Title
Modular Verification of Multithreaded Programs

Permalink
https://escholarship.org/uc/item/9753d15c

Journal
Theoretical Computer Science, 338(2005)

Authors
Flanagan, Cormac
Freund, Stephen N.
Qadeer, Shaz
et al.

Publication Date
2004-12-08

DOI

Peer reviewed
Modular Verification of Multithreaded Programs

Cormac Flanagan

Computer Science Department, University of California, Santa Cruz, Santa Cruz, CA 95064

Stephen N. Freund

Computer Science Department, Williams College, Williamstown, MA 01267

Shaz Qadeer

Microsoft Research, One Microsoft Way, Redmond, WA 98052

Sanjit A. Seshia

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

Multithreaded software systems are prone to errors due to the difficulty of reasoning about multiple interleaved threads of control operating on shared data. Static checkers that analyze a program’s behavior over all execution paths and for all thread interleavings are a powerful approach to identifying bugs in such systems. In this paper, we present Calvin, a scalable and expressive static checker for multithreaded programs. To handle realistic programs, Calvin performs modular checking of each procedure called by a thread using specifications of other procedures and other threads. The checker leverages off existing sequential program verification techniques based on automatic theorem proving. To evaluate the checker, we have applied it to several real-world programs. Our experience indicates that Calvin has a moderate annotation overhead and can catch defects in multithreaded programs, including synchronization errors and violation of data invariants.

1 Introduction

Many important software systems, such as operating systems and databases, are multithreaded. Ensuring the reliability of these systems is an essential but
very challenging task. It is difficult to ensure reliability through testing alone, because of subtle, nondeterministic interactions between threads. A timing-dependent bug may remain hidden despite months of testing, only to show up after the system is deployed. Static checkers complement testing by analyzing program behavior over all execution paths and for all thread interleavings. However, current static checking techniques for multithreaded programs are unable to scale to large programs and handle complicated synchronization mechanisms.

To obtain scalability, static checkers often employ modular analysis techniques that analyze each component of a system separately, using only a specification of other components. A standard notion of modularity for sequential programs is procedure-modular reasoning [29], where a call site of a procedure is analyzed using a precondition/postcondition specification of that procedure. However, this style of procedure-modular reasoning does not generalize to multithreaded programs [6,26]. An orthogonal notion of modularity for multithreaded programs is thread-modular reasoning [24], which avoids the need to consider all possible interleavings of threads explicitly. This technique analyzes each thread separately using a specification, called an environment assumption, that constrains the updates to shared variables performed by interleaved actions of other threads. Checkers based on this style of thread-modular reasoning have typically relied upon the inherently non-scalable method of inlining the procedure bodies. Consequently, approaches based purely on only one of procedure-modular or thread-modular reasoning are inadequate for large programs with many procedures and many threads.

We present a verification methodology that combines thread-modular and procedure-modular reasoning. In our methodology, a procedure specification consists of an environment assumption and an abstraction. The environment assumption, as in pure thread-modular reasoning, is a two-store predicate that constrains updates to shared variables performed by interleaved actions of other threads. The abstraction is a program that simulates the procedure implementation in an environment that behaves according to the environment assumption. Since each procedure may be executed by any thread, the implementation, environment assumption, and abstraction of a procedure are parameterized by the thread identifier tid.

The specification of a procedure p is correct if two proof obligations are satisfied. First, the abstraction of p must simulate the implementation of p. Second, each step of the implementation must satisfy the environment assumption of p for every thread other than tid. These two properties are checked for all tid, and they need to hold only in an environment that behaves according to the environment assumption of p. In addition, our checking technique proves them by inlining the abstractions rather than the implementations of procedures called in the implementation of p. We reduce the two checks to verifying
the correctness of a sequential program and present an algorithm to produce this sequential program. This approach allows us to leverage existing techniques for verifying sequential programs based on verification conditions and automatic theorem proving.

We have implemented our methodology for multithreaded Java [4] programs in the Calvin checking tool. We have applied Calvin to several multithreaded programs, the largest of which is a 1500 line portion of the web crawler Mercator [22] in use at Altavista. Our experience indicates that Calvin has the following useful features:

1. **Scalability via modular reasoning**: It naturally scales to programs with many procedures and threads since each procedure implementation is analyzed separately using the specifications for the other threads and procedures.

2. **Ability to handle varied synchronization idioms**: The checker is sufficiently expressive to handle the variety of synchronization idioms commonly found in systems code, e.g., readers-writer locks, producer-consumer synchronization, and time-varying mutex synchronization.

3. **Expressive abstractions**: Although a procedure abstraction can describe complex behaviors (and in an extreme case could detail every step of the implementation), in general the appropriate abstraction for a procedure is relatively succinct. In addition, the necessary environment assumption annotations are simple and intuitive for programs using common synchronization idioms, such as mutual exclusion or reader-writer locks.

4. **Moderate annotation overhead**: Annotations are not brittle with respect to program changes. That is, code modifications having little effect on a program's overall behavior typically require only small changes to any annotations.

The moderate annotation overhead of our checker suggests that static checking may be a cost-effective approach for ensuring the reliability of multithreaded software, simply due to the extreme difficulty of ensuring reliability via traditional methods such as testing.

The following section introduces Plato, an idealized multithreaded language that we use to formalize our analysis. Section 3 presents several example programs that motivate and provide an overview of our analysis technique. Section 4 and 5 present a complete, formal description of our analysis. Section 6 describes our implementation and Section 7 describes its application to some real-world programs. Section 8 surveys related work, and Section 9 concludes. Proofs of theorems stated in the paper are provided in the Appendix.

This paper is a unified description of results presented in preliminary form at conferences [17,19]. In particular, this extended presentation includes a revised
formal semantics, a correctness proof for our verification methodology based on this semantics, and an additional case study (the Apprentice challenge problem proposed by Moore and Porter [33]).

2 The parallel language Plato

In this section, we present the idealized parallel programming language Plato (parallel language of atomic operations), and introduce notation and terminology for the rest of the paper. In order to avoid the complexity of reasoning about programs written in a large, complex language like Java, our theoretical discussion focuses on verification of programs in Plato. The topic of translating Java into Plato is addressed in Section 6.

\[
\begin{align*}
\sigma \in \text{Store} &= \text{Var} \rightarrow \text{Value} \\
s, t \in \text{Tid} &= \{1, 2, 3, \ldots \} \\
p, q \in \text{Predicate} &\subseteq \text{Tid} \times \text{Store} \\
X, Y \in \text{Action} &\subseteq \text{Tid} \times \text{Store} \times \text{Store} \\
m \in \text{Proc} \\
B \in \text{Defn} = \text{Proc} \rightarrow \text{Stmt} \\
P, Q \in \text{Program} ::= ||S \\
S, T, U \in \text{Stmt} ::= a \quad \text{atomic op} \\
| S_1; S_2 \quad \text{composition} \\
| S_1 \square S_2 \quad \text{choice} \\
| S^* \quad \text{iteration} \\
| m() \quad \text{procedure call} \\
a, b, c \in \text{AtomicOp} ::= p?X
\end{align*}
\]

Figure 1: Plato syntax

Figure 1 shows the Plato syntax. A Plato program \(P \) is the parallel composition of an unbounded number of threads, each executing a sequential statement. Every thread has an identifier which is a positive integer. When \(P \) is executed, the steps taken by its threads are interleaved nondeterministically. Threads operate on a shared store \(\sigma \), which maps variables to values. The set of values is left unspecified because it is orthogonal to the key ideas we develop here. A sequential statement may be an atomic operation (described below); a sequential composition \(S_1; S_2 \); a nondeterministic choice \(S_1 \square S_2 \) that executes either \(S_1 \) or \(S_2 \); an iteration statement \(S^* \) that executes \(S \) an arbitrary (zero or more) number of times; or a procedure call \(m() \). The names of procedures are drawn from the set \(\text{Proc} \), and the function \(B \) maps procedure names to their implementations.

Atomic operations generalize many of the basic constructs found in program-
Atomic operations have the form \(p?X \). Both the predicate \(p \) and the action \(X \) are parameterized by the identifier of the thread executing \(p?X \). The predicate \(p \) must be true in the pre-store of the operation. The action \(X \) is a predicate over two stores, and it describes the effect of performing the operation in terms of the pre-store and post-store.

When a thread with identifier \(t \) executes the atomic operation \(p?X \) in store \(\sigma \), there are three possible outcomes. If \(p(t, \sigma) \) is false, then execution terminates in a special state \textbf{wrong} to indicate that an error has occurred. If \(p(t, \sigma) \) holds, the program moves into a post-store \(\sigma' \) such that the constraint \(X(t, \sigma, \sigma') \) is satisfied. If no such \(\sigma' \) exists, the atomic operation blocks until it is able to proceed. Note that other threads may continue while the operation is blocked.

An action is typically written as a formula containing unprimed and primed variables and a special variable \(\text{tid} \). Unprimed variables refer to their value in the pre-store of the action, primed variables refer to their value in the post-store of the action, and \(\text{tid} \) is the identifier of the currently executing thread. A predicate is written as a formula with only unprimed variables and \(\text{tid} \).

For any action \(X \) and set of variables \(V \subseteq \text{Var} \), we use the notation \(\langle X \rangle_V \) to mean the action that satisfies \(X \) and only allows changes to variables in \(V \) between the pre-store and the post-store, and we use \(\langle X \rangle \) to abbreviate \(\langle X \rangle_\emptyset \). Finally, we abbreviate the atomic operation \textbf{true}?\(X \) to the action \(X \).

\begin{align*}
x &= e \overset{\text{def}}{=} \langle x' = e \rangle_x \\
\text{assert } e &= \overset{\text{def}}{=} e?\langle \text{true} \rangle \\
\text{assume } e &= \overset{\text{def}}{=} \langle e \rangle \\
\text{if } (e) \{ S \} &= \overset{\text{def}}{=} (\text{assume } e; S)\square (\text{assume } \neg e) \\
\text{while } (e) \{ S \} &= \overset{\text{def}}{=} (\text{assume } e; S)\ast; (\text{assume } \neg e) \\
\text{acquire}(mx) &= \overset{\text{def}}{=} \langle mx = 0 \land mx' = \text{tid} \rangle_{mx} \\
\text{release}(mx) &= \overset{\text{def}}{=} \langle mx' = 0 \rangle_{mx} \\
\text{skip} &= \overset{\text{def}}{=} \langle \text{true} \rangle \\
\text{havoc} &= \overset{\text{def}}{=} \langle \text{true} \rangle_{\text{Var}} \\
\text{CAS}(l, e, n) &= \overset{\text{def}}{=} \langle \begin{cases} 1 \neq e \Rightarrow (l' = 1 \land n' = n) \\ 1 = e \Rightarrow (l' = n \land n' = 1) \end{cases} \rangle_{l, n}
\end{align*}

\begin{figure}[h]
\centering
\begin{align*}
\text{Figure 2: Conventional constructs in Plato}
\end{align*}
\end{figure}

Using atomic operations, Plato can express many conventional constructs, including assignment, assert, assume, if, and while statements (see Figure 2). Atomic operations can also express primitive synchronization operations such as acquiring and releasing locks. A lock is modeled as a variable which is
either 0, if the lock is not held, or otherwise is a positive integer identifying
the thread holding the lock.

2.1 Semantics

For the remainder of this paper, we assume a fixed function \(B \) mapping pro-
cedure names to procedure bodies. We define the semantics of a statement
\(S \) as a set \([S]\) of sequences of atomic operations that could be performed by
executing \(S \). We first define the set \([S]^d\) of sequences through \(S \) where the
stack depth never exceeds \(d \) (see Figure 3). The set of sequences \([S]\) is then
obtained as the union of \([S]^d\) for all \(d \geq 0 \).

A thread is a pair \(| t, S |\) consisting of a thread identifier \(t \) and a statement
\(S \) being executed by thread \(t \). A step \(| t, a |\) is a thread whose statement
component is an atomic operation. A path is a finite sequence of steps. If
\(\bar{a} = a_1; \ldots; a_n \), then \(| t, a_1; \ldots; a_n |\) represents the path \(| t, a_1 |; \ldots; | t, a_n |\), where
all steps are taken by the same thread. A thread \(| t, S |\) yields the set of paths
\([| t, S |] = \{ | t, \bar{a} | \mid \bar{a} \in [S] \} \).

\[
\begin{align*}
\hat{a}, \hat{b} & \in \text{Seq} \quad = a_1; \ldots; a_n \\
u, w & \in \text{Step} \quad = | t, a |\\
\bar{u}, \bar{w} & \in \text{Path} \quad = u_1; \ldots; u_n \\
\varphi & \in \text{PathSet}
\end{align*}
\]

\[
\begin{align*}
[\cdot] : \text{Stmt} \times \mathbb{N} & \rightarrow 2^{\text{Seq}} \\
[a]^d & = \{ a \} \\
[S_1; S_2]^d & = [S_1]^d; [S_2]^d \\
[S_1 \sqcup S_2]^d & = [S_1]^d \cup [S_2]^d \\
[S^*]^d & = ([S]^d)^* \\
[m(); \cdot]^d & = \begin{cases} [B(m)]^{d-1} & \text{if } d > 0 \\
\emptyset & \text{if } d = 0 \end{cases}
\end{align*}
\]

\[
\begin{align*}
[\cdot] : \text{Stmt} & \rightarrow 2^{\text{Seq}} \\
[S] & = \bigcup_{d \geq 0} [S]^d \\
[\cdot] : \text{Program} & \rightarrow \text{PathSet} \\
[\bigotimes_{i=1}^n S] & = [\bigotimes_{i=1}^n 1, S] \otimes \ldots \otimes [n, S] \\
[\bigotimes S] & = \bigcup_{n \geq 1} [\bigotimes_{i=1}^n S]
\end{align*}
\]

Figure 3: Program paths

A parallel program \(P \) can be translated into the set of paths \([P]\), as shown in
Figure 3. The path \(\bar{u}; \bar{w} \) is the concatenation of paths \(\bar{u} \) and \(\bar{w} \). We will refer to
a set of paths as a pathset. The pathset \(\varphi_1; \varphi_2 \) is the set of all paths obtained
by the concatenation of a path from pathset φ_1 and a path from pathset φ_2.
Note that we are overloading the operator “;” to mean both the sequential composition of statements and steps as well as the concatenation of paths and pathsets. The pathset φ^* is the Kleene closure of the pathset φ. The pathset $\bar{u}_1 \otimes \ldots \otimes \bar{u}_n$ is the set of all interleavings of the paths $\bar{u}_1, \ldots, \bar{u}_n$. The pathset $\varphi_1 \otimes \ldots \otimes \varphi_n$ is the union of all pathsets obtained by taking the interleavings of a path from each φ_i for $1 \leq i \leq n$.

The transition relation $\bullet \rightarrow \bullet \subseteq \text{Store} \times \text{Step} \times \text{State}$ is a partial map from a store and an execution step to a state, which is either a store or the special state wrong:

$$\omega \in \text{State} = \text{Store} | \text{wrong}$$

Given $u = |t, p?X|$,
$$\sigma \xrightarrow{u} \sigma' \quad \text{if } p(t, \sigma) \text{ and } X(t, \sigma, \sigma')$$
$$\sigma \xrightarrow{u} \text{wrong} \quad \text{if } \neg p(t, \sigma)$$

Figure 4: Transition relation

If $\bar{u} = |t_1, a_1|; \ldots; |t_n, a_n|$ is a path, then $r = \sigma_1 \xrightarrow{|t_1, a_1|} \sigma_2 \cdots \sigma_k \xrightarrow{|t_k, a_k|} \omega$ for some $1 \leq k \leq n$ is a run of \bar{u}. If $k = n$ or $\omega = \text{wrong}$, then r is a full run. Corresponding to each run $r = \sigma_1 \xrightarrow{|t_1, a_1|} \sigma_2 \cdots \sigma_k \xrightarrow{|t_k, a_k|} \omega$, there is a trace $\tau = \sigma_1 \xrightarrow{t_1} \sigma_2 \cdots \sigma_k \xrightarrow{t_k} \omega$, obtained by ignoring atomic operations in the transitions between adjacent states in the run. We denote the trace τ by $\text{trace}(r)$. If r is a run of $\bar{u} \in \varphi$, it is defined to be a run of φ and $\text{trace}(r)$ is defined to be a trace of φ. If r is a full run, we say that $\text{trace}(r)$ is a full trace. If $\varphi = \square [P]$, a run (respectively, a trace) of φ is also a run (resp., a trace) of P.

We say that a program P goes wrong from σ if a run of P starting in σ ends in wrong. A program P goes wrong if P goes wrong from some store σ. A set of stores I is an invariant of the program P if for all runs $\sigma_1 \xrightarrow{|t_1, a_1|} \sigma_2 \cdots \sigma_k \xrightarrow{|t_k, a_k|} \sigma_{k+1}$ of P, whenever $\sigma_1 \in I$ then $\sigma_{k+1} \in I$.

In the remainder of this paper, we develop a scheme for modularly checking that a multithreaded program does not go wrong and satisfies specified invariants.
3 Overview of modular verification

We start by considering an example that provides an overview and motivation of our modular verification method. Consider the multithreaded program SimpleLock in Figure 5. It consists of two modules, Top and Mutex. The module Top contains two threads that manipulate a shared integer variable x, which is initially zero and is protected by a mutex m. The module Mutex provides acquire and release operations on that mutex. The mutex variable m is either the (positive) identifier of the thread holding the lock, or else 0, if the lock is not held by any thread. The implementation of acquire is non-atomic, and uses busy-waiting based on the atomic compare-and-swap instruction (CAS) described earlier. The local variable t cannot be modified by other threads.

We assume the program starts execution by concurrently calling procedures t1 in thread 1 and t2 in thread 2. Note that this program can be expressed as the following multithreaded Plato program:

\[(\text{assume } \text{tid} = 1; \text{t1}()) \Box (\text{assume } \text{tid} = 2; \text{t2}())\]

```
// module Top
int x = 0;
void t1() {
    acquire();
    x++;
    assert x > 0;
    release();
}

// module Mutex
int m = 0;
void acquire() {
    var t = tid;
    while (t == tid) CAS(m, 0, t);
}
void release() {
    m = 0;
    CAS(m, 0, t);
}
```

Figure 5: SimpleLock program

We would like the checker to verify that the assertion in t1 never fails. This assertion should hold because x is protected by m and because we believe the mutex implementation is correct.

To avoid considering all possible interleavings of the various threads, our checker performs thread-modular reasoning, and relies on the programmer to specify an environment assumption constraining the interactions among threads. In particular, the environment assumption \(E_{\text{tid}}\) for thread \(\text{tid}\) summarizes the possible effects of interleaved atomic steps of other threads. For SimpleLock, an appropriate environment assumption is:

\[
E_{\text{tid}} \overset{\text{def}}{=} \land m = \text{tid} \Rightarrow m = m' \\
\land m = \text{tid} \Rightarrow x = x'
\]
The two conjuncts state that if thread tid holds the lock m, then other threads cannot modify either m or the protected variable x. We also specify an invariant I stating that whenever the lock is not held, x is at least zero:

$$I \overset{\text{def}}{=} m = 0 \Rightarrow x \geq 0$$

This invariant is necessary to ensure, after $t1$ acquires the lock and increments x, that x is strictly positive.

3.1 Thread-modular verification

For small programs, it is not strictly necessary to perform procedure modular verification. Instead, our checker could inline the implementations of procedure calls at their call sites (at least for non-recursive procedures).

Let $\text{InlineBody}(S)$ denote the statement obtained by inlining the implementation of called procedures in a statement S. Let us consider procedure $t1$ in the example of Figure 5. Its implementation $B(t1)$ is given in Figure 6(a), with $\text{InlineBody}(B(t1))$ depicted in Figure 6(b) (all statements are represented in terms of atomic operations).

Thread modular verification of thread 1 consists of checking the following property:

$$\text{InlineBody}(B(t1))$$

is simulated by E_2^* from the set of states satisfying $m = 0 \land x = 0$ with respect to the environment assumption E_1.

(TMV1)

The notion of simulation is formalized later in the paper. For now, we give an intuitive explanation of Property TMV1. Consider Figure 6(c), which shows the interleaving of atomic operations in $\text{InlineBody}(B(t1))$ with an arbitrary sequence of atomic operations of thread 2 that each satisfy E_1. (Operations of thread 2 are underlined to distinguish them from operations of thread 1.) Checking Property TMV1 involves verifying that when executed from an initial state where both x and m are zero, the statement in Figure 6(c) does not go wrong, and that each non-underlined atomic operation satisfies E_2. Note that the statement in Figure 6(c) can be viewed as a sequential program, and that Property TMV1 can be checked using sequential program verification techniques.

The procedure $t2$ satisfies a corresponding property TMV2 with the roles of E_1 and E_2 swapped. Using assume-guarantee reasoning, our checker infers from TMV1 and TMV2 that the SimpleLock program does not go wrong, no matter how the scheduler chooses to interleave the execution of the two threads.
3.2 Adding procedure-modular verification

The inlining of procedure implementations at call sites prevents the simple approach sketched above from analyzing large systems. To scale to larger systems, our checker performs a procedure-modular analysis that uses procedure specifications in place of procedure implementations. In this context, the main question is: What is the appropriate specification for a procedure in a multi-threaded program?

A traditional precondition/postcondition specification for acquire is:

\[
\begin{align*}
\text{requires } & I; \\
\text{modifies } & m; \\
\text{ensures } & m = \text{tid} \land x \geq 0
\end{align*}
\]

This specification records that:

- The precondition is \(I \);
- \(m \) can be modified by the body of acquire;
- When acquire terminates, \(m \) is equal to the current thread identifier and \(x \) is at least 0.

This last postcondition is crucial for verifying the assertion in \(t1 \).

However, although this specification suffices to verify the assertion in \(t1 \), it suffers from a serious problem: it mentions the variable \(x \), even though \(x \) should properly be considered a private variable of the separate module \(\text{Top} \).

This problem arises because the postcondition, which describes the final state of the procedure’s execution, needs to record store updates performed during execution of the procedure, both by the thread executing this procedure, and also by other concurrent threads (which may modify \(x \)).

In order to overcome the aforementioned problem and still support modular specification and verification, we use a generalized specification language that can describe intermediate atomic steps of a procedure’s execution, and need
not summarize effects of interleaved actions of other threads.

In the case of acquire, the appropriate specification is that acquire first performs an arbitrary number of stuttering steps that do not modify \(m \); it then performs a single atomic action that acquires the lock; after which it may perform additional stuttering steps before returning. The code fragment \(A(\text{acquire}) \) specifies this behavior:

\[
A(\text{acquire}) \overset{\text{def}}{=} \langle \text{true} \rangle^*; \langle m = 0 \land m' = \text{tid} \rangle_m; \langle \text{true} \rangle^*
\]

This abstraction specifies only the behavior of thread \(\text{tid} \) and therefore does not mention \(x \). Our checker validates the specification of acquire by checking that the statement \(A(\text{acquire}) \) is a correct abstraction of the behavior of acquire, i.e.: the statement \(B(\text{acquire}) \) is simulated by \(A(\text{acquire}) \) from the set of states satisfying \(m = 0 \) with respect to the environment assumption true.

After validating a similar specification for release, our checker replaces calls to acquire and release from the module Top with the corresponding abstractions \(A(\text{acquire}) \) and \(A(\text{release}) \). If InlineAbs denotes this operation of inlining abstractions, then InlineAbs\((B(\text{ti})) \) is free of procedure calls, and so we can apply thread-modular verification, as outlined in Section 3.1, to the module Top. In particular, by verifying that InlineAbs\((B(\text{t1})) \) is simulated by \(E^*_2 \) from the set of states satisfying \(m = 0 \land x = 0 \) with respect to \(E_1 \), and verifying a similar property for \(\text{t2} \), our checker infers by assume-guarantee reasoning that the complete SimpleLock program does not go wrong.

4 Modular verification

In this section, we formalize our modular verification method sketched in the previous section. Consider the execution of a procedure \(m \) by the current thread \(\text{tid} \). We assume \(m \) is accompanied by a specification consisting of three parts: (1) an invariant \(I(m) \subseteq \text{Store} \) that must be maintained by all threads while executing \(m \), (2) an environment assumption \(E(m) \in \text{Action} \) that models the behavior of threads executing concurrently with \(\text{tid} \)'s execution of \(m \), and (3) an abstraction \(A(m) \in \text{Stmt} \) that summarizes the behavior of thread \(\text{tid} \) executing \(m \). The abstraction \(A(m) \) may not contain any procedure calls.

In order for the abstraction \(A(m) \) to be correct, we require that the implementation \(B(m) \) be simulated by \(A(m) \) with respect to the environment assumption \(E(m) \). Informally, this simulation requirement holds if, assuming other threads perform actions consistent with \(E(m) \), each action of the implementation corresponds to some action of the abstraction. The abstraction may
allow more behaviors than the implementation, and may go wrong more of-
ten. If the abstraction does not go wrong, then the implementation also should
go wrong and each implementation transition must be matched by a cor-
responding abstraction transition. When the implementation terminates the
abstraction should be able to terminate as well.

We formalize the notion of simulation between (multithreaded) programs. We
first define the notion of subsumption between traces. Intuitively, a trace
τ is subsumed by a trace τ' if either τ' is identical to τ or τ' behaves like a
prefix of τ and then goes wrong. Formally, a trace σ_1 \xrightarrow{t_1} σ_2 \cdots \xrightarrow{t_k} ω
is subsumed by a trace σ'_1 \xrightarrow{t'_1} σ'_2 \cdots \xrightarrow{t'_l} ω'
if (1) l ≤ k, (2) for all 1 ≤ i ≤ l,
we have σ_i = σ'_i and t_i = t'_i, and (3) either ω' = \text{wrong} or l = k and ω' = ω.
A pathset ϕ_1 is simulated by the pathset ϕ_2, written
ϕ_1 \sqsubseteq ϕ_2, if every trace
of ϕ_1 is subsumed by a trace of ϕ_2, and every full trace of ϕ_1 is subsumed
by a full trace of ϕ_2. A program P is simulated by a program Q, written
P \sqsubseteq Q, if [P] is simulated by [Q]. Given a statement B, an environment
assumption E, and an integer j > 0, let \mathcal{P}(B, E, j) be the program in which
the j-th thread is B and every other thread is E ∗[tid := j]. A statement B
is simulated by a statement A with respect to an environment assumption
E, written B \sqsubseteq_E A, if the program \mathcal{P}(B, E, j) is simulated by the program
\mathcal{P}(A, E, j) for all j ∈ Tid.

While checking simulation between \mathcal{B}(m) and \mathcal{A}(m) for a procedure m, we
would like to use not only the environment assumption \hat{E}(m) of m but also
the environment assumptions of all the procedures transitively called by m.
Let \sim be the calls relation on the set Proc of procedures such that m \sim l
if procedure m calls the procedure l. Let \sim^* be the reflexive-transitive closure
of \sim. We define a derived environment assumption for procedure m as
\hat{E}(m) = \bigwedge_{m \sim^* l} \mathcal{E}(l).

Apart from being simulated by \mathcal{A}(m), the implementation \mathcal{B}(m) must also
satisfy two other properties. While a thread tid executes m, every atomic
operation must preserve the invariant I(m) and satisfy the environment as-
sumption \mathcal{E}(m)[tid := j] of every thread j other than tid. We can check that
\mathcal{B}(m) is simulated by \mathcal{A}(m) and also satisfies the aforementioned properties by
checking that \mathcal{B}(m) is simulated by a derived abstraction \hat{A}(m). This derived
abstraction \hat{A}(m) is obtained from \mathcal{A}(m) by replacing every atomic operation
p?X in \mathcal{A}(m) by
\((p \land I(m))?(X \land I'(m)) \land \forall j \in Tid : j \neq tid \Rightarrow \hat{E}(m)[tid := j]). \)

In order to check simulation for a procedure m, we first inline the derived
abstractions for procedures called from $B(m)$. We use $\text{InlineAbs : Stmt} \rightarrow \text{Stmt}$ to denote this abstraction inlining operation. The following theorem formalizes our modular verification methodology.

Theorem 1 Let $P = ||l(l)\|$ be a parallel program. Suppose for all procedures $m \in \text{Proc}$, the statement $\text{InlineAbs}(B(m))$ is simulated by $\hat{A}(m)$ with respect to the environment assumption $\hat{E}(m)$. Then the following are true.

1. P is simulated by $Q = ||\hat{A}(l)\|$.
2. If $\sigma \in I(l)$, $A(l)$ is simulated by true* with respect to $\hat{E}(l)$, and $\sigma \rightarrow^{[t_1,a_1]} \cdots \rightarrow^{[t_k,a_k]} \omega$ is a run of P, then $\omega \neq \text{wrong}$ and $\omega \in I(l)$.

The proof of this theorem is given in Appendix A.

Discharging the proof obligations in this theorem requires a method for checking simulation between two statements without procedure calls, which is the topic of the following section.

5 Checking simulation

We first consider the simpler problem of checking that the atomic operation $p?X$ is simulated by $q?Y$. This simulation holds if (1) whenever $p?X$ goes wrong, then $q?Y$ also goes wrong, i.e., $\neg p \Rightarrow \neg q$, and (2) whenever $p?X$ performs a transition, $q?Y$ can perform a corresponding transition or may go wrong, i.e., $p \land X \Rightarrow \neg q \lor Y$. The conjunction of these two conditions can be simplified to $(q \Rightarrow p) \land (q \land X \Rightarrow Y)$.

The following atomic operation $\text{sim}(p?X, q?Y)$ checks simulation between the atomic operations $p?X$ and $q?Y$; it goes wrong from states for which $p?X$ is not simulated by $q?Y$, and otherwise behaves like $p?X$. The definition uses the notation $\forall \text{Var'}$ to quantify over all primed (post-state) variables.

$$\text{sim}(p?X, q?Y) \overset{\text{def}}{=} (q \Rightarrow p) \land (\forall \text{Var'} \cdot q \land X \Rightarrow Y)\? (q \land X)$$

We now extend our method to check simulation between an implementation B and an abstraction A with respect to an environment assumption E. Let I be the invariant associated with the implementation B; e.g., if B is $\text{InlineAbs}(B(m))$ for some procedure m, then I is $I(m)$. We assume that the abstraction A consists of n atomic operations $I?Y_1, I?Y_2, \ldots, I?Y_n$ interleaved with stuttering steps $I?K$, preceded by an asserted precondition $\text{pre?}(\text{true})$,
and ending with the assumed postcondition \texttt{true?(post)}:

\[
A \overset{\text{def}}{=} \text{pre?(true)}; \\
(I?K^*; I?Y_1); \ldots; (I?K^*; I?Y_n); \\
I?K^*; \text{true?(post)}
\]

This restriction on \(A\) enables efficient simulation checking and has been sufficient for all our case studies. Our method may be extended to more general abstractions \(A\) at the cost of additional complexity.

Our method translates \(B\), \(A\), and \(E\) into a sequential program such that if that program does not go wrong, then \(B\) is simulated by \(A\) with respect to \(E\). We need to check that whenever \(B\) performs an atomic operation, the statement \(A\) performs a corresponding operation. In order to perform this check, the programmer needs to add a \textit{witness} variable \(pc\) ranging over \(\{1, 2, \ldots, n + 1\}\) to \(B\), to indicate the operation in \(A\) that will simulate the next operation performed in \(B\). An atomic operation in \(B\) can either leave \(pc\) unchanged or increment it by 1. If the operation leaves \(pc\) unchanged, then the corresponding operation in \(A\) is \(K\). If the operation changes \(pc\) from \(i\) to \(i + 1\), then the corresponding operation in \(A\) is \(Y_i\). Thus, each atomic operation in \(B\) needs to be simulated by the following atomic operation:

\[
W \overset{\text{def}}{=} I?((\bigvee_{i=1}^{n} (pc = i \land pc' = i + 1 \land Y_i)) \lor (pc = pc' \land K))
\]

Using the above method, we generate the sequential program \([B]_A^E\) which performs the simulation check at each atomic action, and also precedes each atomic action with the iterated environment assumption that models the interleaved execution of other threads. Thus, the program \([B]_A^E\) is obtained by replacing every atomic operation \(p?X\) in the program \(B\) with \(E^*; \text{sim}(p?X, W)\).

The following program extends \([B]_A^E\) with constraints on the initial and final values of \(pc\).

\[
\text{assume } \text{pre} \land pc = 1; [B]_A^E; E^*; \text{assert } \text{post} \land pc = n + 1
\]

This program starts execution from the set of states satisfying the precondition \(\text{pre}\) and asserts the postcondition \(\text{post}\) at the end. Note that this sequential program is parameterized by the thread identifier \(\text{tid}\). If this program cannot go wrong for any nonzero interpretation of \(\text{tid}\), then we conclude that \(B\) is simulated by \(A\) with respect to \(E\). We leverage existing sequential analysis techniques (based on verification conditions and automatic theorem proving) for this purpose.
6 Implementation

We have implemented our modular verification method for multithreaded Java programs in an automatic checking tool called Calvin. This section provides an overview of Calvin, including a description of its annotation language and various performance optimizations that we have implemented.

6.1 Checker architecture

The Calvin checker takes as input a Java program, together with annotations describing candidate environment assumptions, procedure abstractions, invariants, and asserted correctness properties, and outputs warnings and error messages indicating if any of these properties are violated. Calvin starts by parsing the input program to produce abstract syntax trees (ASTs). After type checking, these abstract syntax trees are translated into an intermediate representation language that can express Plato syntax [27]. The translation of annotations into Plato syntax is described in Section 6.3.

Calvin then uses the techniques of this paper, as summarized by Theorem 1, to verify this intermediate representation of the program. To verify that each procedure \(p \) satisfies its specification, Calvin first inlines the abstraction of any procedure call from \(p \). (If the abstraction is not available, then the implementation is inlined instead.) Next, Calvin uses the simulation checking technique of the previous section to generate a sequential “simulation checking” program \(S \). To check the correctness of \(S \), Calvin translates it into a verification condition [11,20] and invokes the automatic theorem prover Simplify [34] to check the validity of this verification condition.

If the verification condition is valid, then the procedure implements its specification and the stated invariants and assertions are true. Alternatively, if the verification condition is invalid, then the theorem prover generates a counterexample, which is then post-processed into an appropriate error message in terms of the original Java program. Typically, the error message either identifies an atomic step that may violate one of the stated invariants, environment assumptions, or abstraction steps, or the error message may identify an assertion that could go wrong. This assertion may either be explicit, as in the example programs of Section 3, or implicit, such as, for example, that a dereferenced pointer is never null.

The implementation of Calvin leverages extensively off the Extended Static Checker for Java, which is a powerful checking tool for sequential Java programs. For more information regarding ESC/Java, we refer the interested reader to a recent paper [18].
6.2 Handling Java threads and monitors

In our implementation, thread identifiers are either references to objects of type `java.lang.Thread` or a special value `main` (different from all object references) that refers to the initial thread present when the program starts. Thus, the value of the current thread identifier `tid` is either an object reference of type `java.lang.Thread` or `main`. Thread creation is modeled by introducing an abstract instance field\(^1\) `start` into the `java.lang.Thread` class. When a thread is created, this field is initialized to false. When a created thread is forked, this field is set to true. The following assume statement is implicit at the beginning of the main method:

\[
\text{assume } tid = \text{main}
\]

The following assume statement is implicit at the beginning of the run method in any runnable class:

\[
\text{assume } tid = \text{this} \land \text{tid.start}
\]

The implicit lock associated with each Java object is modeled by including in each object an additional abstract field `holder` of type `java.lang.Thread`, which is either null or refers to the thread currently holding the lock. The Java synchronization statement `synchronized(x) { S }` is desugared into

\[
\langle x.\text{holder} = \text{null} \land x.\text{holder}' = \text{tid} \rangle_{x.\text{holder}}; S; \langle x.\text{holder}' = \text{null} \rangle_{x.\text{holder}}
\]

For the sake of simplicity, our checker assumes a sequentially consistent memory model and that reads and writes of primitive Java types are atomic (although neither of these assumptions are strictly consistent with Java’s current memory model).

6.3 Annotation Language

This section describes the source annotations whose desugaring yields the appropriate abstraction and environment assumption for each procedure `p`.

The annotation `env.assumption` is used to provide environment assumptions. Each class has a set of these annotations; each annotation provides an action

\(^1\) An abstract variable is one that is used only for specification purposes, and is not originally present in the implementation.
that may be parameterized by the current thread identifier \texttt{tid}. The environment assumption of a class is the conjunction of the actions in all the \texttt{env_assumption} annotations. The environment assumption \(\mathcal{E}(p) \) of a method \(p \) is the conjunction of the environment assumption of the class containing \(p \) and of all those classes whose methods are transitively called by \(p \).

The annotation \texttt{global_invariant} is used to provide invariants. Each class has a set of these annotations with each annotation providing a predicate. The invariant of a class is the conjunction of the predicates in all the \texttt{global_invariant} annotations. The invariant of a method \(p \) is the invariant of the class containing \(p \).

The abstraction of a method \(p \) is specified using the following notation:

\begin{verbatim}
requires pre
modifies c
action: also_modifies v_1 ensures e_1
...
action: also_modifies v_n ensures e_n
ensures post
\end{verbatim}

where \(c, v_1, \ldots, v_n \) are sets of variables, \(pre \) is a single-store predicate, and \(e_1, \ldots, e_n, post \) are actions.

From the above notation, we construct the abstraction statement \(\mathcal{A}(p) \) as follows:

1. We construct the following guarantee \(G \) based on the assumption that actions of \(p \) should not violate the environment assumptions of \(p \) for other threads.

\[
G \overset{\text{def}}{=} \forall \text{Thread } j : (j \neq \text{null} \land j \neq \text{tid}) \Rightarrow \mathcal{E}(p)[\text{tid} := j]
\]

2. If \(I \) is the invariant of \(p \), we combine the various annotations into the following abstraction statement \(\mathcal{A}(p) \):

\[
\begin{align*}
\text{pre?\{true\}}; \quad & \mathcal{I}\langle G \land I \rangle_{c^*}; \mathcal{I}\langle e_1 \land G \land I \rangle_{c \cup v_1}; \\
\ldots \quad & \mathcal{I}\langle G \land I \rangle_{c^*}; \mathcal{I}\langle e_n \land G \land I \rangle_{c \cup v_n}; \\
\text{true?\{post\}}; \quad & \mathcal{I}\langle G \land I \rangle_{c^*};
\end{align*}
\]

The stuttering steps should satisfy \(G \) and only modify variables in \(c \). Each action: block in the annotations corresponds to an atomic operation in the abstraction; this atomic operation can modify variables in \(c \) and \(v_i \), it should satisfy both \(e_i \) and the guarantee \(G \), and the \texttt{requires} action
pre is asserted to hold initially. Finally, every step is required to maintain the invariance of I.

Comparing $A(p)$ with the notation in Section 5, we see that Y_i is $\langle e_1 \land G \land I' \rangle_{c \cup v_1}$ and K is $\langle G \land I' \rangle_c$.

6.4 Optimizations

Calvin reduces simulation checking to the correctness of the sequential “simulation checking” program. The simulation checking program is often significantly larger than the original procedure implementation, due in part to the iterated environment assumption inserted before each atomic operation. To reduce verification time, Calvin simplifies the program before attempting to verify it. In particular, we have found the following two optimizations particularly useful for simplifying the simulation checking program:

- In all our case studies, the environment assumptions were reflexive and transitive. Therefore, our checker optimizes the iterated environment assumption E^* to the single action E after using the automatic theorem prover to verify that E is indeed reflexive and transitive.
- The environment assumption of a procedure can typically be decomposed into a conjunction of actions mentioning disjoint sets of variables, and any two such actions commute. Moreover, assuming the original assumption is reflexive and transitive, each of these actions is also reflexive and transitive. Consider an atomic operation that accesses a single shared variable v. An environment assertion is inserted before this atomic operation, but all actions in the environment assumption that do not mention v can be commuted to the right of this operation, where they merge with the environment assumption associated with the next atomic operation. Thus, we only need to precede each atomic operation with the actions that mention the shared variable being accessed.

7 Applications

7.1 The Apprentice challenge problem

Moore and Porter [33] introduced the Apprentice example as a challenge problem for multithreaded software analysis tools. In this section, we apply Calvin to this challenge problem.

The Apprentice example contains three classes—Container, Job and Apprentice. The class Container has an integer field counter. The class Job, which ex-
tends Thread, has a field objref pointing to a Container object. The class Apprentice contains the main routine.

class Container { int counter; }

class Job extends Thread {
 Container objref;

 public final void run() {
 for (;;) {
 synchronized(objref) { objref.counter = objref.counter + 1; }
 }
 }
}

class Apprentice {
 public static void main(String[] args) {
 Container container = new Container();
 for (;;) {
 Job job = new Job();
 job.objref = container;
 job.start();
 }
 }
}

After \(k\) iterations of the loop in main, there are \(k + 1\) concurrently executing threads consisting of one main thread and \(k\) instances of Job. We would like to prove that in any concurrent execution the field counter of any instance of Container takes a sequence of non-decreasing values.\(^2\) This property is stated by the following annotation in the Container class.

\[
/*@\text{env_assumption }\\text{old(counter)} \leq \text{counter} */
\]

Note that this property could be violated in several ways. A thread \(t\) executing the method \(t\).run reads \(t\).objref thrice during one iteration of the loop:

1. to obtain the monitor on the object pointed to by \(t\).objref,
2. to read \(t\).objref.counter, and
3. to write \(t\).objref.counter.

If another thread modifies \(t\).objref from \(o_1\) to \(o_2\) between the second and third reads, then the value written by thread \(t\) into \(o_2\).counter may be less than its previous value. Moreover, even if other threads do not modify \(t\).objref, they might increment \(t\).objref.counter more than once between the read

\(^{2}\) Calvin treats the int type as unbounded unlike the 32-bit semantics in Java.
and the write of \(t.\text{objref}.\text{counter} \). This interference might again cause a similar violation.

The environment assumption stated above is not strong enough for analyzing each thread separately in Calvin. We also need to specify the conditions under which the environment of a thread can modify the fields \text{counter} and \text{objref}. We add the annotation

```java
/*@ unwritable_by_env_if holder == tid */
```

to the field \text{counter} to indicate that for any instance \(o \) of \text{Container}, if thread \(t \) holds the monitor on \(o \) then the environment of \(t \) may not modify \(o.\text{counter} \). Thus, \text{unwritable_by_env_if} annotations provide a simple and concise way of writing environment assumptions. For example, the \text{unwritable_by_env_if} annotation shown above on the field \text{counter} is semantically equivalent to the following annotation:

```java
/*@ env_assumption holder == tid ==> counter == \old(counter) */
```

We also add the annotation

```java
/*@ unwritable_by_env_if tid == main || objref != null */
```

to the field \text{objref}. In this annotation, \text{main} refers to the main thread. This annotation specifies that for any instance \(o \) of \text{Job}, the environment of \text{main} must not modify \(o.\text{objref} \). In addition, even \text{main} must not modify \(o.\text{objref} \) if \(o.\text{objref} \) is different from \text{null}. Using these annotations, Calvin is successfully able to verify the original environment assumption together with the environment assumptions induced by these annotations.

We now introduce a bug in the Apprentice example as suggested by Moore and Porter and show the warning produced by Calvin.

```java
public static void main(String[] args) {
    Container container = new Container();
    Container bogus = new Container();
    for (; ;) {
        Job job = new Job();
        job.objref = container;
        job.start();
        job.objref = bogus;
    }
}
```

In this new buggy implementation of \text{Apprentice.main}, the thread \text{main} mutates \text{job.objref} again after \text{job} has started. As mentioned above, such behavior in \text{main} might result in a violation of the specification that the values of \text{counter} in all instances of \text{Container} be non-decreasing.
Calvin analyzes the modified Apprentice example and produces the following warning.

Apprentice.java:29: Warning: Write of variable when not allowed
 job.objref = bogus;

Associated declaration is "Apprentice.java", line 9, col 8:
 /** unwritable_by_env_if (tid == main || objref != null) */

This warning correctly points out that main is violating the requirement that it not modify job.objref if job.objref is not null.

7.2 The Mercator web crawler

Mercator [22] is a web crawler which is part of Altavista’s Search Engine 3 product. It is multithreaded and written entirely in Java. Mercator spawns a number of worker threads to perform the web crawl and write the results to shared data structures in memory and on disk. To help recover from failures, Mercator also spawns a background thread that writes a snapshot of its state to disk at regular intervals. Synchronization between these threads is achieved using two kinds of locks: Java monitors and readers-writer locks.

We focused our analysis efforts on the part of Mercator’s code (about 1500 LOC) that uses readers-writer locks. We first provided a specification of the readers-writer lock implementation (class ReadersWriterLock) in terms of two abstract variables—writer, a reference to a Thread object, and readers, a set of references to Thread objects. If a thread owns the lock in write mode then writer contains a reference to that thread and readers is empty, otherwise writer is null and readers is the set of references to all threads that own the lock in read mode.

As an example of a specification, consider the procedure beginWrite that acquires the lock in write mode by setting a program variable hasWriter of type boolean. While hasWriter is not visible to clients of the ReadersWriterLock class, the abstract variables writer and readers are. The annotations specifying the abstraction of beginWrite and the corresponding Plato code are
The next step was to annotate and check the clients of `ReadersWriterLock` to ensure that they follow the synchronization discipline for accessing shared data. The part of Mercator that we analyzed uses two readers-writer locks—L1 and L2. We use the following `unwritable_by_env_if` annotation to state that before modifying the variable `tbl`, the background thread should always acquire lock L1 in write mode, but a worker thread need only acquire the mutex on lock object L2.

```java
/*@ unwritable_by_env_if (tid == backgroundThread && L1.writer == tid) || (tid instanceof Worker && L2.holder == tid) */
private long[][] tbl; // the in-memory table
```

We also provided specifications of public methods that can access the shared data and used inlining to avoid annotating non-public methods.

Overall, we needed to insert 55 annotations into the source code. The majority of these annotations (21) were needed to specify and prove the implementation of readers-writer locks. However, once the readers-writer class is specified, its specification can be re-used when checking many clients of this class.

Interface annotations (apart from those in `ReadersWriterLock`) numbered 16, and largely consisted of constraints on the type of thread that could call a method, and about locks that needed to be held on entry to a method.

We did not find any bugs in the part of Mercator that we analyzed; however, we injected bugs of our own, and Calvin located those. In spite of inlining all non-public methods, the analysis took less than 10 minutes for all except one public method. The exception was a method of 293 lines (after inlining non-public method calls), on which the theorem prover ran overnight to report no errors.
We ran Calvin on `java.util.Vector` class (about 400 LOC) from JDKv1.2. There are two shared fields: an integer `elementCount`, which keeps track of the number of valid elements in the vector, and an array `elementData`, which stores the elements. These variables are protected by the mutex on the `Vector` object.

```java
/*@ unwritable_by_env_if this.holder == tid */
protected int elementCount;
/*@ unwritable_by_env_if this.holder == tid */
protected Object elementData[];

/*@ global_invariant 0 <= elementCount && elementCount <= elementData.length */
/*@ global_invariant elementData != null */
```

Based on the specifications, Calvin detected a race condition illustrated in the following excerpt.

```java
public int lastIndexOf(Object elem) {
    return lastIndexOf(elem, elementCount-1); // RACE!
}

public synchronized int lastIndexOf(Object elem, int index) {
    ....
    for (int i = index; i >= 0; i--)
        if (elem.equals(elementData[i]))
            ....
}

synchronized void trimToSize() { ... }

synchronized boolean removeAllElements() { ... }
```

Suppose there are two threads manipulating a `Vector` object `v`. The first thread calls `v.lastIndexOf(Object)`, which reads `v.elementCount` without acquiring the lock on `v`. Now suppose that before the first thread calls `lastIndexOf(Object, int)`, the second thread calls `v.removeAllElements()`, which sets `v.elementCount` to 0, and then `trimToSize()`, which resets `v.elementData` to be an array of length 0. Then, when the first thread tries to access `v.elementData` based on the old value of `v.elementCount`, it will trigger an array out-of-bounds exception. An erroneous fix for this race condition is as follows:

```java
public int lastIndexOf(Object elem) {
    int count;
    synchronized(this) { count = elementCount-1; }
    return lastIndexOf(elem, count);
}
```
Even though the lock is held when `elementCount` is accessed, the original defect still remains. RCC/Java [15], a static race detection tool, caught the original defect in the `Vector` class, but will not catch the defect in the modified code. Calvin, on the other hand, still reports this error as what it is: a potential array out-of-bounds error. The defect can be correctly fixed by declaring `lastIndexOf(Object)` to be `synchronized`.

8 Related Work

A variety of static and dynamic checkers have been built for detecting data races in multithreaded programs [2, 7, 40, 37, 18]; however, these tools are limited to checking a subset of the synchronization mechanisms found in systems code. For example, RCC/Java [15, 16] is an annotation-based checker for Java that uses a type system to identify data races. While this tool is successful at finding errors in large programs, the inability to specify subtle synchronization patterns results in many false alarms. Moreover, these tools cannot verify invariants or check refinement of abstractions. The methods proposed by Engler et al. [13, 14] for checking and inferring simple rules on code behavior are scalable and surprisingly effective, but cannot check general invariants.

Several tools verify invariants on multithreaded programs using a combination of abstract interpretation and model checking. The Bandera toolkit [12] uses programmer-supplied data abstractions to translate multithreaded Java programs into the input languages of various model checkers. Yahav [42] describes a method to model check multithreaded Java programs using a 3-valued logic [36] to abstract the store. Since these tools explicitly consider all interleavings of the multiple threads, they have difficulty scaling to large programs. Ball et al. [5] present a technique for model checking a software library with an unspecified number of threads that are identical and finite-state. Bruening [8] has built a dynamic assertion checker based on state-space exploration for multithreaded Java programs. His tool concurrently runs an Eraser-like [38] race detector to ensure the absence of races, which guarantees that `synchronized` code blocks can be considered atomic. Stoller [41] provides a generalization of Bruening’s method to allow model checking of programs with either message-passing or shared-memory communication. Both of these approaches focus on mutex-based synchronization and operate on the concrete program without any abstraction.

The compositional principle underlying our technique is assume-guarantee reasoning, of which there are several variants. One of the earliest assume-guarantee proof rules was developed by Misra and Chandy [31] for message-passing systems, and later refined by others (e.g., [25, 35, 32]). However, their message-passing formulation is not directly applicable to shared-memory soft-
The most closely related previous work is that by Jones [24] and by Abadi and Lamport [1]. Jones [24,23] gave a proof rule for multithreaded shared-memory programs and used it to manually refine an assume-guarantee specification down to a program. This proof rule of Jones allows each thread in a multithreaded program to be verified separately, but the program for each thread does not have any procedure calls. We have extended Jones’ work to allow the proof obligations for each thread to be checked mechanically by an automatic theorem prover, and our extension also handles procedure calls. Stark [39] also presented a rule for shared-memory programs to deduce that a conjunction of assume-guarantee specifications hold on a system provided each specification holds individually, but his work did not allow the decomposition of the implementation. Abadi and Lamport [1] consider a composition of components, where each component modifies a separate part of the store. Their system is general enough to model a multithreaded program since a component can model a collection of threads operating on shared state and signaling among components can model procedure calls. However, their proof rule does not allow each thread in a component to be verified separately.

In recent work [21], we have begun to explore an extension to the abstraction mechanism presented here. We augment simulation-based abstraction with the notion of reduction, which was first introduced by Lipton [28]. Reduction permits us to identify sequences of steps in a procedure that are guaranteed to execute without interference. Such “atomic” sequences can be summarized by a single step in procedure specifications, thereby making specifications even more concise in some cases.

9 Conclusions

We have presented a new methodology for modular verification of multithreaded programs, based on combining the twin principles of thread-modular reasoning and procedure-modular reasoning. Our experience with Calvin, an implementation of this methodology for multithreaded Java programs, shows that it is scalable and sufficiently expressive to check interesting properties of real-world multithreaded systems code.
References

A Proof of modular verification theorem

Lemma 1 If the statement $l()$ is simulated by the statement $\hat{A}(l)$ with respect to $\hat{E}(l)$, then the program $\left\|l()\right\|$ is simulated by the program $\left\|\hat{A}(l)\right\|$.

Proof Let

\[
\begin{align*}
P \overset{\text{def}}{=} & \left\|l()\right\| \\
Q \overset{\text{def}}{=} & \left\|\hat{A}(l)\right\| \\
P_j \overset{\text{def}}{=} & \mathcal{P}(l(), \hat{E}(l), j) \\
Q_j \overset{\text{def}}{=} & \mathcal{P}(\hat{A}(l), \hat{E}(l), j)
\end{align*}
\]

We prove that if τ is a trace of P, then there is a trace τ' of Q such that (1) τ is subsumed by τ', and (2) if τ' does not go wrong, then τ is a trace of P_j for all $1 \leq j \leq n$. The proof is by induction on the length of τ.

- **Base Case:** Let $\tau = \omega$. This trivial trace clearly satisfies the desired property.
- **Induction Step:** Suppose τ is obtained from a run $r_a = \sigma_0 \xrightarrow{\omega_a} \sigma_1 \cdots \sigma_k \xrightarrow{\omega_k} \sigma_k |_{\omega}$ is a run of P. Let r be the prefix of r_a that excludes the last transition. By the induction hypothesis, there is a run $r_d = \sigma_0 \xrightarrow{\omega_d} \sigma_1 \cdots \sigma_{l-1} \xrightarrow{\omega_{l,d}} \omega_d$ of Q such that $\text{trace}(r_d)$ subsumes $\text{trace}(r)$. If $\omega_d = \text{wrong}$, then $\text{trace}(r_d)$ also subsumes $\text{trace}(r_a) = \tau$ and we are done. Otherwise $\omega_d = \sigma_k \neq \text{wrong}$, $l = k$, and there is a run $r_b = \sigma_0 \xrightarrow{\omega_0} \sigma_1 \cdots \sigma_{k-1} \xrightarrow{\omega_{k-1}} \sigma_k$ of P_j.

We first prove that τ is subsumed by a trace of Q. A run r_{ab} of P_j can be obtained from r_a and r_b by replacing actions of thread j in r_b by corresponding actions of thread j in r_a and adding the last action of thread j in r_a to the end of r_b. This run r_{ab} has the property that $\text{trace}(r_{ab}) = \text{trace}(r_a) = \tau$. Since P_j is simulated by Q_j, there is a run $r_c = \sigma_0 \xrightarrow{\omega_0} \sigma_1 \cdots \sigma_{m-1} \xrightarrow{\omega_{m-1}} \sigma_m \xrightarrow{\omega_c} \omega_c$ of Q_j such that $\text{trace}(r_c)$ subsumes $\text{trace}(r_{ab}) = \tau$. A run r_{ad} of Q can be obtained from r_c and r_a by replacing actions of thread j in r_d by corresponding actions of thread j in

If \(m = k \), we also append the last action of thread \(j \) in \(r_c \) to \(r_d \). This run \(r_{cd} \) has the property that \(\text{trace}(r_{cd}) = \text{trace}(r_c) \) and therefore it subsumes \(\tau \).

We now prove that if \(\omega_c \neq \text{wrong} \), then \(\tau \) is a trace of \(P \) for all \(i \in \text{Tid} \). If \(\omega_c \neq \text{wrong} \), then \(m = k \) and \(\omega_c = \omega_a \) and \(\text{trace}(r_a) = \text{trace}(r_c) = \tau \). Thus we get that \(\tau \) is a trace of \(P_j \). Now, pick \(i \in \text{Tid} \) such that \(i \neq j \). By the induction hypothesis, there is a run \(r_c = \sigma_0 \xrightarrow{\ell_{1,\ell_1}} \sigma_1 \cdots \sigma_{k-1} \xrightarrow{\ell_{k,\ell_k}} \sigma_k \) of \(P_i \). We have shown that \(\sigma_k \xrightarrow{[j,\ell]} \omega_a \) is a transition of \(Q \). From the definition of \(Q \), the atomic operation \(d \) is of the form

\[
(p \land I(I)) \land (X \land I'(-l) \land \forall i \in \text{Tid} : i \neq \text{tid} \Rightarrow \hat{E}(l)[\text{tid} := i]).
\]

If \(\omega_a \neq \text{wrong} \), then \(\hat{E}(l)[\text{tid} := i](j, \sigma_k, \omega_a) \) holds. Therefore, the run \(r_c \) of \(P_i \) can be extended to \(\sigma_0 \xrightarrow{\ell_{1,\ell_1}} \sigma_1 \cdots \sigma_{k-1} \xrightarrow{\ell_{k,\ell_k}} \sigma_k \xrightarrow{[j,\ell]} \omega_a \) and we get that \(\tau \) is a trace of \(P_i \).

\[\Box\]

Lemma 2 If a statement \(S \) is simulated by a statement \(T \) with respect to environment assumption \(E \) and \(E' \) implies \(E \), then \(S \) is simulated by \(T \) with respect to \(E' \).

Proof

Fix \(j \in \text{Tid} \) and let

\[
\begin{align*}
P_{j} & \stackrel{\text{def}}{=} P(S, E, j) \\
Q_{j} & \stackrel{\text{def}}{=} P(T, E, j) \\
P'_{j} & \stackrel{\text{def}}{=} P(S, E', j) \\
Q'_{j} & \stackrel{\text{def}}{=} P(T, E', j)
\end{align*}
\]

Consider a run \(r = \sigma_0 \xrightarrow{\ell_{1,\ell_1}} \sigma_1 \cdots \xrightarrow{\ell_{m,\ell_m}} \omega \) of \(P'_{j} \), for arbitrary \(j \). Consider all transitions \(\sigma_{i-1} \xrightarrow{\ell_{i,\ell}} \sigma_i \) in \(r \) where \(t_i \neq j \). For each such transition, \(E'(j, \sigma_{i-1}, \sigma_i) \) holds. Since, \(E' \) implies \(E \), \(E(j, \sigma_{i-1}, \sigma_i) \) holds. Therefore, \(r \) is a run of \(P_j \).

Since \(P_j \subseteq Q_j \), there exists a run \(r' = \sigma_0 \xrightarrow{\ell_{1,\ell_1}} \sigma_1 \cdots \xrightarrow{\ell_{n,\ell_n}} \omega' \) of \(Q_j \) such that \(\text{trace}(r') \) subsumes \(\text{trace}(r) \). Consider any transition \(\sigma_{i-1} \xrightarrow{\ell_{i,\ell_i}} \sigma_i \) in \(r' \) where \(t_i \neq j \). Since \(\text{trace}(r') = \text{trace}(r) \), both \(E(j, \sigma_{i-1}, \sigma_i) \) and \(E'(j, \sigma_{i-1}, \sigma_i) \) hold. Therefore, \(r' \) is also a run of \(Q'_j \).
Thus, we get \(P'_j \subseteq Q'_j \) for all \(j \in \text{Tid} \) and thereby \(S \subseteq_E T \).

\[\square \]

We introduce a few additional definitions for the remainder of this appendix. Let \(\mathcal{P}^d(B, E, j) \) be the parallel program in which the \(j \)-th thread executes \(B \) with the depth of its stack bounded by \(d \) and every other thread executes \(E^*[\text{tid} := j] \). We write \(B \subseteq_E^d A \) to indicate that the program \(\mathcal{P}^d(B, E, j) \) is simulated by the program \(\mathcal{P}^d(A, E, j) \) for all \(j \in \text{Tid} \).

Let \(\bar{u} \) be a path that is the concatenation of \(n \) paths \(u_1, u_2, \ldots, u_n \). Let \(r_1, r_2, \ldots, r_{n-1} \) be full runs of \(u_1, u_2, \ldots, u_{n-1} \) respectively, and let \(r_n \) be a run of \(u_n \), such that the last state in \(r_i \) is the first state of \(r_{i+1} \) for \(1 \leq i < n \). Then, we denote the corresponding run \(r \) of \(\bar{u} \) by \(r_1; r_2; \ldots; r_n \).

Lemma 3 Suppose for all \(m \in \text{Proc}, \text{InlineAbs}(\mathcal{B}(m)) \) is simulated by \(\hat{\mathcal{A}}(m) \) with respect to the environment assumption \(\hat{\mathcal{E}}(m) \). Then for all \(d \in \mathbb{N} \), statements \(S \), and environment assumptions \(E \) such that \(E \Rightarrow \hat{\mathcal{E}}(l) \) whenever \(l \) is called by \(S \), we have \(S \subseteq_E^d \text{InlineAbs}(S) \).

Proof We proceed by induction over the depth \(d \) of the stack.

- **Base case:** Suppose \(d = 0 \). By the definition of \([S]^0\) and \(\text{InlineAbs}(S) \), we get \([S]^0 \subseteq [\text{InlineAbs}(S)]\). Therefore \(S \subseteq_E^0 \text{InlineAbs}(S) \).

- **Induction step:** Suppose \(d \geq 1 \). We proceed by induction over the structure of \(S \). Fix an \(E \) such that \(E \Rightarrow \hat{\mathcal{E}}(m) \) whenever \(m \) is called by \(S \). Also, fix \(j \in \text{Tid} \).
 - \((S = a)\): Then, \(\text{InlineAbs}(S) = a \). Therefore, \([S]^d = [\text{InlineAbs}(S)]\), and so, \(S \subseteq_E^d \text{InlineAbs}(S) \).
 - \((S = S_1; S_2)\): Consider a run \(r \) of \(\mathcal{P}^d(S, E, j) \). There are two possible cases: (1) \(r \) is a run of \(\mathcal{P}^d(S_1, E, j) \), or (2) \(r = r_1; r_2 \), \(r_1 \) is a full run of \(\mathcal{P}^d(S_1, E, j) \), and \(r_2 \) is a run of \(\mathcal{P}^d(S_2, E, j) \).
 - Case 1. By the induction hypothesis, we have \(S_1 \subseteq_E^d \text{InlineAbs}(S_1) \). Therefore, there is a run \(r' \) of \(\mathcal{P}(\text{InlineAbs}(S_1), E, j) \) such that \(\text{trace}(r) \) is subsumed by \(\text{trace}(r') \). Since \(r' \) is a run of \(\mathcal{P}(\text{InlineAbs}(S_1), E, j) \), it is also a run of the program \(\mathcal{P}(\text{InlineAbs}(S_1); \text{InlineAbs}(S_2), E, j) \).
 - Case 2. By the induction hypothesis, we have that \(S_1 \subseteq_E^d \text{InlineAbs}(S_1) \) and \(S_2 \subseteq_E^d \text{InlineAbs}(S_2) \). Therefore, there is a full run \(r'_1 \) of \(\mathcal{P}(\text{InlineAbs}(S_1), E, j) \) such that \(\text{trace}(r_1) \) is subsumed by \(\text{trace}(r'_1) \). If \(r'_1 \) goes wrong, then \(r'_2 \) is also a run of \(\mathcal{P}(\text{InlineAbs}(S_1); \text{InlineAbs}(S_2), E, j) \) and we are done. Otherwise \(\text{trace}(r_1) = \text{trace}(r'_1) \). Further, there is also a run \(r'_2 \) of \(\mathcal{P}(\text{InlineAbs}(S_2), E, j) \) such that \(\text{trace}(r_2) \) is subsumed by \(\text{trace}(r'_2) \). Let \(r = r'_1; r'_2 \). Then, we get that \(\text{trace}(r) \) is subsumed by \(\text{trace}(r') \) and \(r' \) is a run of \(\mathcal{P}(\text{InlineAbs}(S_1); \text{InlineAbs}(S_2), E, j) \).

Since \(\text{InlineAbs}(S_1; S_2) = \text{InlineAbs}(S_1); \text{InlineAbs}(S_2) \), in both cases
we get that \(r' \) is a run of \(P(\text{InlineAbs}(S_1; S_2), E, j) \).

- \((S = S_1 \square S_2)\): Consider a run \(r \) of \(P^d(S, E, j) \). Either \(r \) is a run of \(P^d(S_1, E, j) \) or \(r \) is a run of \(P^d(S_2, E, j) \). By the induction hypothesis, we get \(S_1 \sqsubseteq^d_E \text{InlineAbs}(S_1) \) and \(S_2 \sqsubseteq^d_E \text{InlineAbs}(S_2) \). If \(r \) is a run of \(P^d(S_1, E, j) \), then there is a run \(r' \) of \(P(\text{InlineAbs}(S_1), E, j) \) such that \(\text{trace}(r) \) is subsumed by \(\text{trace}(r') \). If \(r \) is a run of \(P^d(S_2, E, j) \), then there is a run \(r' \) of \(P(\text{InlineAbs}(S_2), E, j) \) such that \(\text{trace}(r) \) is subsumed by \(\text{trace}(r') \). Since we have \(\text{InlineAbs}(S_1 \square S_2) = \text{InlineAbs}(S_1) \square \text{InlineAbs}(S_2) \), we get \(r' \) is a run of \(P(\text{InlineAbs}(S_1 \square S_2), E, j) \).

- \((S = S_1^*\)\): Consider a run \(r \) of \(P^d(S, E, j) \). Then, for some \(x > 0 \), there are runs \(r_1, r_2, \ldots, r_x \) with the following properties: (1) \(r = r_1; r_2; \ldots; r_x \), (2) for all \(0 < i < x \), \(r_i \) is a full run of \(P^d(S_1, E, j) \), and (3) \(r_x \) is a run of \(P^d(S, E, j) \).

By the induction hypothesis, we have \(S_1 \sqsubseteq^d_E \text{InlineAbs}(S_1) \). Therefore, for all \(0 < i < x \), there is a full run \(r'_i \) of \(P(\text{InlineAbs}(S_1), E, j) \) such that \(\text{trace}(r_i) \) is subsumed by \(\text{trace}(r'_i) \). Moreover, there is a run \(r'_2 \) of \(P(\text{InlineAbs}(S_1), E, j) \) such that \(\text{trace}(r_x) \) is subsumed by \(\text{trace}(r'_2) \).

Case 1. At least one of \(r'_i \) (\(1 \leq i \leq x \)) goes wrong. Let \(j \) be the least \(i \) that goes wrong. Let \(r' = r'_1; \ldots; r'_j \). Then \(r' \) is a run of \(P(\text{InlineAbs}(S_1)^*, E, j) \) and \(\text{trace}(r') \) subsumes \(\text{trace}(r) \).

Case 2. No run \(r'_i \) (\(1 \leq i \leq x \)) goes wrong. Let \(r' = r'_1; \ldots; r'_x \). Then \(r' \) is a run of \(P(\text{InlineAbs}(S_1)^*, E, j) \) and \(\text{trace}(r') = \text{trace}(r) \).

In both case, we get a run \(r' \) of \(P(\text{InlineAbs}(S_1)^*, E, j) \) such that \(\text{trace}(r') \) subsumes \(\text{trace}(r) \). Since \(\text{InlineAbs}(S_1^*) = \text{InlineAbs}(S_1)^* \), we get that \(r' \) is a run of \(P(\text{InlineAbs}(S_1^*), E, j) \).

- \((S = m()\)\): Since the statement \(m() \) calls the procedure \(m \), we have \(E \Rightarrow \hat{E}(m) \). Moreover, \(\hat{E}(m) \Rightarrow \hat{E}(l) \) whenever \(l \) is called by \(m \). Therefore \(E \Rightarrow \hat{E}(l) \) whenever \(l \) is called by \(m \). From the induction hypothesis, we get \(B(m) \sqsubseteq^d_E \text{InlineAbs}(B(m)) \). We also have that \(\text{InlineAbs}(B(m)) \sqsubseteq_{\hat{E}(m)} \hat{A}(m) \) since \(E \Rightarrow \hat{E}(m) \), we use Lemma 2 to get \(\text{InlineAbs}(B(m)) \sqsubseteq_E \hat{A}(m) \). Therefore \(B(m) \sqsubseteq^{d-1}_E \hat{A}(m) \). Since \([S]^d = [B(m)]^{d-1} \) and \(\text{InlineAbs}(S) = \hat{A}(m) \), we get \(S \sqsubseteq^d_E \text{InlineAbs}(S) \).

\[
\square
\]

Restatement of Theorem 1 Let \(P = ||l()|| \) be a parallel program. Suppose for all procedures \(m \in \text{Proc} \), the statement \(\text{InlineAbs}(B(m)) \) is simulated by \(\hat{A}(m) \) with respect to the environment assumption \(\hat{E}(m) \). Then the following are true.

1. \(P \) is simulated by \(Q = ||\hat{A}(l)|| \).
(2) If $\sigma \in \mathcal{I}(l)$, $A(l)$ is simulated by true* with respect to $\hat{E}(l)$, and $\sigma \overset{[t_1,a_1]}{\cdots} \overset{[t_k,a_k]}{\cdots} \omega$ is a run of P, then $\omega \neq \text{wrong}$ and $\omega \in \mathcal{I}(l)$.

Proof We consider each part of the theorem in turn.

- **Part 1:** By Lemma 3, we get $l() \sqsubseteq^d \text{InlineAbs}(l())$ for all $d \geq 0$. Therefore $l() \sqsubseteq \text{InlineAbs}(l())$. Since $\text{InlineAbs}(l()) = \hat{A}(l)$ we get $l() \sqsubseteq \hat{A}(l)$. By Lemma 1, we can conclude that P is simulated by Q.

- **Part 2:** Let r be a run of P. The proof is by induction on m, the length of the run.
 - **Base case:** For $m = 0$, $\sigma_0 \in \mathcal{I}(l)$, and hence the trivial run r does not end in wrong.
 - **Induction step:** Let $m > 0$ and let $r = \sigma_0 \overset{[t_1,a_1]}{\cdots} \overset{[t_n,a_{n-1}]}{\cdots} \overset{[t_m,b_m]}{\cdots} \omega$, where for each k, we have
 \[
 b_k = (p_k \land \mathcal{I}(l)) ? (X_k \land \mathcal{I}'(l) \land \forall i \in \text{Tid} : i \neq \text{tid} \Rightarrow \hat{E}(l)[\text{tid} := i]).
 \]
 (A.1)

 Now $\text{trace}(r')$ is also a trace of the program $\mathcal{P}(A(l), \hat{E}(l), t_m)$ for the following reasons:
 (1) For each state transition $\sigma_{k-1} \overset{[t_m,b_k]}{\cdots} \overset{[t_n,a_n]}{\cdots} \sigma_k$, b_k is of the form in Equation A.1. Since $\sigma_{k-1} \in \mathcal{I}(l)$, we get that $\sigma_{k-1} \overset{[t_m,p_k \land X_k]}{\cdots} \sigma_k$ holds.
 (2) For each state transition $\sigma_{k-1} \overset{[t,b_k]}{\cdots} \sigma_k$ where $t \neq t_m$, we have $(\hat{E}(l)[\text{tid} := t_m])(t, \sigma_{k-1}, \sigma_k)$ holds.

 Furthermore, since $A(l)$ is simulated by true*, we get that $\text{trace}(r')$ is a trace of $\mathcal{P}(\text{true}^*, \hat{E}(l), t_m)$, which means that $\omega' \neq \text{wrong}$. Therefore $n = m$ and $\omega' = \omega$. From the structure of b_m and the fact that $\sigma_{m-1} \in \mathcal{I}(l)$ and $\omega \neq \text{wrong}$, we get that $\omega \in \mathcal{I}(l)$.

\square