Title
Risk for avian influenza virus exposure at human-wildlife interface

Permalink
https://escholarship.org/uc/item/9736s4vd

Journal
Emerging Infectious Diseases, 14(7)

ISSN
1080-6040

Authors
Siembieda, J
Johnson, CK
Boyce, W
et al.

Publication Date
2008-07-01

DOI
10.3201/eid1407.080066

Peer reviewed
Risk for Avian Influenza Virus Exposure at Human–Wildlife Interface

Jennifer Siembieda,* Christine K. Johnson,* Walter Boyce,* Christian Sandrock,† and Carol Cardona*

To assess risk for human exposure to avian influenza viruses (AIV), we sampled California wild birds and marine mammals during October 2005–August 2007 and estimated human–wildlife contact. Waterfowl hunters were 8 times more likely to have contact with AIV-infected wildlife than were persons with casual or occupational exposures (p<0.0001).

The emergence of highly pathogenic avian influenza virus (AIV) (H5N1) in domestic poultry in Asia with spillover infections in humans has raised concerns about the potential for a human pandemic (1). Although subtype H5N1 is the most well-known infecting strain, evidence of direct bird-to-human transmission has been documented for several other AIV subtypes (2).

Little is known about the types of exposure that result in human infections, especially with AIV being transmitted from wild birds and animals because only a few cases of transmission to humans have been documented (3–5). Overall, the types of exposures associated with the transmission of AIV to humans have been ingestion, inhalation of aerosolized virus, or direct contact through mucous membranes (2,4). The probability of infection with AIV varies with the activity and depends on the contact type (duration and route) and dose. Contacts for the general public are likely short and indirect, often occurring through outdoor activities, such as hiking, picnicking, or feeding birds. Contact for waterfowl hunters is especially intense and direct during bird-cleaning activities. Biologists and workers at wildlife hospitals have frequent and direct contact with wild birds and mammals. Biologists trap apparently healthy free-ranging animals and perform field necropsies, and rehabilitation workers handle sick and injured wild animals. In this study, we tested wild birds and marine mammals for AIV to determine the exposure risks associated with specific casual, recreational, and occupational activities that result in contact with wildlife.

The Study

Human risk categories were created based on a typical contact type with wildlife: 1) casual (the general public), 2) recreational (waterfowl hunters), and 3) occupational (wildlife biologists, wildlife hospital workers, and veterinarians). Frequency of contact with AIV was estimated for each risk group by evaluating the prevalence of AIV among animals sampled opportunistically in each category. Surveillance for AIV was conducted from October 2005 through August 2007.

For casual contact, wild bird species (mostly periburban passerines such as sparrows, finches, and crows) were sampled to reflect typical daily exposures for the public (Figure). For recreational contact, birds were assessed by sampling hunter-killed waterfowl (mostly mallards, northern shovelers, gadwalls, green-winged teals, northern pintails, and American widgeons) at check stations in the Sacramento National Wildlife Refuge. For occupational contact, wild birds (seabirds, wading birds, waterfowl, raptors, and passerines) and marine mammals (seals and sea lions) admitted to 3 northern California wildlife hosp-

*University of California, Davis, School of Veterinary Medicine, Davis, California, USA; and †University of California, Davis, School of Medicine, Sacramento, California, USA

DOI: 10.3201/eid1407.080066

Figure. Map of California displaying sample collection sites for avian influenza testing, fall 2005–summer 2007. The casual risk category is represented by a square, recreational risk category by a star, and occupational risk category by a circle. Counties are abbreviated as follows: CC, Contra Costa; GLE, Glenn; KER, Kern; LA, Los Angeles; MRN, Marin; ORA, Orange; RIV, Riverside; SAC, Sacramento; SOL, Solano; YOL, Yolo.
eggs (were screened by virus isolation in embryonating chicken
total of 9,157 samples were tested for AIV. Of these, 2,346
were screened by virus isolation in embryonating chicken
eggs (6,7), and 6,811 were screened by real-time reverse
transcription–PCR (RT-PCR) (7). All positive samples
were tested for Eurasian H5 viruses (8).

The prevalence of AIV in each group was low (range
0.1%–0.9%) (Table), and no samples were positive for Eur-
Asian H5. We found that risk of contact with AIV-infec
ted wildlife was 8 times higher for the recreational group
compared to either the occupational or the casual group
(p<0.0001; EpiInfo, Centers for Disease Control and Pre-
vention, Atlanta, GA, USA).

Conclusions

We did not detect AIV (H5N1) in California during Oc-
tober 2005–August 2007 nor did other surveillance efforts in
the United States (9). We did detect other AIVs, although
at a low prevalence (<1%). The prevalence of AIV in Cali-
fornia wildlife was substantially lower than the prevalence
reported in Alaskan wildlife in the same flyway (10). AIV
prevalence may decrease with latitude (11), or this opportu
nistic sample design may have resulted in testing of species
with a natural low prevalence. Although overall prevalence
was low, it was highest in the recreational category and,
coupled with the directness and intensity of the contacts es-
pecially during bird cleaning, this group would be expected
to have the highest risk for infection. However, emergence
or introduction of a virus that causes disease in wild birds
or animals would likely result in a disproportional shift in
prevalence of infection in wildlife brought to rehabilitation
hospitals, thus making occupational contact more risky. As
a recent example, 1 stork and 2 buzzards that were infected
with AIV (H5N1) were brought to a wildlife hospital in
Poland, which potentially exposed staff (12).

Novel transmission pathways are possible in places
like wildlife hospitals because wild species that do not meet
in nature are brought into close and extended contact with
each other and humans. For example, marine mammals are
susceptible to infection with AIV (4) and human influenza
viruses (13) and have been documented as intermediate
hosts (4). Other species may also be intermediate hosts for
AIV, although they have not been identified. Those work-
ing in wildlife occupations should be encouraged to wear
personal protective equipment when handling wildlife be-
cause of the types of contacts they can have and the poten-
tial for viruses to emerge in this setting. Similarly, personal
protection should be recommended for waterfowl hunters
because of the relatively higher prevalence of AIV in the
birds with which they have contact.

We assessed the risk for human exposure to AIV by
opportunistically sampling wildlife at the human–wild ani-
mal interface. A better measure of human risk would be to
directly assess human exposure by testing for antibodies to
all AIV subtypes that could occur in nature. Although it is
not practical to simultaneously test for 144 virus subtypes,
2 serologic studies of persons exposed to wildlife showed
antibodies to a limited number of AIVs (3,14). Since these
exposures did not cause discernable illness, diagnosis based
on clinical signs would likely underestimate infection.

Although our methods enabled us to compare exposure
risk among different groups, the testing methods we used
likely did not estimate the true AIV prevalence in wildlife.
The real-time RT-PCR used in this study and in national
surveillance efforts (7) has not been validated in wildlife
(10), nor has virus isolation in embryonating chicken eggs,
and it may be that neither method is perfect in detecting
AIV in species that are only distantly related to chickens
(15). Improved diagnostic methods are needed to assess
AIV infections in wildlife species, and close monitoring
of persons with the highest level of exposure to AIV is a
necessary component of an early warning system to detect
transmission from animals to humans.

Acknowledgments

We gratefully acknowledge the expert technical assistance
provided by Nichole Anchell, Nguyet Dao, Phuong Dao, Grace
Lee, and Jerome Anunciacion. We also appreciate those who pro-
vided assistance with sample collection: Michelle Bellizzi, Marie
Travers, and Megan Prelinger; January Bill and Shannon Riggs
(Oiled Wildlife Care Network); Susan Heckly, Marcia Metzler,
Sandy Fender, Pam Nave, Jean Yim, Devin Dombrowski, Rachel
Avilla, and Jarl Rasmussen (Lindsay Wildlife Museum); Frances
Gulland, Felicia Nutter, Amber Makie, Tanaya Norris, Tracey
Goldstein, Michelle Blascow, and Liz Wheeler (Marine Mammal

Table. Prevalence of avian influenza viruses in California wild birds and marine mammals, October 2005–August 2007, categorized by
exposure risk category

<table>
<thead>
<tr>
<th>Exposure risk group</th>
<th>No. positive (%)</th>
<th>No. tested</th>
<th>Species (no. positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casual</td>
<td>8 (0.2)</td>
<td>4,757</td>
<td>Finch (3), sparrow (2), cowbird (1), quail (2)</td>
</tr>
<tr>
<td>Recreational</td>
<td>20 (0.9)</td>
<td>2,346</td>
<td>Duck (19), goose (1)</td>
</tr>
<tr>
<td>Occupational</td>
<td>2 (0.1)</td>
<td>2,054</td>
<td>Seabird (1), egret (1)</td>
</tr>
<tr>
<td>Total</td>
<td>30 (0.3)</td>
<td>9,157</td>
<td></td>
</tr>
</tbody>
</table>
Avian Influenza Virus Exposure

Dr Siembieda is a veterinarian and a graduate researcher in epidemiology at the Wildlife Health Center of the University of California in Davis. Her primary research interests include the epidemiology and ecology of zoonotic pathogens at the human–wildlife interface, namely avian influenza and enteric, bacterial, and protozoal pathogens.

References


Address for correspondence: Carol Cardona, Extension, Surge III, Rm 1383, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; email: cjcardona@ucdavis.edu