane is easily calculated to be \(1/2\pi \kappa a \). Hence the resistance of the disk is greater than that of a hemisphere by a factor of \(\pi/2 = 1.5708 \).

For a 0.1 M copper sulfate solution and a 0.5 cm (dia.) disk the above formula gives \(R = 114.7 \) ohms since \(\kappa = 0.00872 \, (\Omega \cdot \text{cm})^{-1} \) for this solution at 25°C.

Far from the disk the potential approaches

\[\Phi \to 2\Phi_0 a / \pi \rho \text{ as } \rho \to \infty, \]

where \(\rho \) is the distance from the center of the disk in spherical coordinates. This formula can be used to estimate the error for the situation where the reference electrode is not at infinity and the potential field is distorted by the walls of the cell.

The ohmic resistance of the solution is tabulated below for several possible locations of the probe from the reference electrode. These show that even with the probe only half a millimeter from the surface, the resistance is by no means negligible. Far from the disk the resistance is not very sensitive to the location of the probe. These considerations suggest that it is better to put the probe some distance from the disk.
Apparent Resistance for Various Probe Positions

\[a = 0.25 \text{ cm}, \ \kappa = 0.00872 \ (\Omega \cdot \text{cm})^{-1} \]

<table>
<thead>
<tr>
<th>(r) cm</th>
<th>(z) cm</th>
<th>(R) ohm</th>
<th>probe position</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.05</td>
<td>14.48</td>
<td>below the disk</td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
<td>27.78</td>
<td>below the disk</td>
</tr>
<tr>
<td>0</td>
<td>2.5</td>
<td>107.43</td>
<td>below the disk</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>107.39</td>
<td>beside the disk</td>
</tr>
<tr>
<td>2.7</td>
<td>0</td>
<td>107.93</td>
<td>beside the disk</td>
</tr>
<tr>
<td>(\infty)</td>
<td>(\infty)</td>
<td>114.7</td>
<td>at infinity</td>
</tr>
</tbody>
</table>

Acknowledgments

This work was supported by the United States Atomic Energy Commission.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.