Title
The Control of Gene Expression by Nuclear RNA Degradation in Saccharomyces cerevisiae

Permalink
https://escholarship.org/uc/item/9769m7m2

Author
Roy, Kevin Richard Jones

Publication Date
2015

Peer reviewed|Thesis/dissertation
The Control of Gene Expression by Nuclear RNA Degradation in *Saccharomyces cerevisiae*

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Biology

by

Kevin Richard Jones Roy

2015
Ribonucleases play critical roles in controlling the quantity and quality of gene expression through processing and degrading RNA. An important class of evolutionarily conserved ribonucleases is the RNase III family of enzymes, which are distinguished by their specificity for cleaving double-stranded RNA (dsRNA). RNase III enzymes perform diverse functions in RNA metabolism in all eukaryotes studied, yet numerous questions remain regarding their range of natural targets in vivo, how they achieve substrate specificity, and how their cleavage activity is regulated. The model eukaryote Saccharomyces cerevisiae harbors one RNase III homolog, Rnt1p, which is responsible for all known dsRNA cleavage activity in this organism. To better understand the substrate selectivity of Rnt1p, we examined how its double-stranded RNA binding domain (dsRBD) recognizes a non-canonical substrate containing an AAGU tetraloop
sequence differing from the NGNN consensus sequence. Surprisingly, we found that upon engaging the RNA, the dsRBD induces a structural change in the AAGU loop so that it closely adopts the structure of the NGNN loop. This suggested that the structures of isolated RNAs in solution are not necessarily predictive of substrate specificity. We next characterized how structural dynamics in the dsRBD mediate specific binding. We found that in order to bind substrate dsRNA with high affinity, the dsRBD must undergo a significant conformational change involving the first alpha helix and beta strand of the dsRBD. Next we implemented computational RNA secondary structure screens to scan the genome for potential Rnt1p targets. We identified a characteristic Rnt1p stem-loop in the BDF2 mRNA, which is also subject to nuclear decay by the spliceosome through a first step splicing discard pathway. Cis acting mutations in BDF2 blocking Rnt1p or spliceosome-mediated decay (SMD) conferred distinct phenotypes for each pathway, revealing that salt stress hyper-activates Rnt1p cleavage while spliceosome-mediated decay controls BDF2 expression during DNA replication stress. To globally identify RNA targets of Rnt1p cleavage, we leveraged the fact that the 5´ product of Rnt1p cleavage is oligo-adenylated by Trf4/5-Air2/1-Mtr4 polyadenylation (TRAMP) complex prior to degradation by the nuclear exosome, a 3´-to-5´ exonuclease complex. We mapped TRAMP poly(A) tails genome-wide by high-throughput sequencing of 3´ ends of polyadenylated RNA in yeast cells lacking a nuclear exosome component. This revealed a global profile of destabilized 3´ ends arising from various nuclear RNA degradation mechanisms, including Rnt1p cleavage, transcription termination by the Nrd1p-Nab3p-Sen1p (NNS) pathway and roadblock transcription termination by Reb1p and TFIIIB DNA binding factors. While the NNS pathway was known to play a prominent role in limiting pervasive RNA polymerase II, we uncovered previously unappreciated roles for roadblocks and Rnt1p in controlling Pol II transcriptional output throughout the genome, revealing how cells use a multitude of nuclear mechanisms to regulate the levels of coding and cryptic transcripts.
The dissertation of Kevin Richard Jones Roy is approved.

Feng Guo

Elizabeta Nemeth

Guillaume Chanfreau, Committee Chair

University of California, Los Angeles

2015
To my friends and family for their unwavering support and encouragement
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>COMMITTEE PAGE</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>VITA</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1:</td>
<td>Introduction to nuclear RNA processing and degradation pathways in Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>CHAPTER 2:</td>
<td>The diverse functions of fungal RNase III enzymes in RNA metabolism [Article Reprint]</td>
</tr>
<tr>
<td>CHAPTER 3:</td>
<td>Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs [Article Reprint]</td>
</tr>
<tr>
<td>CHAPTER 4:</td>
<td>Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites [Article Reprint]</td>
</tr>
<tr>
<td>CHAPTER 5:</td>
<td>Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival [Article Reprint]</td>
</tr>
<tr>
<td>CHAPTER 6:</td>
<td>Uncovering the dark side of poly(A) tails reveals genome-wide mechanisms of nuclear RNA processing and decay</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1.1</td>
<td>Quality control and regulated degradation of messenger RNA precursors</td>
</tr>
<tr>
<td>1.2</td>
<td>Diverse roles for the nuclear 5´-3´ exonuclease Rat1p in gene regulation</td>
</tr>
<tr>
<td>1.3</td>
<td>Diverse roles for the nuclear 3´-5´ exosome complex in RNA processing and quality control</td>
</tr>
<tr>
<td>1.4</td>
<td>Architecture of the nuclear RNA exosome</td>
</tr>
<tr>
<td>1.5</td>
<td>Coupling of the nuclear exosome to RNA processing pathways</td>
</tr>
<tr>
<td>2.1</td>
<td>Architecture and evolutionary relationships of fungal RNase III representatives</td>
</tr>
<tr>
<td>2.2</td>
<td>Cotranscriptional rRNA processing is coupled to Pol I termination</td>
</tr>
<tr>
<td>2.3</td>
<td>Small nuclear RNA processing by RNase III Rnt1p</td>
</tr>
<tr>
<td>2.4</td>
<td>Small nucleolar RNA processing by RNase III Rnt1p</td>
</tr>
<tr>
<td>2.5</td>
<td>RNase III regulation of unspliced pre-mRNAs and lariat degradation</td>
</tr>
<tr>
<td>2.6</td>
<td>Fail-safe transcription termination of RNA polymerase II by RNase III</td>
</tr>
<tr>
<td>3.1</td>
<td>snR47-Derived dsRNA Capped by an AAGU Tetraloop Binds to the Rnt1p dsRBD</td>
</tr>
<tr>
<td>3.2</td>
<td>dsRNA Capped by an AAGU Tetraloop Is an Efficient Substrate for Rnt1p</td>
</tr>
<tr>
<td>3.3</td>
<td>Solution Structure of the Rnt1p dsRBD/AAGU Complex</td>
</tr>
<tr>
<td>3.4</td>
<td>Correlation Plots between Experimental and Back-Calculated RDCs for the dsRBD/AAGU and dsRBD/AGAA Hairpin Complexes</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison of the Structures of the AAGU and AGAA Tetraloops in the Free and dsRBD-Bound States</td>
</tr>
<tr>
<td>3.6</td>
<td>Interactions between the Rnt1p dsRBD and RNA</td>
</tr>
</tbody>
</table>
Figure 3.7 – Comparison of the Structures of Free dsRBD and RNA-Bound dsRBD

Figure 4.1 – Solution structure of the Rnt1p dsRBD

Figure 4.2 – Comparison of the free RDC-refined dsRBD with the RDC-refined dsRBD/AGAA complex (PDB ID: 2LUP)

Figure 4.3 – The α1–α3 extended hydrophobic interface

Figure 4.4 – NMR spin-relaxation parameters. R_1, R_2, and heteronuclear NOE values for the free dsRBD

Figure 4.5 – Fast- and slow-timescale dynamics of the free dsRBD and the dsRBD/AGAA complex at 150 mM NaCl

Figure 4.6 – The effect of substrate length and salt concentration on chemical shift

Figure 4.7 – Fast- and slow-timescale dynamics of dsRBD/AGAA and dsRBD/AGAA22 complexes at 300 mM NaCl

Figure 4.8 – In vivo analysis of dsRBD α1–β1 loop mutants

Figure 4.9 – dsRBD dynamics are associated with concerted structural changes necessary for binding

Figure 5.1 – BDF2 mRNA contains a canonical Rnt1p target stem-loop within its intron and is cleaved by Rnt1p in vivo and in vitro

Figure 5.2 – Mutation of the Rnt1p target stem-loop and 5′-splice site suppresses bdf1Δ growth defects in various environmental conditions

Figure 5.3 – Hyper-activation of Rnt1p cleavage of BDF2 mRNA in osmotic stress

Figure 5.4 – Spliceosome-mediated decay of BDF2 mRNA predominates over Rnt1p cleavage during DNA replication stress

Figure 5.5 – Environmental stress conditions control the expression of Bromodomain Factor 2 mRNA through modulating RNase III and spliceosome-mediated decay

Figure 6.1 – Genome-wide distribution of poly(A)+ 3′ ends in WT cells and cells lacking the nuclear exosome component Rrp6p

Figure 6.2 – The Reb1p DNA binding factor pauses Pol II genome-wide and destabilizes nascent transcripts through degradation by Rrp6p

Figure 6.3 – Reb1p-induced pausing of Pol II enhances termination efficiency of the Nrd1p-Nab3p-Sen1p pathway

Figure 6.4 – Reb1p-induced pausing of Pol II controls the selection of alternative cleavage and poly-adenylation sites
Figure 6.5 – Meta-gene analysis of Reb1 binding locations relative to transcription start sites and poly(A) sites for ORF transcripts

Figure 6.6 – The tRNA gene tG(GCC)E promotes optimal NNS-dependent termination of snR53 transcription

Figure 6.7 – Genome-wide roadblock by Pol III initiation factor TFIIIB restricts interference by cryptic Pol II transcription

Figure 6.8 – Co-transcriptional cleavage of SMF1 by Rnt1p protects cells against cadmium stress

Figure 6.9 – Genome-wide co-transcriptional cleavage by Rnt1p controls expression of coding and non-coding transcripts in salt stress
LIST OF TABLES

Table 3.1 – Structural Statistics of the Rnt1p dsRBD/AAGU Hairpin Complex..............................56

Table 4.1 – Structural statistics of Rnt1p dsRBD..68

LIST OF SUPPLEMENTARY FIGURES

Figure 4.S1 – Northern blot analysis of genes identified as targets of spliceosome-mediated decay..98

Figure 4.S2 – RT-PCR analysis of full-length BDF2 mRNA and spliced products generated by spliceosome-mediated decay in wild-type, the strain carrying the disruption of the Rnt1p stem loop (bdf2 stem mutant), and the deletion of nuclear exosome co-factor RRP6 (rrp6A)..99

Figure 4.S3 – Probe walking to verify the identity of the BDF2 mRNA degradation intermediates generated by spliceosome-mediated decay and Rnt1p...........100

Figure 4.S4 – The nuclear exosome co-factor RRP6, the nonsense mediated decay (NMD) factor UPF1, and the pre-mRNA nuclear retention factors MLP1/2 participate in the surveillance of BDF2 transcripts...101

Figure 4.S5 – Wild-type and the specified BDF2 mutants were shifted to 0.6 M NaCl for the time points indicated...102

Figure 4.S6 – The wild-type strain and the specified BDF2 mutants were grown on plates with the indicated media at 30°C for the indicated number of days.............103
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. cerevisiae</td>
<td>Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>pre-mRNA</td>
<td>precursor mRNA</td>
</tr>
<tr>
<td>poly(A)</td>
<td>poly-adenosine</td>
</tr>
<tr>
<td>Pol II</td>
<td>RNA polymerase II</td>
</tr>
<tr>
<td>TRAMP</td>
<td>Trf4/5p-Air2/1p-Mtr4p poly-adenylation complex</td>
</tr>
<tr>
<td>NNS</td>
<td>Nrd1p-Nab3p-Sen1p complex</td>
</tr>
<tr>
<td>DRS</td>
<td>Direct RNA Sequencing</td>
</tr>
<tr>
<td>RNase III</td>
<td>ribonuclease III</td>
</tr>
<tr>
<td>dsRNA</td>
<td>double-stranded RNA</td>
</tr>
<tr>
<td>dsRBD</td>
<td>double-stranded RNA binding domain</td>
</tr>
<tr>
<td>ncRNA</td>
<td>non-coding RNA</td>
</tr>
<tr>
<td>IncRNA</td>
<td>long non-coding RNA</td>
</tr>
<tr>
<td>CRAC</td>
<td>UV crosslinking and analysis of cDNAs</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

PERSONAL

First and foremost, I would like to thank my mentor, Dr. Guillaume Chanfreau, who steered the direction of this work and has fostered my development as a scientist in all facets. His constant support and belief in my abilities has allowed me to pursue this work fearlessly and encouraged me through uncertain times. From him, I have learned that with optimism and perseverance you can make your own good luck. I am truly fortunate to have trained in his lab and will always cherish the moments of discovery that came with patience and persistence. I am also thankful to my committee members for their support and advice on my thesis work.

I would also like to acknowledge my colleagues in the lab, past and present. I am especially indebted to Shakir Sayani, who first mentored me in the lab and introduced me to experimental molecular biology. I am also grateful for past graduate students Tad Kawashima, Cynthia Lee, Camille Nery, Chrissie Lee, Michael Janis, and post-docs Fernando Gonzales-Zubiate, Isabelle Toesca, and Cesar Fernandez for their friendship and support. I have had the pleasure of working in an intellectually stimulating environment, thanks to fellow graduate students Domi Hodko, Jason Gabunilas and Charles Wang. I am especially fortunate to have collaborated with Jason, who was always willing to discuss project ideas and contributed to much of the work presented in Chapter 6.

This work has benefited from extensive technical assistance from numerous undergraduates, and from them I have learned a great deal about how to be an effective mentor and lead a team. I would like to acknowledge undergraduates Arena Park, Tiffany Nguyen, Anh Tran, Doug Zhang, Rebekah Liu, and Duy Ngo. Doug, Rebekah, and Duy gave considerable technical assistance for the work presented in Chapter 6. Our technician Abby Gillespie has also greatly contributed to Chapter 6.
Most importantly, I am fortunate to have had the constant love and support from my best friend, Chitrada Kaweeteerawat, who fostered my balance in work and in life. She provided me with a regular dose of rejuvenation and inspiration with many outdoor adventures and national park trips, and has made me a better person in all areas of my life. Equally important, I am grateful to my parents and brothers for providing constant emotional support and encouraging me to pursue my dreams.

PROFESSIONAL

As a graduate student, I received financial support from the Philip J. Whitcome Graduate Fellowship from the Molecular Biology Interdepartmental Ph.D. Program at UCLA. I also was supported by a Ruth L. Kirschstein National Research Service Award GM007185, and a UCLA Graduate Division Dissertation Year Fellowship. The research presented in this work was supported by funding from the National Institutes of Health Grant GM061518 to Guillaume Chanfreau.

Reprint of publications:

Chapter 2 is a reprint of this publication. I gratefully acknowledge Elsevier for allowing me to include a reprint of this chapter (license number 3499620051458).

Chapter 3 is a reprint of this publication. I performed the in vivo work presented in Figure 2D and 2E. I gratefully acknowledge Professor Juli Feigon for the opportunity to collaborate in this work and for granting permission to include this publication in my
thesis. I thank Elsevier for allowing me to include a reprint of this chapter (license number 3691730767502).

Chapter 4 is a reprint of this publication. I performed the *in vivo* work presented in Figure 8. I am grateful to Professor Juli Feigon for the opportunity to collaborate and for granting permission to include this publication in my thesis. I thank Elsevier for allowing me to include a reprint of this chapter (license number 3691730915282).

Chapter 5 is a reprint of this publication. The content of this work is licensed by the Creative Commons Attribution (CC BY).

Chapter 6 is a draft of a manuscript in preparation. This work would not have been possible without the following co-authors and their respective contributions: Jason Gabunilas, for yeast strain construction, culturing, Northern blot analysis, and assistance with preparation of DNA libraries for high-throughput RNA sequencing; Elisabeth Petfalski and Professor David Tollervey of the Wellcome Trust Centre for Cell Biology at the University of Edinburgh for performing the UV crosslinking and analysis of cDNAs (CRAC) on Rnt1p; Marco Morselli and Professor Matteo Pellegrini for preparing cDNA libraries for Illumina high-throughput RNA sequencing; Rebekah Liu, Duy Ngo, Douglas Zhang, and Abby Gillespie, for extensive technical assistance with yeast strain construction, culturing, and Northern blot analysis.
VITA

EDUCATION

2009………………………… B.S./M.S. in Biochemistry and Molecular Biology, University of California, Los Angeles (UCLA), Los Angeles, CA

PUBLICATIONS

ORAL PRESENTATIONS

RNA Society Annual Meeting, UW-Madison, May 2015. ‘Exploring the dark side of poly(A) tails: Diverse mechanisms control 3´-end processing and transcription termination genome-wide’

MBI Annual Retreat, UCLA, April 2015. ‘Extensive Control of Pervasive Transcription by RNase III’

Gene Regulation Group Monthly Seminar Series, UCLA, March 2015. ‘Exploring the dark side of poly(A) tails reveals diverse mechanisms directing co-transcriptional RNA degradation and transcription termination genome-wide’

MBI Annual Retreat, UCLA, October 2010. ‘The role of the mitochondrial degradosome and a putative RNase III in mitochondrial RNA processing.’

David S. Sigman Symposium, UCLA, January 2013. (Poster) ‘Uncovering New Functions for Yeast RNAse III’

AWARDS

Jules Brenner Scholar’s Achievement Fellowship 2014 – 2015

UCLA Graduate Division Dissertation Year Fellowship 2014 – 2015

Cellular and Molecular Biology NIH Training Grant 2010 – 2013

Philip J. Whitcome Graduate Fellowship 2009 – 2010
CHAPTER 1

Introduction to Nuclear RNA Processing and Degradation in *Saccharomyces cerevisiae*
RNA Maturation: Quality Control and Regulation

For optimal growth and survival, cells must precisely regulate the types and quantities of RNAs and proteins expressed from their genome. In eukaryotic cells, precursor messenger RNAs (pre-mRNAs) must undergo multiple processing steps in the nucleus prior to export of the mature mRNAs and translation in the cytoplasm. These steps include the addition of a protective 5´-5´ triphosphate-linked methyl-guanosine (5´ cap), the removal of introns through splicing, 3´-end cleavage and polyadenylation, and association with specific RNA-binding proteins to form export-competent messenger ribonucleoprotein particles (mRNPs) (Tutucci and Stutz, 2011). While transcriptional regulation dictates the initial levels of precursor RNA, the numerous steps required for RNA biogenesis provide multiple points of regulation that together determine what fraction of precursor RNAs are matured into functional RNAs (Fig. 1; Mata et al., 2005).

At each stage in RNA biogenesis, stalled processing intermediates or aberrantly processed RNAs may exit functional maturation pathways and be turned over by nuclear RNA degradation pathways (Das et al., 2003; Parker, 2012). Defects in 5´ cap addition, cap methylation, splicing, or 3´ end cleavage and polyadenylation all result in enhanced degradation of the aberrant transcripts by exoribonucleases (Jimeno-González et al., 2010; Bousquet-Antonelli et al., 2000; Jiao et al., 2010; Galy et al., 2004). Furthermore, co-transcriptional packaging of specific RNA binding proteins with nascent RNAs is required for efficient 3´-end cleavage and polyadenylation, localization of the mRNA with nuclear pores, and mRNA export (Tutucci and Stutz, 2011). Defects in mRNP formation result in nuclear retention and rapid destabilization of the transcript (Saguez et al., 2008). While many of these quality control mechanisms were initially identified by artificial mutation-induced defects, mounting evidence indicates that many of the steps in mRNP biogenesis are not constitutive but are dynamically regulated, such that a substantial fraction of precursors fail to pass through each stage (Fig. 1.1;
An emerging concept is that RNA degradation machineries serve both an RNA surveillance function to remove defective molecules from the pool of cellular RNAs, and increase the cellular regulatory capacity to degrade a fraction of otherwise functional RNA processing intermediates or mature mRNAs (Houseley and Tollervey, 2009; Ghosh and Jacobson, 2010). Kinetic competition between maturation factors and degradation factors for precursor RNA substrate likely dictates the proportion of transcripts diverted to degradation pathways at each biogenesis step (Bousquet-Antonelli et al., 2000; Mühlemann and Jensen, 2012).

In addition to turnover of precursor and mature RNAs, a significant role for RNA degradation systems appears to be the removal of pervasive Pol II transcripts, which are defined as poorly characterized ncRNAs that arise from promiscuous Pol II activity throughout the genome (Tisseur et al., 2011; Jensen et al., 2013). For the majority of these pervasive ncRNAs, the extent to which these transcripts have cellular functions, and whether such functions are mediated merely in cis by the act of their transcription or in trans by the transcript per se, has yet to be fully unraveled (Clark et al., 2011; Guil and Esteller, 2012; Tudek et al., 2015). The primary RNA degradation pathways operating in the nucleus and their associated ribonucleases are introduced below.

Nuclear 5´ to 3´ RNA Degradation Pathways

The predominant mode of nuclear and cytoplasmic RNA turnover in eukaryotes involves exonucleases, which are distinguished by their directionality (5´ to 3´ or 3´ to 5´). In eukaryotes, a single enzyme conducts the vast majority of nuclear 5´ to 3´ degradation. The gene encoding this enzyme was initially isolated through multiple independent genetic screens (Amberg et al., 1992; Di Segni et al., 1993; Kenna et al., 1993). The first involved screening temperature sensitive yeast strains for defects in mRNA export, and led to the identification of ribonucleic
acid trafficking 1 (RAT1), recognized to have homology to the previously characterized exoribonuclease 1 (XRN1), a highly processive enzyme favoring RNA substrates with 5´ monophosphates (Stevens, 1978; Stevens and Maupin, 1987). Rat1p is an essential gene in budding yeast, and has diverse functions in stable non-coding RNA (ncRNA) maturation, control of RNA polymerase II (Pol II) elongation and termination, and turnover of aberrantly processed ncRNAs or cryptic ncRNAs (Krzyszton et al., 2012). A major function of Rat1p is to trim 5´ extensions from ncRNA precursors involved in ribosome biogenesis, including the 5.8S and 25S ribosomal RNAs and small nucleolar RNAs (Fig. 1.2A; Henry et al., 1994; Qu et al., 1999; Lee et al., 2003; Henras et al., 2015). Rat1p exonuclease digestion stops at the mature 5´ ends when it encounters stable RNA secondary structures or 5´ ends protected by RNA-binding proteins (Granneman et al., 2011; Petfalski et al., 1998). Rat1p, along with the major cytoplasmic 5´ to 3´ exonuclease Xrn1p, also degrades endonuclease cleavage products generated by the yeast RNase III homolog Rnt1p, which targets various stem-loop structures present in pre-mRNA introns and open reading frames (Danin-Kreiselman et al., 2003; Ge et al., 2005).

Another critical cellular function for Rat1p is to promote transcription termination of RNA polymerase II (Pol II). After cleavage and polyadenylation of the nascent RNA, the downstream 3´ RNA fragment is recognized and degraded by Rat1p (Kim et al., 2004; Luo et al., 2006). When the Rat1p-RNA degradation complex catches up to the Pol II elongation complex, the Pol II-RNA-DNA ternary complex is destabilized to promote Pol II release from the template, in a manner that is enhanced by the Rat1p-binding partner Rai1p and the Sen1p helicase (Hage et al., 2008; Kawauchi et al., 2008). In addition, co-transcriptional cleavage of pre-rRNA by Rnt1p elicits termination in a Rat1p-dependent manner, in an analogous mechanism to Pol II termination (Fig. 1.2B; Hage et al., 2008). This was shown to provide a fail-safe mechanism for Pol II termination at various protein-coding genes in cases of defective cleavage and polyadenylation, whereby Rnt1p cleavage at specific stem-loop structures downstream of poly(A)
sites generates an entry site for Rat1p-dependent degradation and termination (Ghazal et al., 2009; Rondón et al., 2009). Importantly, this was shown to prevent read-through of Pol II into downstream transcriptional units (Ghazal et al., 2009; Rondón et al., 2009). Another quality control function for Rat1p, along with its phosphohydrolase binding partner Rai1p, is to degrade nascent RNAs that fail to undergo co-transcriptional 5´ cap addition or cap methylation, resulting in the degradation of the nascent transcript and early termination of transcription (Fig. 1.2C; Jimeno-González et al., 2010).

As Rat1p recognizes 5´-phosphate containing substrates independent of the polymerase or cleavage mechanism that generated them, it serves a broad role in the quality control of nuclear-localized transcripts. Indeed, Rat1p has been shown to rapidly degrade mis-folded or hypo-modified tRNAs in the nucleus in a manner that directly correlates with the accessibility of these 5´ ends to purified phosphatase or exonuclease in vitro (Fig. 1.2D; Dewe et al., 2012). Another recently characterized function for Rat1p is in the degradation of Pol II transcripts arising from telomeric and subtelomeric regions (Fig. 1.2E). The sense transcripts from these regions have been termed telomeric repeat-containing RNA (TERRA), and their antisense transcripts ARRET. These transcripts differ significantly from canonical Rat1p substrates, as they harbor canonical 5´ caps which normally protect against Rat1p activity (Porro et al., 2010; Feuerhahn et al., 2010). It is currently unknown what targets Rat1p to specifically degrade these transcripts. Overall, it is clear that Rat1p exhibits diverse roles in maturation, quality control, and degradation pathways (Krzyszton et al., 2012).

Nuclear 3´ to 5´ RNA Degradation by the Exosome

The vast majority of 3´ to 5´ degradation in both the nucleus and cytoplasm is conducted by the RNA exosome, an exonuclease complex conserved throughout eukaryotes and archaea. Similarly to the 5´ to 3´ exonuclease Rat1p, the nuclear localized RNA-exosome has diverse
functions in ncRNA maturation, including 3´ end formation of 5.8S rRNA, small nuclear and small nucleolar RNAs (sn(o)RNAs) (Fig. 1.3A; Allmang et al., 1999a). The nuclear exosome also mediates the turnover of hypomodified tRNA, cryptic unstable transcripts (CUTs), and pre-mRNAs at various stages of mRNP biogenesis (Fig. 1.3B, C; Kadaba et al., 2004; Kadaba et al., 2006; Schneider and Tollervey, 2013).

Structural and Catalytic Components of the Exosome

The first indications of the existence of the exosome complex came through genetics by screening temperature-sensitive yeast strains for defects in the 3´ processing of 5.8S rRNA, resulting in the identification of the *RRP4* subunit (Mitchell et al., 1996). Subsequent glycerol gradient and tandem mass spectrometry analyses of immunoprecipitates of protein A-tagged Rrp4p revealed that Rrp4p exists in a multi-protein complex with the RNase PH homologs Rrp41p, Rrp42p, Rrp43p, as well as a bacterial RNase R-related protein Rrp44p/Dis3p (Mitchell et al., 1997). Sequence-homology based searches for RNase PH-like sequences suggested additional yeast homologs, and led to the identification of Rrp40p, Rrp45p, Rrp46p, Mtr3p, and Csl4p as additional components of the exosome, confirmed by tandem mass spectrometry of affinity purified complexes obtained with protein A-tagged Rrp4p (Allmang et al., 1999b). Yet another component, Rrp6p, related to the bacterial RNase D, was found exclusively in the nuclear exosome (Allmang et al., 1999b).

Structural characterization of the eukaryotic exosome revealed a ring consisting of three different heterodimers Rrp41p-Rrp45p, Rrp46p-Rrp43p, and Mtr3-Rrp42p (Fig. 1.4A), a structural arrangement conserved in the archaeal exosome (Liu et al., 2006; Lorentzen et al., 2005). In eukaryotes, the ring requires three proteins (Rrp4p, Csl4p, and Rrp40p) to form a lid on one end for stability, and together these nine proteins make up the “core” exosome (Fig. 1.4B; Liu et al., 2006). The three lid proteins contain the K-homology (KH) and ribosomal
protein S1 (S1-type) domains known to bind RNA. However, the KH domain likely serves only a role in stabilizing the core structure as the conserved RNA binding motif is buried in the S1-KH interface (Januszyk and Lima, 2014). On the other hand, the S1 domain contains an extended loop with conserved basic residues that is well positioned for binding or guiding RNA through the central channel of the ring (Januszyk and Lima, 2010).

While structurally similar to the archaeal exosome and bacterial polynucleotide phosphorylase (PNPase), the eukaryotic exosome employs only hydrolytic cleavage and is devoid of any phosphorolytic activity, with the exception of some plants (Chekanova et al., 2002). Rrp44p/Dis3p and the nuclear specific-component Rrp6p are responsible for all catalytic activity of the yeast exosome complex in vivo and in vitro (Fig 1.4C; Dziembowski et al., 2006; Liu et al., 2006). Indeed, further characterization of the archaeal complex revealed that catalytic residues required for activity of the archaeal core subunits are not conserved in the respective eukaryotic homologues (Dziembowski et al., 2006; Lorentzen et al., 2005). Hints to the function of the catalytically inactive core came from biochemical and structural analyses showing that the ring harbors an 8-10 angstrom channel just large enough to accommodate single-stranded RNA but not double-stranded RNA (Liu et al., 2006). The active nuclease Rrp44p binds the bottom of the core ring, where it was proposed to receive the 3’ end of single stranded RNA threaded from the top of the core through the channel of the ring (Fig 1.4C; Bonneau et al., 2009). The feeding of unstructured single-stranded RNA through the channel to the Rrp44p exonuclease domain was proposed to contribute to the highly processive degradation observed in vivo (Bonneau et al., 2009). Rrp44p/Dis3p also contains an endonuclease PIN domain, which requires manganese for activity in vitro (Lebreton et al., 2008), and may help to release RNA substrates that are stalled during Rrp44p exonuclease digestion (Schneider et al., 2012).

The other active exoribonuclease of the nuclear exosome, Rrp6p, is a member of the death effector domain containing DNA-binding protein (DEDD) family of 3’ to 5’ exonucleases
(Midtgaard et al., 2006). The gene encoding Rrp6p was initially identified through a genetic screen for suppressors of the poly(A) polymerase mutant pap1-1, and Rrp6p was shown to participate in the 3’ trimming of 5.8S rRNA precursor (Briggs et al., 1998). Rrp6p consists of an N-terminal domain (NTD), an exonuclease domain, and a helicase and RNase D C-terminal (HRDC) domain (Phillips and Butler, 2003). The NTD harbors a polycystin 2 N-terminus (PC2NT) domain, which creates a binding site for Rrp47p, a co-factor of the exosome that promotes Rrp6p exonuclease activity and allows Rrp6p to bind various RNA secondary structures (Stead et al., 2007). Rrp6p binds to the lid of the exosome at the top of the channel where it is implicated in the initial threading of RNA into the central channel (Fig. 1.4C; Makino et al., 2015). The current model is that Rrp44p degrades the RNA completely or until the lid of the exosome encounters a steric blockage, as is the case for 3’ trimming of stable ncRNAs such as the 5.8S rRNA (Makino et al., 2015). Subsequently, multiple subunits in the exosome are thought to undergo conformational changes to release the 3’ end of the RNA back through the channel where it is processed further by Rrp6p in a distributive mode of degradation (Makino et al., 2013; Makino et al., 2015).

Enhancement of Exosome Activity by the TRAMP Complex

The prokaryotic equivalent of the exosome, the bacterial degradosome, contains the ribonucleases PNPase and RNase E, and the helicase RhlB (Py et al., 1996). Additionally, the prokaryotic poly(A) polymerase PAPI physically interacts with the degradosome, and poly-adenylates the 3’ ends of mature mRNAs and degradation intermediates (Raynal and Carpousis, 1999). The single-stranded poly(A) tail allows the degradosome to stably anchor onto RNAs with 3’ terminal secondary structures or bound proteins, which otherwise would be refractory to degradosome binding (Carpousis, 2007). The helicase activity of the degradosome subsequently unwinds the 3’ secondary structures and removes bound proteins to initiate exonucleolytic degradation (Carpousis, 2007). The destabilizing function of the poly(A) tail in
prokaryotes stood in stark contrast to the well-characterized role of the eukaryotic poly(A) tail in promoting mRNA stability and translation in eukaryotes (Dreyfus and Régnier, 2002). However, it was subsequently uncovered that an ancient role of the poly(A) tail was likely conserved at least partially in eukaryotic nuclei, as cells deficient in exosome activity were found to accumulate poly(A) tails on incompletely processed precursors to stable ncRNAs (van Hoof et al., 2000; Kadaba et al., 2006).

These exosome-sensitive poly(A) tails were subsequently found to be added by a poly(A) polymerase complex distinct from that of the cleavage and polyadenylation machinery (LaCava et al., 2005; Vanácová et al., 2005). This complex was found to contain a non-canonical poly(A) polymerase (either Trf4p or Trf5p), a zinc-knuckle RNA binding protein (either Air1p or Air2p), and the essential RNA helicase Mtr4p, and was termed the TRAMP complex (Trf4/5p-Air1/2p-Mtr4p poly-adenylation complex) (Fig. 1.5A; LaCava et al., 2005; Vanácová et al., 2005). These studies demonstrated that in contrast to the processive canonical poly(A) polymerase Pap1p, the TRAMP poly(A) polymerase added adenosines in a distributive fashion. Additional work demonstrated that TRAMP specifically enhanced the Rrp6p activity of the exosome, with no effect on Rrp44p in vitro (Callahan and Butler, 2010). This explained why polyadenylated ncRNA processing intermediates specifically accumulated in the absence of Rrp6p (van Hoof et al., 2000). The Mtr4p component of the TRAMP complex interacts with the nuclear exosome component Rrp6p and its cofactor Rrp47p, suggesting a mechanism for coupling TRAMP oligo-adenylation to rapid degradation by the nuclear exosome (Fig. 1.4A; Schuch et al., 2014).

A major function for TRAMP and the nuclear exosome is in the degradation of cryptic pervasive transcripts (Wyers et al., 2005). These transcripts were found to arise from genomic regions previously thought to be transcriptionally silent, as well as from widespread bidirectional promoters (Davis and Ares, 2006; Xu et al., 2009). In budding yeast, the TRAMP-exosome
complex is recruited co-transcriptionally by the RNA binding proteins Nrd1p and Nab3p (Vasiljeva and Buratowski, 2006). Nrd1p and Nab3 associate with the Sen1p helicase to form the NNS complex, which promotes termination of transcription in a Rat1p-independent manner (Vasiljeva and Buratowski, 2006). Nrd1p specifically binds UGUA and GUAG, while Nab3p specifically binds UCUU and CUUG (Carroll et al., 2004; Carroll et al., 2007). A sufficient enrichment of these motifs within a region of nascent RNA likely controls the selectivity of the NNS complex for termination of Pol II at specific genomic regions (Schulz et al., 2013; Webb et al., 2014). The 3’ ends generated by NNS are not protected by poly(A) binding proteins, and are freely susceptible for TRAMP adenylation and exosome degradation (Lykke-Andersen et al., 2009). Detailed mechanistic work showed that the Nrd1p component of the NNS pathway interacts with both Pol II and Trf4p in a mutually exclusive manner, suggesting that subsequent to transcription termination and release of the nascent transcript from Pol II, Nrd1p recruits the TRAMP complex via Trf4p interaction to oligo-adenylate the bound transcript (Tudek et al., 2014).

In addition to contributing to degrading cryptic transcripts, the NNS pathway also operates on a substantial fraction of protein coding genes, through attenuation of transcription or by competing with cleavage and polyadenylation (Gudipati et al., 2012a; Webb et al., 2014). The activity of this pathway appears to be regulated by growth conditions, with nutrient depletion leading to a redistribution of Nrd1p and Nab3p onto RNAs not bound in rich medium (Darby et al., 2012). It has been proposed that when transcription of consensus motif-containing mRNA and snoRNA precursors decreases, Nrd1p and Nab3p are more available to bind transcripts with binding motifs deviating from the consensus sequences (Darby et al., 2012).

While there are mechanisms for direct recruitment of TRAMP to specific transcripts, the emerging view is that TRAMP has no inherent specificity for particular RNA sequences, and will oligo-adenylate any RNA 3’ end to which it can access in vivo (Belostotsky, 2009; Lykke-
Andersen et al., 2009). In this capacity, the TRAMP-exosome pathway constantly surveys the nuclear RNA population for RNAs that present single-stranded 3´ ends, which can arise from mis-folding of normally stable ncRNAs or from mRNAs that fail to associate with protective RNA-binding proteins (Fig. 1.5B). The addition of the oligo-adenosine tail to these RNAs provides an anchor for the Mtr4p helicase component of TRAMP to stably bind the RNA substrate, and proceed to unwind the 3´ end of the RNA and deliver ssRNA to the nuclear exosome (Jia et al., 2012). Accordingly, the TRAMP complex has been found to be required for a variety of nuclear exosome-mediated RNA surveillance and processing pathways, including the degradation of hypo-modified tRNAs, final maturation steps of rRNAs, snRNAs, and snoRNAs, and in processing and degrading cleavage products generated by Rnt1p (Fig. 1.5C; Kadaba et al., 2006; Allmang et al., 1999a; Egecioglu et al., 2006). In addition, the Reb1p DNA binding protein has recently been shown to block the progression of Pol II at various genomic loci and promote targeting of the nascent transcript to TRAMP and the nuclear exosome for degradation (Fig. 1.5C) (Colin et al., 2014).

Originally believed to function solely on transcripts after their release from Pol II, recent findings have demonstrated that the exosome can directly impact transcription. In Schizosaccharomyces pombe, the exosome functions in transcription termination by engaging the nascent 3´ ends of transcripts exposed by backtracked Pol II complexes (Lemay et al., 2014). In B-cells, the exosome is required for efficient class-switch recombination and somatic hypermutation, by recruiting the mutator protein activation-induced cytidine deaminase (AID) to genes expressing exosome-targeted anti-sense ncRNAs (Pefanis et al., 2014). These functions indicate that the nuclear exosome can impact DNA as well as RNA metabolism, and has acquired roles unique to specific cell types. Therefore, uncovering targets of the nuclear exosome is a high priority to understand how nuclear RNA degradation impacts the quality and quantity of gene expression.
Overview and Significance of the Thesis

Various nuclear RNA processing mechanisms are coupled to degradation by the nuclear exosome (Fig. 1.5C). While the NNS pathway has been well characterized to control gene expression through coupling Pol II termination with TRAMP-exosome degradation, it is unknown the extent to which the yeast RNase III homolog Rnt1p or other nuclear RNA processing mechanisms directly control gene expression. Cleavage by the nuclear endoribonuclease Rnt1p promotes the maturation of stable ncRNAs through cleavage of precursors, as well as degrades normal and aberrant forms of various mRNAs (Chanfreau et al., 1998; Egecioglu et al., 2006; Rondón et al., 2009; Ghazal et al., 2009). In chapter 2, established roles of the yeast nuclear RNase III homolog Rnt1p and its fungal orthologues in RNA metabolism are reviewed in detail. Rnt1p targets double-stranded RNA stems with single-stranded tetraloops of the sequence NGNN or AAGU. However, a full understanding of its binding and cleavage specificity is still lacking. In chapter 3, we present structural work showing how Rnt1p specifically recognizes a non-canonical substrate, providing key insights into its flexible rules of substrate selection. In chapter 4, we demonstrate how structural dynamics mediated by a hydrophobic hinge in the double-stranded RNA binding domain contribute to tight binding of Rnt1p to its substrates in vitro and in vivo.

Next we uncover physiological roles for Rnt1p cleavage in controlling gene expression. The full range of Rnt1p cleavage targets in vivo and its direct impact on the transcriptome, as well as whether this enzyme is regulated by environmental conditions, is not fully understood. In Chapter 5, we identify BDF2 mRNA as a new mRNA target for Rnt1p, and show that Rnt1p cleavage activity on BDF2 is significantly activated during salt stress. Interestingly, BDF2 is also targeted by the spliceosome in another specialized decay pathway termed spliceosome-mediated decay (SMD) (Volanakis et al., 2013). We demonstrate that SMD plays a minor role
during salt stress but is important for BDF2 repression during DNA replication stress, a condition that down-regulates Rnt1p cleavage of BDF2.

In Chapter 6, we present a genome-wide analysis of RNA decay pathways coupled to the nuclear exosome, and discover a global role for Rnt1p in controlling pervasive transcription and gene expression during salt stress. We also uncover widespread roles for the TFIIB transcription initiation factor and Reb1p DNA binding protein in defining transcriptional boundaries through coupling the pausing of Pol II to RNA 3′-end processing. We show that TFIIB blocks Pol II elongation and enhances NNS termination on snoRNAs and cryptic transcripts. We also demonstrate that Reb1p does not simply act as a roadblock for Pol II progression, but cooperates with the NNS pathway to terminate transcription of snoRNAs. We show that Reb1p also controls the selection of alternative poly(A) sites by the cleavage and poly-adenylation machinery by pausing the elongation of Pol II and enhancing the usage of upstream poly(A) sites. Taken together, these results demonstrate that rather than relying on a single pathway, cells depend on a combination of diverse mechanisms to promote Pol II termination and control pervasive transcription.
Figure 1.1. Quality control and regulated degradation of messenger RNA precursors.

Messenger RNA (mRNA) biogenesis involves extensive RNA processing, as well as the association of the mRNA with specific proteins to form messenger ribonucleoproteins (mRNPs). Defects in these processes or regulated inhibition of these processes can result in a lack of nuclear export and subsequent degradation by nuclear ribonucleases.
Figure 1.2. Diverse roles for the nuclear 5’-3’ exonuclease Rat1p in gene regulation. Rat1p mediates 5’ trimming of noncoding RNA precursors (A), transcription termination (B), quality control of pre-mRNA capping and tRNA modifications (C,D) and regulation of telomeric and sub-telomeric repeat containing RNAs (sense = TERRA; antisense = ARRET) (E).
Figure 1.3. Diverse roles for the nuclear 3´-5´ exosome complex in RNA processing and quality control. The nuclear exosome mediates the 3’ trimming of noncoding RNA precursors (A), quality control of tRNA modifications and degradation of cryptic unstable transcripts (CUTs) (B), quality control of pre-mRNA capping and tRNA modifications (C, D) and regulation of telomeric and sub-telomeric repeat containing RNAs (sense = TERRA; antisense = ARRET) (E).
Figure 1.4. Architecture of the nuclear RNA exosome. The exosome core ring contains six catalytically inactive RNase PH-like proteins (A). Three proteins containing K-homology / S1 RNA binding domains form a lid on top of the ring (B). The Rrp6p 3´-5´ exonuclease associates with the lid, while the essential Rrp44p 3´-5´ exonuclease binds to the bottom of the ring. Rrp44p also contains an endonuclease domain (C).
Figure 1.5. Coupling of the nuclear exosome to RNA processing pathways. The Trf4/5p-Air1/2p-Mtr4p poly-adenylation complex (TRAMP complex) oligo-adenylates RNA 3' ends, providing an unstructured tail for Mtr4p to bind the RNA. An interaction between Rrp6p and
Mtr4p is proposed to recruit Mtr4p and its bound RNA to the lid of the exosome. Mtr4p helicase activity likely promotes the threading of the 3´ end of the RNA through the exosome core ring to reach the Rrp44p exonuclease active site. (A). The combination of TRAMP and exosome activities constitutes a dual surveillance/processing function in the nucleus, where RNAs with unprotected 3´ ends are degraded completely, or trimmed until a stable structure blocks exosome 3´-5´ progression (B). Various termination mechanisms, distinct from the canonical cleavage and poly-adenylation machinery, generate unprotected 3´ ends that are subsequently targeted by TRAMP / exosome activity for trimming or degradation (C).
References

Raynal, L.C., and Carpousis, A.J. (1999). Poly(A) polymerase I of Escherichia coli: characterization of the catalytic domain, an RNA binding site and regions for the interaction with

The Diverse Functions of Fungal RNase III Enzymes in RNA Metabolism
The Diverse Functions of Fungal RNase III Enzymes in RNA Metabolism

Kevin Roy, Guillaume F. Chanfreau
Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA
1Corresponding author: e-mail address: guillom@chem.ucla.edu

Contents
1. Introduction
2. Phylogenetic Distribution and Conservation of RNase III Enzymes in Fungi
3. Ribosomal RNA Processing and RNA Polymerase I Transcriptional Termination
4. Small Nuclear RNAs Processing
5. Functions in Small Nucleolar RNAs Processing
 5.1 Processing of independently transcribed snoRNA precursors
 5.2 Cleavage of polycistronic transcription units
 5.3 Processing of intron-encoded snoRNAs
6. (Pre)-mRNA Surveillance, Degradation, and Regulation
7. RNA Polymerase II Termination
8. Conclusions and Perspectives
Acknowledgements
References

Abstract
Enzymes from the ribonuclease III family bind and cleave double-stranded RNA to initiate RNA processing and degradation of a large number of transcripts in bacteria and eukaryotes. This chapter focuses on the description of the diverse functions of fungal RNase III members in the processing and degradation of cellular RNAs, with a particular emphasis on the well-characterized representative in Saccharomyces cerevisiae, Rnt1p. RNase III enzymes fulfill important functions in the processing of the precursors of various stable noncoding RNAs such as ribosomal RNAs and small nuclear and nucleolar RNAs. In addition, they cleave and promote the degradation of specific mRNAs or improperly processed forms of certain mRNAs. The cleavage of these mRNAs serves both surveillance and regulatory functions. Finally, recent advances have shown that RNase III enzymes are involved in mediating fail-safe transcription termination by RNA polymerase II (Pol II), by cleaving intergenic stem-loop structures present downstream from Pol II transcription units. Many of these processing functions appear to be conserved in fungal species close to the Saccharomyces genus, and even in more distant eukaryotic species.
1. INTRODUCTION

RNase III enzymes were discovered over 45 years ago as enzymatic activities specific for cleaving double-stranded RNA in prokaryotes [1,2]. Representatives of this class of enzymes were characterized only more recently in eukaryotic cells. This chapter focuses on fungal representatives of this class of enzymes, with a special emphasis on describing their diverse functions in RNA metabolism. We mostly exclude from this discussion RNase III from the Dicer and Drosha families and their involvement in the RNA interference and microRNA biogenesis pathways, as these topics will be extensively treated in chapters from the next volume of this series. Instead, we focus on the function of RNase III enzymes in the processing of noncoding RNAs involved in splicing and ribosomal RNA processing and in the cleavage of specific mRNAs and read-through transcripts. Many of these enzymes are not essential in fungi, facilitating the steady-state analysis of potential RNA substrates of these enzymes. However, the fact that strains carrying deletions of the gene encoding these enzymes exhibit substantial growth defects reflects their functional importance in RNA metabolism. In the next sections, we will review the phylogenetic distribution and conservation of RNase III enzymes in fungi and describe the various RNA processing and degradation pathways that are known to involve cleavage by these enzymes.

2. PHYLOGENETIC DISTRIBUTION AND CONSERVATION OF RNase III ENZYMES IN FUNGI

RNase III enzymes are present in all kingdom and species except in Archaea, where the bulge-helix-bulge nucleases cleave endogenous dsRNA substrates [3]. RNase III proteins are identified by a characteristic catalytic domain exhibiting the signature motif NERLEFLGD (Fig. 10.1A and B). In addition, nearly all contain a C-terminal dsRNA-binding domain (dsRBD; Fig. 10.1A) with the conserved αββαα fold, with the one known exception of Giardia Dicer [5]. In addition to the catalytic and dsRBD domains, eukaryotic RNases III can contain additional accessory domains important for substrate specificity and proper positioning on the substrate (Fig. 10.1A; [6]). Based on domain architecture and evolutionary relationships, RNase III proteins can be divided into four classes [7]: class I, bacterial RNase III; class II, Drosha; class IIIa, canonical Dicer; and class IIIb, fungal...
Figure 10.1 Architecture and evolutionary relationships of fungal RNase III representatives. (A) Classification scheme for RNase III enzymes, which range in size from \(\sim 200 \) (class I) to \(\sim 2000 \) amino acids (class IIIa). Class I includes bacterial RNase III (homologues of *E. coli* rnc). Class II contains Drosha, which is involved in pre-rRNA processing and in the conversion of primary microRNA (pri-miRNA) transcripts to precursor microRNA (pre-miRNA) hairpins. Class IIIa contains the canonical Dicer enzymes involved in processing pre-miRNA to mature miRNA. Class IIIb includes the fungal RNase III enzymes, which are further divided into two types depending on the presence (Dcr1) or absence (Rnt1) of a second dsRBD at the C-terminus. (C) Alignment of the class IIIb RNase III domains around the highly conserved signature motif NERLEFLGDS indicated by the bracket. The six catalytic residues found in all active eukaryotic RNase III domains are highlighted in red; for *S. cerevisiae* Rnt1, these correspond to E241, D245, N278, K313, D317, and E320 (class I prokaryotic RNase III contains only four catalytic residues, lacking residues corresponding to N278 and K313). In the *Candida dicer*-like (Cd1/2) class of enzymes, these residues have been altered to become catalytically inactive. The function of these catalytically “dead” RNase III orthologues remains unknown. The multiple sequence alignment was performed using sequences from the Fungal Orthogroups Repository (http://www.broadinstitute.org/regev/orthogroups/) with the exception that *Candida parapsilosis* orthologues Cpar1/2/3 were identified by BLAST. ClustalX 2.1 program produced the alignment with default settings. Species abbreviations: Scer, *Saccharomyces cerevisiae*; Spar, *Saccharomyces paradoxus*; Smik, *Saccharomyces mikatae*; Sbay, *Saccharomyces bayanus*; Kwai, *Klyveromyces waltii*; Sklu, *Saccharomyces kluveri*; Klac, *Klyveromyces lactis*; Agos, *Ashbya gossypii*; Cgla, *Candida glabrata*; Scas, *Saccharomyces castellii*; Clus, *Clavispora lusitaniae*; Dhan, *Debaryomyces Hansenii*; Cgui, *Candida guilliermondii*; Ctro, *Candida tropicalis*; Calb, *Candida albicans*; Cpar, *Candida parapsilosis*; Lelo, *Lodderomyces elongisporus*; Sjap, *Schizosaccharomyces japonicus*; Soct, *Schizosaccharomyces octosporus*; Spom, *Schizosaccharomyces pombe*; Ylip, *Yarrowia lipolytica*; Anid, *Aspergillus nidulans*; Ncra, *Neurospora crassa*. (C) Phylogenetic tree of class IIIb fungal RNase III enzymes using the multiple sequence alignment from (B) visualized in the DrawTree 3.66 program on the Phylogeny.fr server [4].
RNases III, including the noncanonical Dicers (Dcr1) and the orthologues of *Saccharomyces cerevisiae* Rnt1p (Fig. 10.1A). In addition to lacking helicase and PAZ domains, noncanonical Dicers direct dsRNA cleavage internally, while canonical Dicers require dsRNA termini with a 3' OH overhang [7]. These mechanistic and sequence differences highlight a case of convergent evolution where RNase III enzymes of different origins evolved independently to take on the function of Dicer in the RNA interference pathway.

Modern-day budding yeasts outside of the *Candida* clade exhibit two different types of class IIIb enzymes, the first typified by *S. cerevisiae* Rnt1p and the second by *Saccharomyces castellii* noncanonical Dicer (Dcr1), which contains a second C-terminal dsRBD (Fig. 10.1A). The *Candida* lineage presents an exceptional case, as it contains two types of RNase III similar in domain architecture to Dcr1, but not syntenic with either DCR1 or RNT1 [8]. Class IIIb orthologues are found in all fungi, indicating that they evolved from an ancient fungal ancestor (Fig. 10.1B). The noncanonical Dicers are exclusive to the budding yeast clade, whereas class IIIa canonical dicers are exclusive to nonbudding yeasts and higher eukaryotes. The sequence similarities of noncanonical Dicers to Rnt1 suggest that they evolved from the RNT1 gene duplication and acquisition of a second dsRBD in an early budding yeast ancestor, perhaps with concomitant loss of the canonical Dicer [8]. Interestingly, the *Candida* lineage appears to have lost Rnt1p, while members of the *Saccharomyces* lineage, including *S. cerevisiae*, have lost Dcr1 and thus RNAi as well. In *Candida albicans*, a single noncanonical Dicer has evolved to perform both RNAi- and Rnt1-like processing functions, highlighting the functional plasticity of RNase III enzymes [8]. Rnt1p orthologue functions in non-RNAi dsRNA processing related to the maturation of noncoding RNA and surveillance of mRNAs are discussed in further detail in the next sections.

Biochemical and structural analyses have shown that *S. cerevisiae* Rnt1p specifically binds and cleaves dsRNAs capped by tetraloops exhibiting an NGNN sequence [9–12], as long as the sequence of the loop adopts the AGNN-type fold and does not form a GNRA- or UNCG-type fold [9,12,13]. An exception in the NGNN sequence was described for one substrate [14,15], but this loop sequence was found to adopt an AGNN-type fold upon binding of the Rnt1p dsRBD [11]. Bioinformatics analyses have shown that some of the budding yeast Rnt1p enzymes have evolved to conserve that specificity [16]. It is currently unknown how the dual-function Dcr1 enzymes present in the *Candida* clade recognize both specific stem-loop substrates, some of which contain the NGNN
tetraloops and others which do not, such as the generic substrates of the RNAi pathway. Interestingly, the *Candida* clade also contains catalytically inactive Dicer-like proteins termed Cdl (*Candida* Dicer-like). This protein family contains the same domain architecture as the Dcr1 protein family, but all six active site residues have been mutated to inactive amino acids (Fig. 10.1B). Other conserved residues within the catalytic domain have been retained in Cdl proteins, suggesting that the catalytic domain retains the overall domain fold and may serve a noncatalytic function [8]. As this protein family retains both dsRBDs, it is possible that it has a role in binding dsRNA *in vivo*. Notably, RNase III cleavage requires two catalytic domains assembled on the dsRNA substrate, so class I and class IIIb enzymes must form intermolecular dimers for cleavage to occur. It is possible that heterodimers may form in species with more than one RNase III enzyme and that the catalytically inactive Cdl1 proteins may interact with the active Dcr1 enzymes and regulate binding and/or cleavage activity.

3. RIBOSOMAL RNA PROCESSING AND RNA POLYMERASE I TRANSCRIPTIONAL TERMINATION

One of the first discovered physiological functions of fungal RNases III was the cleavage of the precursor of ribosomal RNA to generate the 35S pre-rRNA [17,18]. This cleavage occurs at a stem-loop structure located downstream from the 25S rRNA in the 3′ external transcribed spacer (ETS) region (Fig. 10.2), and this stem-loop is found in the rDNA of many Hemiascomycetes [8,16]. This processing function is conserved throughout fungi [16], but in the case of fungal species such as *Candida*, which lack a classical Rnt1p-like enzyme, this function is fulfilled by Dcr1, which is the only active RNase III enzyme in this organism [8]. A function for RNase III in the processing of the pre-rRNA seems highly conserved across eukaryotes, as RNase III homologues have been shown to be involved in pre-rRNA processing in human cells [19] and in plants [20].

This processing of the pre-rRNA occurs cotranscriptionally, as *S. cerevisiae* Rnt1p was shown to localize at the site of transcription of the ribosomal DNA and can be crosslinked to the ribosomal DNA [21]. In addition, Rnt1p can interact with several RNA polymerase I (Pol I) subunits [22], suggesting that a physical interaction with individual subunits of the polymerase in the context of elongation might help bring Rnt1p to its processing site once the polymerase has passed the region of the 25S rRNA.
In the case of *Schizosaccharomyces pombe*, processing at the 3′-end of the pre-rRNA by the RNase III Pac1 occurs within a large complex called the RAC complex [23], which influences the cleavage efficiency by Pac1.

RNase III not only initiates processing of the pre-rRNA [24], but it also triggers termination of transcription by RNA Pol I, as evidenced by the fact that Rnt1p-deficient *S. cerevisiae* strains are defective in transcription termination [25–27]. The current model, as depicted in Fig. 10.2, proposes that Rnt1p cleavage in the 3′-ETS introduces an entry site for the Rat1p exonuclease to degrade the downstream nascent RNA and simultaneously release Pol I from the template.

![Figure 10.2](image)

Figure 10.2 Cotranscriptional rRNA processing is coupled to Pol I termination. Cleavage of nascent pre-rRNA precursor by Rnt1p generates the 35S precursor and provides an entry site for the Rat1p exonuclease to degrade the downstream nascent RNA and simultaneously release Pol I from the template.

In the case of *Schizosaccharomyces pombe*, processing at the 3′-end of the pre-rRNA by the RNase III Pac1 occurs within a large complex called the RAC complex [23], which influences the cleavage efficiency by Pac1.

RNase III not only initiates processing of the pre-rRNA [24], but it also triggers termination of transcription by RNA Pol I, as evidenced by the fact that Rnt1p-deficient *S. cerevisiae* strains are defective in transcription termination [25–27]. The current model, as depicted in Fig. 10.2, proposes that Rnt1p cleavage in the 3′-ETS introduces an entry site for the Rat1p exonuclease to degrade the downstream nascent RNA and simultaneously release Pol I from the template.

Additional evidence for the fact that the processing activity of RNase III influences rDNA transcription was provided by the observation that the absence of RNase III leads to an increase in the number of transcriptionally active ribosomal DNA repeats and to an opening of repressed rDNA chromatin [22]. While this appears to be an attempt by the cell to compensate for the severe defects in pre-rRNA processing in the absence of Rnt1p, the precise mechanism that results in the change in rDNA chromatin architecture remains unknown.
While important to promote efficient production of ribosomal RNAs, the function of RNases III in pre-rRNA processing is not absolutely essential, as many fungal species are viable in the absence of RNase III activities. While this might be due to the duplication of genes encoding RNase III enzymes for some of these species, species such as *S. cerevisiae*, express only one member of this class of enzymes. In the absence of Rnt1p cleavage, a second fail-safe termination event is known to take place, which results in the production of an elongated form of the 25S ribosomal RNA transcript [26]. Thus, the production of functional rRNAs in the absence of RNase III activity reflects the ability of other ribonucleases to fulfill its 3’-processing functions, albeit less efficiently than if 3’-end trimming is preceded by Rnt1p endonucleolytic cleavage.

4. SMALL NUCLEAR RNAs PROCESSING

Small nuclear RNAs comprise five transcripts (U1, U2, U4, U5, and U6), one of which is transcribed by RNA Pol III (U6) and the others by RNA Pol II. Most of these RNAs, with the exception of U6, are processed at their 3’-ends by multiple redundant 3’-processing pathways, some of which involve cleavage of the 3’-extended small nuclear RNA (snRNA) precursor by RNase III (Fig. 10.3). The first hint of a function for fungal RNases III in snRNA processing was suggested by genetic suppression data showing that overexpression of the *S. pombe* RNase III Pac1 was sufficient to suppress defects in snRNA biogenesis in this species [29]. Direct evidence for a function for RNase III in the processing of snRNAs was first shown by the reconstitution of the U5 snRNA processing pathway *in vitro* [30]. U5 snRNA exists in *S. cerevisiae* in two forms, which differ at their 3’-end. The longer form, U5L, is processed in an Rnt1p-dependent pathway, while the short form, U5S, is processed in an Rnt1p-independent manner [30]. Cleavage of a stem-loop structure located close to the mature 3’-end of U5L generates an entry site for 3’–5’ exonucleases to generate the mature 3’-end. This final trimming is carried out by the nuclear exosome [31] and/or the Rex exonucleases [32]. The 3’–to-5’ exonuclease activity of the exosome is likely stimulated by polyadenylation of the Rnt1p cleavage product [33]. Exonuclease progression is blocked at the mature 3’-end by the binding of the Sm proteins [34], which ensure the production of the correct 3’-end. This pathway has proven to be similar for the U1, U2, and U4 snRNAs in *S. cerevisiae* [31,34,35], except that these snRNAs exhibit only one major 3’-end. For each of these snRNAs, cleavage by Rnt1p initiates one
possible processing pathway, but alternative 3′-processing pathways ensure the production of functional snRNAs in the absence of Rnt1p cleavage. For instance, the cleavage and polyadenylation machinery can generate polyadenylated but functional U2 snRNA when Rnt1p cleavage activity is inhibited [35], and Rnt1p-independent pathways have also been described for the processing of the U1 snRNA [34].

The function of RNase III in snRNA 3′-end processing is probably conserved in many fungi, at least in species evolutionarily close to S. cerevisiae. The presence of potential stem-loop structures that obey the cleavage specificity of Rnt1p was predicted based on the analysis of sequences downstream from snRNA genes in some Hemiascomycetes genomes [16]. Furthermore, the involvement of RNase III in snRNA processing was demonstrated experimentally for S. pombe Pac1 for U2 [36] and for U4 in Candida [8]. In S. pombe, cleavage of the precursor by Pac1p also promotes termination of transcription by RNA Pol II [37]. However, the quantitative contribution of RNase III to snRNA 3′-end processing might vary depending upon the species. For instance, in Candida, the major form of

Figure 10.3 Small nuclear RNA processing by RNase III Rnt1p. Pol II-transcribed U1, U2, U4, and U5 snRNA precursors contain Rnt1p target stem-loops downstream of the mature 3′-end. Cleavage by Rnt1 provides an entry site for Rrp6 and the nuclear exosome, and/or the Rex 3′-to-5′ exonucleases, to produce the mature 3′-end. The exonuclease activity of the exosome is stimulated by TRAMP-mediated oligoadenylation of the Rnt1 cleavage product. This pathway is similar for the U3 snoRNA.
the U5 snRNA is the U5S form [38], which, assuming functional conservation with S. cerevisiae, does not involve RNase III cleavage. Only a small amount of U5L can be detected in Candida [38], suggesting that the contribution of RNase III to U5 processing might be minor in this species in comparison to S. cerevisiae. In addition, in several species close to S. cerevisiae such as S. dairensis and S. kluyveri, only one form of U5 can be detected by Northern blot [39], which corresponds in size to the short form of U5. Thus, it appears that in these yeast species, the stem-loop structure that forms the Rnt1p recognition site might have been lost or is no longer efficiently recognized by the RNase III homologue, indicative of rapid evolution of RNA processing pathways in these species. Alternatively, it is possible that RNase III cleavage intermediates can be more readily trimmed to the shorter form in species other than S. cerevisiae.

5. FUNCTIONS IN SMALL NUCLEOLAR RNAs PROCESSING

Small nucleolar RNAs (snoRNAs) are noncoding RNAs involved in the processing and modification of ribosomal RNAs. They are grouped in two distinct families, the box C/D family, which catalyzes methylation of 2'-hydroxyls of the pre-rRNA precursor, and the box H/ACA family, which catalyzes the modification of uridines into pseudouridines in various RNAs (reviewed in Refs. [24] and [40]). Both families of snoRNAs are bound in vivo by four core proteins, different in each family, to form complexes termed small nucleolar ribonucleoproteins (snoRNPs), where one protein provides the enzymatic activity and the snoRNA provides target specificity via the guide sequence (reviewed in Refs. [24] and [40]). Expression of these snoRNAs is relatively diverse in fungi, as some of them are expressed from independent transcription units, others from polycistronic transcripts containing multiple snoRNAs in the same precursor, while a few are produced from the introns of host mRNA genes (which is how most snoRNAs are expressed in metazoans; reviewed in Ref. [41]). Because of this diversity in their genomic organization, it is not surprising that RNase III cleavage can have very diverse functions in the processing of snoRNAs. Depending on the location of the target stem-loop structures, cleavage of these precursors can promote 5' - and/or 3' -end processing, and in some cases, releases individual snoRNAs from polycistronic precursors or from introns of pre-mRNA transcripts.
5.1. Processing of independently transcribed snoRNA precursors

For most snoRNAs produced by independent transcription units, the main function of RNase III cleavage is to initiate the 5′-end processing. Cleavage of a stem-loop structure present in the 5′-extension of the precursors typically provides an entry site for 5′–3′ exonucleolytic processing, which is fulfilled by the exonucleases Xrn1p and Rat1p (Fig. 10.4A; [42]). These exonucleases stop at the mature 5′-end, probably because the binding of the snoRNP core proteins to the snoRNA block progression into the mature sequence. This 5′-end processing pathway is frequently found for S. cerevisiae box C/D snoRNAs [14,42,43] and less frequent for box H/ACA snoRNAs [43,44]. The conservation of stem-loop structures in other Hemiascomycetes suggests that at least some snoRNAs undergo a similar 5′-end processing pathway in these other fungal species [16]. As shown for other processing pathways, the contribution of Rnt1p cleavage to the production of mature snoRNAs depends on snoRNA species; some of these snoRNAs can be processed relatively efficiently in the absence of Rnt1p [42], showing that the 5′–3′ exonucleases Xrn1p and Rat1p can process the snoRNAs directly from decapped precursors.

For most of these independently transcribed snoRNAs, RNase III cleavage is not a major determinant of 3′-end processing. There are a few exceptions to this rule. One is the snR40 transcript, for which the target stem-loop that promotes processing loops out the snoRNA sequence [43]. In this case, Rnt1p cleavage initiates both the 5′ and 3′ processing of the snoRNA. Another exception is the U3 snoRNA, which is involved in ribosomal RNA processing [24]. In S. cerevisiae, U3 is produced from two independent transcription units in the genome. The U3 snoRNAs undergo capping, splicing [45], and processing at the 3′-end. The U3 3′-processing pathway strongly resembles that of the U1,U2, U4, and U5 snRNAs (Fig. 10.3), as a stem-loop is present downstream from the mature 3′-end, and Rnt1p cleavage introduces an entry site for 3′–5′ processing by the exosome [46], which is stimulated by TRAMP-mediated polyadenylation of the Rnt1-cleaved U3 intermediate [33]. The involvement of RNase III in the 3′-end processing of U3 is conserved in S. pombe [47], and in that organism, Pac1 cleavage also dictates the efficiency of termination of U3 transcription. It is unknown why U3 undergoes a processing pathway that differs dramatically from that of other snoRNAs. However, this might be linked to the unique protein composition of the U3 snoRNP compared to the canonical box C/D snoRNPs and to the essential function of U3 in rRNA processing [48].
Figure 10.4 Small nucleolar RNA processing by RNase III Rnt1p. (A) Monocistronic snoRNA nascent transcripts typically contain Rnt1p target stem-loops upstream of the mature 5’-end. Rnt1 cleavage provides an entry site for the Rat1 and/or Xrn1p 5’-to-3’ exonucleases to bypass the 5’ cap structure and produce the proper 5’-end. (B) Polycistronic small nucleolar RNAs processing is initiated by the RNase III Rnt1p. Individual snoRNAs within a polycistronic array are released from one another by Rnt1 cleavage of the precursor RNA at target stem-loops in between the mature snoRNA sequences. The released snoRNAs are then trimmed from the 5’- to the 3’-end by Rat1 and/or Xrn1p, and from the 3’- to the 5’-end by Rrp6 and the nuclear exosome, which is likely stimulated by the TRAMP oligoadenylation activity. (C) RNase III Rnt1 processes some intron-embedded snoRNAs. In a pathway alternative to debranching of the lariat splicing product, Rnt1p acts to release some of these box C/D snoRNAs from the intron with concerted cleavage of a stem composed of sequences upstream and downstream of the mature snoRNA. The U18 precursor lacks an Rnt1p tetraloop, and assembly of the Box C/D core protein Nop1p on the intronic snoRNA precursor instead recruits Rnt1p for dsRNA cleavage. After Rnt1p cleavage, exonucleolytic trimming produces both termini of the mature transcript.
5.2. Cleavage of polycistronic transcription units

In yeast, some snoRNAs are produced from polycistronic transcription units, which express several snoRNAs on a single precursor [49]. This type of genomic organization is also conserved in fungi and frequent in plants [50]. For many snoRNAs encoded by polycistronic transcription units, RNase III cleavage serves the purpose of separating the snoRNAs from each other, thereby generating intermediates that are further processed by the 5′-3′ exonucleases Rat1p and Xrn1p and by the exosome to generate the mature 5′- and 3′-ends, respectively (Fig. 10.4B; [14,43,51–53]). Many snoRNAs are encoded as precursors containing only two or three snoRNAs; for these precursors, the presence of one or two stem-loop structures in the precursor is sufficient to separate snoRNA from each other (Fig. 10.4B). However, some precursors are known to contain a larger number of snoRNAs, such as the polycistronic snR72-78 precursor, which generates seven individual snoRNAs from a single precursor [43,52]. In this case, a stem-loop structure which serves as an Rnt1p recognition and cleavage site is usually found in between individual snoRNA sequences [43,52]. In some particular cases, the architecture of the stem-loops seems to have been adapted to maximize the processing function of Rnt1p using the smallest number of recognition sites. For instance, the processing of the three snoRNAs snR55, snR57, and snR61 from their tricistronic precursor requires only one Rnt1p tetraloop recognition site [14]. The short stem in which this tetraloop is located can stack onto two distinct longer stems, one of which loops out snR55, while the other separates snR57 from snR61 [14]. Thus, one tetraloop recognition site in the precursor can mediate two distinct cleavage events, separating three snoRNA transcripts from each other. As observed for other snRNA and snoRNA processing events, the presence of tetraloop signals in polycistronic snoRNA precursors is conserved in many Hemiascomycetes [16], suggesting that RNase III processing of polycistronic snoRNA precursors is a common feature in fungi.

5.3. Processing of intron-encoded snoRNAs

In mammalian cells, almost all snoRNAs are contained within introns, and the processing of most of these snoRNAs is splicing dependent and occurs by debranching of the lariat structures of the introns by the debranching enzyme and subsequent exonucleolytic trimming from both directions [41]. In S. cerevisiae, a few snoRNAs are also found within introns, and their processing pathway was thought to occur mostly through debranching as
well [53,54], with speculations that random cleavage in the lariat structure could also contribute to processing [54]. However, *S. cerevisiae* RNase III can provide an alternative or complementary mechanism of initiating the processing of snoRNAs from introns (Fig. 10.4C). The first example described was the U18 snoRNA, for which Rnt1p cleavage occurs in an intronic stem-loop structure that loops out the snoRNA sequence [55]. The target stem-loop is a noncanonical structure that lacks a *bona fide* AGNN tetraloop, and the binding of Rnt1p to this noncanonical site is thought to be assisted by an interaction with the snoRNP protein Nop1p, which binds the snoRNA and recruits Rnt1p to this cleavage site [55]. The observation that Rnt1p can cleave and initiate the processing of U18 provides an explanation for the observation that a substantial amount of mature U18 snoRNA can be produced when the debranching enzyme Dbr1p is inactivated [53]. Thus, although the level of U18 snoRNA is not affected in a strain lacking Rnt1p, this enzyme can clearly provide an alternative processing pathway to splicing and debranching.

Two other examples of processing of intron-encoded snoRNAs by Rnt1p cleavage were described for the snR39 and snR59 snoRNAs [14]. Interestingly, the quantitative contribution and cleavage mechanism of Rnt1p for the processing of these intron-encoded snoRNAs seem to vary depending on the individual snoRNA. For snR39, which is encoded in the second intron of the ribosomal protein gene *RPL7A*, Rnt1p cleavage plays only a minor role in the maturation of this snoRNA, as the production of most of the mature *snR39* is strongly decreased in a strain lacking the debranching enzyme Dbr1p. However, the production of mature snR39 is completely blocked in a *dbr1Δ mt1Δ* double mutant, showing that Rnt1p cleavage contributes to some extent to the production of the mature snoRNA [14]. Interestingly, cleavage by Rnt1p occurs only on the lariat form of the excised intron, but not on the unspliced precursor form [14]. Thus, as described above for U18, Rnt1p function in the processing of snR39 seems to act as an alternative to Dbr1p in initiating the processing of the snoRNA from the excised lariat introns. By contrast, the cleavage by Rnt1p to initiate processing of snR59 occurs only on the unspliced precursor form of the host transcript *RPL7B* and this cleavage initiates degradation of the entire pre-mRNA [14]. Thus, as shown for cleavage in other unspliced precursors such as *RPS22B* (see below), cleavage by Rnt1p is mutually exclusive to splicing of the pre-mRNA, suggesting a competition between production of mature mRNA and production of mature snoRNA.
from the same precursor by Rnt1p. It is interesting to note that, while snR39 and snR59 are encoded in introns of duplicated genes coding for the same ribosomal protein (the Rpl7 paralogues), differences in processing pathways have emerged.

6. (PRE)-mRNA SURVEILLANCE, DEGRADATION, AND REGULATION

Because most of the *S. cerevisiae* RNase III localizes in the nucleus [21,56], and in particular, at the site of transcription of the rRNA, it was initially thought that the function of fungal RNase III was limited to the processing of nuclear noncoding RNAs. However, multiple studies have shown that fungal RNases III can also cleave a number of mRNAs. This cleavage serves two main purposes. First, it can provide a way to discard unprocessed or improperly processed mRNAs. Additionally, cleavage can provide an alternative mechanism to degrade mRNAs or limit their accumulation in conditions in which they should be repressed.

A role for fungal RNase III in (pre)-mRNA degradation was first discovered by the identification of target stem-loop structures in the intronic sequences of the ribosomal protein genes *RPL18A* and *RPS22B* [57]. For these transcripts, Rnt1p cleavage can serve two purposes (Fig. 10.5). The first function is to cleave the lariat introns produced by the splicing reaction, providing a mechanism of degradation of these lariats complementary to that provided by the debranching enzyme [57]. The second function is to directly compete with splicing or degrade unspliced pre-mRNAs that have escaped the splicing pathway [57]. As described above, cleavage by Rnt1p provides an entry site for exonucleolytic degradation by the exosome and the 5′–3′ exonucleases Xrn1p and Rat1p. Interestingly, the relative dependence upon the nuclear Rat1p or the cytoplasmic Xrn1p exonucleases for degradation of the 3′ cleavage products seem to vary between *RPS22B* and *RPL18A* [57], suggesting that Rnt1p cleavage intermediates can be exported to the cytoplasm or retained in the nucleus with varying efficiencies. This function in the surveillance of unspliced pre-mRNA species was also demonstrated for the *MATa1* transcript [58]. Inhibition of Rnt1p cleavage was found to result in an increase in mature mRNA levels [57,58]. This observation is consistent with the idea that cleavage of the pre-mRNAs by Rnt1p occurs very early in the biogenesis pathway and competes with splicing, thus titrating a fraction of the precursors away from the splicing pathway. This could potentially constitute a means of regulating the
expression of these transcripts; however, it is unknown if the cleavage of these unspliced pre-mRNAs by Rnt1p can be regulated during specific growth conditions. The surveillance function for Rnt1p in the degradation of unspliced pre-mRNAs can be partially redundant with those of other degradation systems, such as degradation by Rat1p or by the nonsense-mediated decay (NMD) pathway. For instance, degradation of MATa1 pre-mRNAs seems to be the most effective only when both Rat1p and Rnt1p are active [58], and the full accumulation of unspliced RPS22B pre-mRNAs is observed only when both the Rnt1p stem-loop structure and the NMD system are inactivated [59]. The existence of multiple degradation pathways that localize to different compartments highlights the importance of limiting the accumulation and aberrant translation of unspliced pre-mRNAs.

In addition to these functions in the surveillance of unprocessed mRNAs, a large number of mature mRNAs appear to be cleaved by RNase III in S. cerevisiae. These include the mRNA encoding the transcriptional
repressor Mig2p [60], mRNAs coding for proteins involved in iron uptake and assimilation [61] and the acireductone dioxygenase [62], mRNAs encoding proteins associated with the telomerase complex [63], and mRNAs encoding the Swi4p and Hsl1p proteins involved in the cell wall stress response [64]. As described previously, cleavage by RNase III generates entry sites for exonucleases to complete their degradation [61,65]. The lack of cleavage of these pre-mRNAs has been associated with a number of cellular phenotypes [64], including sensitivity to high iron concentrations [61]. However, it is not entirely clear to what extent some of these cellular phenotypes are directly due to the lack of cleavage of these mRNAs in the mt1 deletion strain or whether the general growth defect of this strain contributes indirectly to some of these phenotypes.

It does not appear that the genomic context or accessory sequences contribute in a major way to RNase III cleavage on mRNAs, as various stem-loop structures can be transposed onto plasmid-borne reporter mRNAs, which results in the cleavage and degradation of these mRNAs [65,66]. However, cleavage efficiency can vary depending on the stem-loop/reporter combination [65], suggesting that for some of these combinations, the presence of competing secondary structures may impede proper cleavage activity. The ability of Rnt1p to cleave these structures independently from their genomic context has been used to develop synthetic gene expression reporters. Stem-loop structures with various cleavage efficiencies can be inserted into reporter mRNAs to generate a range of reporters to fine-tune gene expression [67] as well as to design gene reporters that are responsive to the binding of metabolites to the reporter mRNA [66].

It is unclear whether other fungal homologues of Rnt1p also cleave specific mRNAs. Overexpression of S. pombe Pac1p inhibits mating and sporulation [68], quite possibly by cleaving mRNA(s) that are required for the proper completion of the mating and sporulation processes. However, despite this initial genetic observation, the identity of these mRNAs has yet to be determined. Besides this observation, it is unknown whether RNase III contributes to mRNA degradation independently from of the RNA interference pathway in other fungal species outside S. cerevisiae.

7. RNA POLYMERASE II TERMINATION

Transcription termination of RNA Pol II has emerged as an important step in gene expression that can directly affect the fate of the transcribed RNA. Furthermore, proper partitioning of transcription units via efficient
termination is crucial to avoid transcriptional interference and aberrant production of overlapping sense–antisense transcripts [69]. Initial studies had shown that cleavage by fungal RNase III downstream from small RNA genes could trigger termination of the RNA Pol II for these ncRNA transcription units, suggesting that RNase III cleavage might serve a general role in triggering termination of RNA Pol II [37,47]. Recent work has highlighted the role of Rnt1p in providing a more widespread fail-safe mode of RNA Pol II termination, in situations where a failure to cleave at the poly(A) site results in transcription of a downstream Rnt1-target stem-loop [70,71]. Cotranscriptional cleavage by Rnt1p is followed by the binding of the 5′-to-3′ exonuclease Rat1p on the now unprotected 5′-end of the nascent transcript (Fig. 10.6). Upon reaching the elongating RNA Polymerase, Rat1p promotes the release of Pol II from the template [71], in a mechanism similar to the one proposed for the “torpedo” model of transcription termination of RNA Pol I by Rat1p [27,28]. Lack of cleavage at the poly(A) site can be the result of weak

Figure 10.6 Fail-safe transcription termination of RNA Polymerase II by RNase III. Cleavage and polyadenylation of Pol II transcripts can fail to occur due to cis-acting elements (e.g., a weak polyadenylation (pA) signal) or trans-acting factors (e.g., RNA-binding proteins). In many cases, Rnt1p target stem-loops exist downstream of these pA signals and elicit cotranscriptional cleavage by Rnt1. This is followed by recruitment of Rat1p 5′-to-3′ exonuclease, resulting in degradation of the nascent transcript and the release of Pol II from the template.
cis termination or polyadenylation signals, or the presence of trans-acting factors inhibiting recognition of the poly(A) site [70]. This effect on termination could also explain the presence of extended species of mRNAs showing target stem-loop structures when Rnt1p is inactivated [61,62]. It has been suggested that this function for RNase III in transcription termination may be a general feature of eukaryotic gene expression [72]. Indeed, the RNase III Dicer-like 4 of Arabidopsis thaliana has been shown to be required for transcription termination of the FCA gene involved in chromatin silencing [73]. This highlights the ability of Dicer enzymes to have RNAi-independent functions and suggests that different classes of RNase III may have independently evolved to provide fail-safe termination throughout eukaryotes.

8. CONCLUSIONS AND PERSPECTIVES

In this chapter, we have reviewed the diverse functions of fungal RNase III enzymes in the processing of noncoding RNAs and in the degradation of mRNAs. We have excluded from this discussion the role of this class of enzymes in the RNAi and siRNA pathways, as these will be described extensively in Volume 32. While this class of enzymes plays important functions in the processing of many noncoding RNAs (rRNA, snRNA, and snoRNA), it is clear that functional redundancies are found in almost all processing pathways described, such that inactivation of these enzymes usually results in only a partial inhibition of the production of the mature species. Similar redundancies are also observed for many of the pre-mRNA surveillance functions associated with Rnt1p, as other degradation pathways mediated by Dbr1p, Rat1p, or NMD can effectively compensate for the absence of Rnt1p cleavage. While it is clear that the redundancy is rampant in RNase III-mediated processing and surveillance functions, it is increasingly evident that RNase III cleavage has evolved additional specialized roles in gene expression that are important under specific conditions. For example, in conditions of high iron levels or cell wall stress, RNase III cleavage is critical for preventing the excessive accumulation of target mRNAs, where high levels of protein expression from these mRNAs would be detrimental.

Most of the examples of RNase III-mediated RNA processing and degradation derive from the work done with the RNase III Rnt1p from the model Hemiascomycete S. cerevisiae. While it is clear that some of the processing pathways are conserved in other Hemiascomycetes, the available
evidence suggests that there is also significant variation in the quantitative contributions of RNase III to these various processing pathways, even in closely related species. This variation probably reflects the existence of multiple processing and degradative pathways for individual transcripts, thus allowing for a rapid evolutionary loss of a particular processing pathway. Future work using other model yeast and fungi should further reveal the extent to which RNA processing pathways have been conserved or altered throughout fungal evolution.

Some cellular phenotypes linked to the absence of these enzymes still lack a clear molecular explanation. For example, inactivation of *S. cerevisiae* Rnt1p leads to cell-cycle defects, but these defects can be rescued by the expression of a catalytically inactive mutant [56]. This result suggests the existence of cleavage-independent functions of RNase III, at least for the *S. cerevisiae* enzyme, but it is unknown what molecular functions of the enzyme are directly responsible for these defects. The cell-cycle rescue was shown to be dependent on trafficking of Rnt1p from the nucleolus to the nucleoplasm at the G2/M transition of the cell cycle, suggesting that Rnt1p function may be regulated by the subcellular localization pattern of this enzyme. It has been speculated that this phenomenon may also regulate the Rnt1p cleavage activity on mRNAs, which would likely require the recruitment of Rnt1p from the nucleolus to the nucleoplasm for their cleavage [64]. Future work will elucidate the ways in which fungal RNAse III activity is regulated and whether this is conserved across species. It is clear that RNase III enzymes have evolved to provide cells with an additional tool to fine-tune gene expression and perform quality control. The presence of simple dsRNA structures embedded throughout the transcriptome provides a rapid and potent means of regulating gene expression by multiple mechanisms.

ACKNOWLEDGEMENTS

This work was supported by NIH Grant GM61518 to G. F. C.

K.R. was supported by a Whitcome Fellowship and Ruth L. Kirschtein National Research Service Award GM007185.

REFERENCES

Egecioglu DE, Henras AK, Chanfreau GF. Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. RNA 2006;12(1):26–32.

CHAPTER 3

Structure of a Yeast RNase III dsRBD Complex with a Noncanonical RNA Substrate

Provides New Insights into Binding Specificity of dsRBDs
Structure of a Yeast RNase III dsRBD Complex with a Noncanonical RNA Substrate Provides New Insights into Binding Specificity of dsRBDs

Zhonghua Wang,1,2,3 Elon Hartman,1,2,3 Kevin Roy,1,2 Guillaume Chanfreau,1,2 and Juli Feigon1,2,*
1Department of Chemistry and Biochemistry
2Molecular Biology Institute
P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
3These authors contributed equally to this work
*Correspondence: feigon@mbi.ucla.edu
DOI 10.1016/j.str.2011.03.022

SUMMARY

dsRBDs often bind dsRNAs with some specificity, yet the basis for this is poorly understood. Rnt1p, the major RNase III in Saccharomyces cerevisiae, cleaves RNA substrates containing hairpins capped by A/uGNN tetraloops, using its dsRBD to recognize a conserved tetraloop fold. However, the identification of a Rnt1p substrate with an AAGU tetraloop raised the question of whether Rnt1p binds to this noncanonical substrate differently than to A/uGNN tetraloops. The solution structure of Rnt1p dsRBD bound to an AAGU-capped hairpin reveals that the tetraloop undergoes a structural rearrangement upon binding to Rnt1p dsRBD to adopt a backbone conformation that is essentially the same as the AGAA tetraloop, and that a conserved recognition mode is used for all Rnt1p substrates. Comparison of free and RNA-bound Rnt1p dsRBD reveals that tetraloop-specific binding requires a conformational change in helix a1. Our findings provide a unified model of binding site selection by this dsRBD.

INTRODUCTION

Eukaryotic members of the RNase III family of endoribonucleases cleave double-stranded RNA (dsRNA) targets involved in a variety of gene expression pathways (Conrad and Rauhut, 2002; Lamontagne et al., 2001), including the maturation of precursor ribosomal RNA (rRNA) (Elela et al., 1996; Henras et al., 2004; Kufel et al., 1999), small nuclear RNA (snRNA) and small nucleolar RNA (snoRNA) processing (Conrad and Rauhut, 2002; Lamontagne et al., 2001), and RNA interference (RNAi) and microRNA (miRNA) processing (Ketting et al., 2001; Knight and Bass, 2001; Lee et al., 2003b). Rnt1p, the major RNase III present in Saccharomyces cerevisiae, plays an essential role in the processing of rRNA, snRNAs, and snoRNAs (Chanfreau et al., 1998a, 1998b; Elela et al., 1996; Kufel et al., 1999) in budding yeast. Rnt1p is also important for mRNA quality control, cleaving intronic sequences of unspliced pre-mRNAs (Danin-Kreiselman et al., 2003). A Rnt1p target site in the mRNA coding for the essential telomerase protein Est1p has been proposed to be important for maintenance of telomere length through regulation of Est1p expression (Larose et al., 2007). Several studies have indicated that Rnt1p may play a role in transcription termination by cleavage of nascent transcripts (Catala et al., 2008; El Hage et al., 2008; Ghazal et al., 2009; Prescott et al., 2004). Drosha and Dicer, other members of the RNase III family, are involved in miRNA processing and RNAi (Ketting et al., 2001; Lee et al., 2003b). Although the RNAi pathway has been evolutionarily lost in S. cerevisiae, it has been found in closely related yeast species such as S. castellii and Kluyveromyces polysporus. Introduction of S. castellii Dicer and Argonaute into S. cerevisiae resulted in a functional RNAi pathway (Drinnenberg et al., 2009). Furthermore, budding yeast Dicers are more closely related to Rnt1p than to canonical Dicer, highlighting the importance of this representative of the RNase III family of enzymes.

All RNase III enzymes contain one or two conserved endonuclease domains (endoNDs). Two endoNDs form a dimer to create a large catalytic dyad for Mg2+-dependent catalysis (Ji, 2006, 2008; MacRae and Doudna, 2007; Sun et al., 2005). Most RNase III enzymes also have one or more double-stranded RNA binding domains (dsRBDs). The N-terminal region of RNase III enzymes is variable across the family, and may include one or more additional domains with different functions. Rnt1p, like the bacterial RNase III enzymes, contains one endonuclease domain and one dsRBD. However, Rnt1p also has an N-terminal domain unique to yeast RNase IIIIs whose function is uncertain but which may be required for the stabilization of Rnt1p homodimers (Lamontagne et al., 2000). RNase IIIIs found in budding yeasts have a domain structure similar to that of Rnt1p, whereas most Drosha and Dicer enzymes have one or two dsRBDs, two endoNDs, and an N-terminal accessory domain (MacRae and Doudna, 2007; Nowotny and Yang, 2009).

The dsRBD is the second most abundant RNA binding domain. This domain specifically recognizes dsRNA (Bycroft et al., 1995; Doyle and Jantsch, 2002; Hall, 2002; Kharrat et al., 1995) and has a conserved αββαx fold (Bycroft et al., 1995; Kharrat et al., 1995; Nanduri et al., 1998; Ramos et al., 2000; Ryter and Schultz, 1998; Wu et al., 2004). The first crystal structure of a dsRBD/dsRNA complex revealed that helix α1, the
j3→x2 loop, and the j1→j2 loop interact with the sugar-phosphate backbone of successive minor, major, and minor grooves, respectively, along one face of an RNA helix, without any apparent base pair specificity (Ryter and Schultz, 1998). The recognition of dsRNA by dsRBDs plays an important role in the catalytic cleavage or modification of dsRNAs by many RNases (Gan et al., 2008; Ghazal et al., 2009; Ji, 2006, 2008; MacRae and Doudna, 2007; Sun et al., 2005; Wu et al., 2004) and RNA modification enzymes such as ADAR (Steffl et al., 2010; Yamashita et al., 2011). Based on the structures of bacterial RNase III/dsRNA complexes (Gar et al., 2006), dsRBDs are thought to contribute primarily to specificity of binding to dsRNA but not to target site selection (Nicholson, 1999; Shi et al., 2011), although there are two base contacts that have recently been proposed to be sequence specific (Steffl et al., 2010). In contrast, Rnt1p dsRNA substrates are capped by A/uGNN tetraloops located 14–16 bp away from the cleavage site (Chanfreau et al., 2000; Nagel and Ares, 2000), and specificity for these substrates resides in the dsRBD (Chanfreau et al., 2000; Lamon- tagne and Elela, 2004; Lamontagne et al., 2003; Nagel and Ares, 2000; Wu et al., 2004). Structural studies have revealed that A/uGNN tetraloops adopt a conserved fold (Lebars et al., 2001; Wu et al., 2001, 2004), the shape of which is recognized on the minor groove side by Rnt1p dsRBD (Wu et al., 2004). Surprisingly, the dsRBD has no direct contacts to the conserved A and G bases, which point into the major groove of the tetraloop and the top of the stem, interacting with the sugar-phosphate backbone and nonconserved 3’ bases. To date, this is the only known example of dsRBD binding specificity through terminal loop recognition. Rnt1p dsRBD is also unusual in containing an additional helix x3, which has been proposed to contribute to recognition of the tetraloop indirectly by stabilizing helix x1 (Leulliot et al., 2004; Wu et al., 2004).

A genome-wide search in S. cerevisiae for snoRNA substrates of Rnt1p identified the noncanonical snoRNA substrate snR48 (Ghazal et al., 2005). Unlike most Rnt1p substrates, snR48 contains a Rnt1p recognition site consisting of an AAGU-capped hairpin. It was proposed that the AAGU tetraloop adopts a different fold from the canonical fold of AGNN tetraloops (Gaudin et al., 2006; Ghazal and Elela, 2006), and that Rnt1p distinguishes between these two different “classes” of tetra- loop-hairpin substrates using different networks of protein-RNA interactions. To investigate the molecular basis for the recognition of the AAGU hairpin and to gain further understanding of substrate-specific recognition by Rnt1p, we determined the NMR solution structure of Rnt1p dsRBD in complex with a dsRNA hairpin capped by an AAGU tetraloop and investigated in vitro and in vivo cleavage and dsRBD binding. We find that when in complex with the dsRBD, the AAGU tetraloop undergoes a structural rearrangement to adopt a backbone fold and interactions that are essentially the same as those in the complex of the dsRBD with an AGAA hairpin. Comparison of the structures of the complexes to previously determined solution and crystal structures of the free dsRBD showed that the dsRBD helix x1 undergoes a conformational change upon binding to both AAGU and AGAA tetraloops. Taken together, our results provide new insights into substrate-specific recognition by dsRBDs and provide a structural framework for a conserved general mode of RNA substrate recognition by Rnt1p.

RESULTS

The AAGU Hairpin Binds to and Is Efficiently Cleaved by Rnt1p in the Context of the snR47 Stem Sequence

We investigated, using NMR spectroscopy, the interaction of Rnt1p dsRBD with a 32 nt RNA hairpin containing a 14 bp stem and capped by the AAGU tetraloop (AAGU hairpin) found in the snoRNA snR48 precursor. To facilitate comparisons between this complex (dsRBD/AAGU) and one with a canonical A/uGNN tetraloop, we used the same stem sequence as in the previously determined structure of a Rnt1p dsRBD/snR47h complex (dsRBD/AGAA), where the hairpin sequence was derived from the snoRNA snR47 precursor (Wu et al., 2004). The 2 bp below the tetraloop are the same for snR47 and snR48, but otherwise the stem sequences differ, except for the first and fourth base pairs in our hairpins. Complex formation was initially monitored by chemical shift changes observed in the 1H-15N HSQC spectra of the dsRBD upon the addition of AAGU (see Figure S1 available online). The dsRBD is at or near fast exchange with the hairpin on the NMR timescale, but the complex is saturated at a small excess of RNA, as observed for the dsRBD/AGAA complex, and amide chemical shift changes are very similar (Wu et al., 2004).

To compare the relative binding affinity of Rnt1p dsRBD to AGAA and AAGU hairpins, a series of 1H-15N HSQC spectra of the dsRBD were acquired at various ratios of added AGAA, AAGU, and UUCG hairpins under high-salt conditions. Previous studies have shown that the dsRBD does not specifically recognize a UUCG-capped hairpin (Chanfreau et al., 2000), so this hairpin was used as a comparison for nonspecific binding of the dsRBD to double-stranded RNA. Apparent Kd values calculated from global fitting of the HSQC titration data, assuming a one-site binding model, are 34.1 ± 2.9, 30.1 ± 3.8, and 280 ± 24.8 μM for the AAGU, AGAA, and UUCG hairpins, respectively (Figures 1A–1C). These values indicate that under the NMR conditions, Rnt1p dsRBD binds with the same affinity to both the AAGU and AGAA hairpins. In contrast, nonspecific binding to dsRNA capped by a UUCG tetraloop is about an order of magnitude weaker. This result is consistent with binding assays using full-length Rnt1p, which show it binds with a 5- to 10-fold weaker affinity to non-AGNN-containing tetraloops than to canonical tetraloop-containing substrates (Chanfreau et al., 2000; Nagel and Ares, 2000).

Previously, Rnt1p was reported to require a defined sequence in the stem region of snR48-derived AAGU hairpins for optimal cleavage (Gaudin et al., 2006; Ghazal et al., 2005). To confirm that the snR47-AAGU hybrid hairpin is a good substrate for Rnt1p, we performed Rnt1p cleavage assays with substrates derived from snR47, capped by AGAA, AAGU, or UUCG tetra- loops (snR47-AGAA, snR47-AAGU, and snR47-UUCG, respectively) (Figure 2A), under single-turnover conditions (Figure 2B). Both snR47-AAGU and snR47-AAGU showed specific cleavage, whereas snR47-UUCG was almost unreactive over the assayed reaction time. The fact that the snR47-UUCG substrate shows only a 10-fold reduction of binding (Figure 1C) but is almost completely refractory to Rnt1p cleavage confirms that, as shown
previously (Chanfreau et al., 2000; Nagel and Ares, 2000), the differences in binding affinity between different tetraloop-containing stems are not sufficient to explain the strong cleavage discrimination between these substrates. snR47-AAGU also shows more additional cleavage products than snR47-AGAA: one corresponds to an intermediate cleaved in one strand only (band below substrate band in Figure 2B), and the others correspond to some alternate cleavage sites. In vivo, cleavage at any of these alternative sites would still be expected to result in correct subsequent processing, because each of these cleaved intermediates is expected to be used at similar efficiencies by the Rat1p exonuclease (Lee et al., 2003a). Overall, cleavage of the snR47-AAGU substrate occurred at a slightly slower rate than for snR47-AGAA, but the relative cleavage rates for this noncanonical substrate is comparable to the previously reported relative rates for canonical Rnt1p substrates containing AGAA and UGAA tetraloops (Wu et al., 2001). These results indicate that the AAGU tetraloop in the context of the snR47 stem sequence is sufficient to support cleavage at a rate comparable to A/uGNN tetraloop hairpin substrates.

To further investigate the ability of Rnt1p to recognize and process a substrate carrying an AAGU tetraloop, we analyzed the processing of snR47 mutant derivatives with different types of tetraloops in vivo. We introduced AAGU in place of AGAA in

Figure 1. snR47-Derived dsRNA Capped by an AAGU Tetraloop Binds to the Rnt1p dsRBD
HSQC titration curves showing 15N and 1H chemical shift change $\Delta \delta(N,H) = (\Delta \delta(N,H))^2 + (\Delta \delta(N,H)/4)^2)^{1/2}$ as a function of the concentration ratio for the titration of dsRBD with the (A) AAGU, (B) AGAA, and (C) UUCG hairpins. The continuous lines show the curves for all amides, with chemical shift changes >0.05 ppm fitted globally to a one-site binding model.

Figure 2. dsRNA Capped by an AAGU Tetraloop Is an Efficient Substrate for Rnt1p
(A) Sequence of snR47-derived RNA substrates, where NNNN is AGAA, AAGU, or UUCG, with the Rnt1p cleavage site indicated by arrowheads.
(B and C) Single-turnover cleavage kinetics for snR47-AGAA, snR47-AAGU, and snR47-UUCG.
(B) Phosphorimages of polyacrylamide gels of RNA from the cleavage reactions. Bands corresponding to the full-length substrate (Su) and the cleavage product (Pr) are indicated.
(C) Plot of fraction of substrate cleaved versus time. Error bars are the standard deviation for three experiments.
(D) Northern blot analysis of snR47 snoRNA expression carrying normal and mutant tetraloop sequences. Strains expressing snR47 with the wild-type (AGAA), AAGU, or UUCG loop sequences and a strain inactivated for Rnt1p (rnt1D) were analyzed. MW, molecular weight marker (MspI-digested pBR322); P, unprocessed precursor; M, mature snR47 snoRNA.
(E) Primer extension analysis of snR47 snoRNA expression carrying normal and mutant tetraloop sequences. Legends are as in (D).
the stem-loop sequence upstream from the snR47 (Chanfreau et al., 1998a) chromosomal locus by homologous recombination (see Experimental Procedures). As controls for inefficient processing and complete loss of Rnt1p function, we generated a strain carrying a UUCG tetraloop and used a strain inactivated for Rnt1p (mtt1Δ), respectively. As shown by northern blot in Figure 2D, the AAGU mutant snoRNA precursor was processed as efficiently as the wild-type precursor in vivo, showing high levels of mature snoRNA and no apparent unprocessed precursor accumulation. In contrast, samples extracted from the UUCG tetraloop mutant or from the mtt1Δ strain exhibited little or no mature snoRNA and a strong accumulation of unprocessed precursors (Figure 2D). Primer extension analysis of the wild-type (AGAA) and AAGU or UUCG mutant strains confirmed the efficient 5′ end processing of the AAGU mutant and the strong processing defect of the UUCG mutant (Figure 2E). These results indicate that a hairpin capped by an AAGU tetraloop sequence can serve as an efficient recognition site for Rnt1p in vivo, even when placed on a substrate stem that normally contains a canonical AGNN tetraloop. In conclusion, AAGU tetraloop hairpins can be efficiently recognized by Rnt1p in vitro and in vivo, regardless of the stem sequence that they cap.

Overview of the Solution Structure of the Rnt1p dsRBD/AAGU Hairpin Complex

Protein and RNA resonances in the Rnt1p dsRBD/AAGU complex were assigned following previously established protocols (Wu et al., 2005). The protein-RNA interface was well defined by 43 intermolecular NOEs assigned from 2D filtered/edited NOESY (Peterson et al., 2004) (Figure S1). The structure of the dsRBD/AAGU complex has backbone root-mean-square deviations (rmsds) to the mean of 0.55 ± 0.11 Å and 0.64 ± 0.15 Å for the dsRBD and AAGU hairpin, respectively (Figure 3A and Table 1). The dsRBD adopts the standard α1|β1|β2|β3-α2 fold (Doyle and Jantsch, 2002), with the additional helix α3 packed against and stabilizing the C-terminal end of helix α1, as previously observed (Leulliot et al., 2004; Wu et al., 2004). The dsRBD binds to one face of the RNA and interacts primarily with the sugar-phosphate backbone in three successive regions: the tetraloop minor groove and top 2 bp with helix α1, the stem major groove with the N-terminal end of helix α2 and the β3-α2 loop, and the stem minor groove with the β1-β2 loop (Figure 3B). All of the bases in the tetraloop are in the anti conformation, and the RNA stem forms an A-form helix.

Analysis of RDCs Indicates that the dsRBD Adopts the Same Conformation in Both the AAGU and AGAA Complexes

We compared the structures of dsRBDs in the dsRBD/AAGU and dsRBD/AGAA complexes using residual dipolar couplings (RDCs) (Cornilescu et al., 1998; Lipsitz and Tjandra, 2004). Structure calculations for the dsRBD/AAGU complex included 83 1H-15N RDCs in the final refinement step. For comparison purposes, we measured and analyzed a comparable set of 81 RDCs for the dsRBD/AGAA complex, which had been previously determined and refined with 43 RDCs (Wu et al., 2004), and recalculated the structure. We first evaluated the quality of the structures by back-calculating the RDCs from the RDC-refined dsRBD/AAGU and dsRBD/AGAA structures using the program PALES (Zweckstetter and Bax, 2000) (Figures 4A and 4B). The quality factors (Q) are 11.5% and 9.4% for dsRBD/AAGU and dsRBD/AGAA, respectively, indicating an excellent agreement between the structures and their RDC data (Cornilescu et al., 1998). We next evaluated how similar the structures of the dsRBDs in the two complexes were to each other by back-calculating the set of RDCs for each complex using the structures of the other complex. Results for the lowest-energy structure in each structure ensemble are shown in Figures 4C and 4D. R factors for the back-calculated dsRBD/AGAA and dsRBD/AAGU complexes are 0.98, and Q factors are <20% for both cases. Similar results are observed for each set of individual structures in the structure ensembles (Figure S2). These values indicate that the dsRBD conformations in the two complexes are highly similar. The dsRBDs in the two complexes have an rmsd between the two ensembles of 1.18 ± 0.32 Å for all heavy atoms (Figure 4E), which is within experimental error of the pairwise rmsds of each ensemble.

The AAGU Tetraloop in the Complex Adopts a Backbone Fold Similar to that of the AGAA Tetraloop

The solution structure of the free AAGU tetraloop is substantially different from the A/uGNN fold (Gaudin et al., 2006) (Figure 5C;
Table 1. Structural Statistics of the Rnt1p dsRBD/AAGU Hairpin Complex

<table>
<thead>
<tr>
<th>Distance and Dihedral Restraints</th>
<th>Protein</th>
<th>RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total NOE restraints</td>
<td>2095</td>
<td>695</td>
</tr>
<tr>
<td>Intraresidue</td>
<td>842</td>
<td>243</td>
</tr>
<tr>
<td>Sequential</td>
<td>498</td>
<td>325</td>
</tr>
<tr>
<td>Medium (+2 to i+4)</td>
<td>405</td>
<td>10</td>
</tr>
<tr>
<td>Long-range (>i+4)</td>
<td>350</td>
<td>117</td>
</tr>
<tr>
<td>Intermolecular NOE restraints</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Hydrogen-bond restraints</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>RDC restraints</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Dihedral-angle restraints</td>
<td>120</td>
<td>225</td>
</tr>
</tbody>
</table>

Structure Statistics (16 Lowest-Energy Structures)

Number of NOE violations >0.2 Å	0
Number of NOE violations >0.5 Å	0
Number of dihedral violations >5°	0
Number of RDC violations >2 (Hz)	0
Rmsd of RDC (Hz)	0.878 ± 0.045
Rmsd from ideal covalent geometry	
Bond lengths (Å)	0.0034 ± 0.0001
Bond angles (°)	0.7725 ± 0.0057
Improper (°)	0.4700 ± 0.0178
Rmsd from the mean structure	
Backbone (Å)	0.54 ± 0.10
Heavy Atoms (Å)	0.90 ± 0.14
Protein (366–448) (Å)	0.59 ± 0.11
Complex (3–14, 19–30, 366–448) (Å)	0.70 ± 0.11
Ramachandran statistics	
Most favored regions (%)	78.0
Additional allowed regions (%)	18.6
Generously allowed regions (%)	2.1
Disallowed regions (%)	1.3

hydrogen bond to the backbone even in the syn conformation. Thus, in the complex, the stabilization conferred by a hydrogen bond to the backbone from a syn G at position 2 of the tetraloop does not appear to be required for the AAGU tetraloop to adopt the same backbone conformation as an AGAA tetraloop.

In the free AAGU tetraloop, the first two As (A15 and A16) stack on each other and point into the major groove and the backbone turns after the second A, as is the case for the bound AAGU tetraloop; however, the position of the backbone before the turn is substantially different (Figure 5C). On the 3’ side of the loop, the Watson-Crick face of G17 points into the minor groove and the base is nearly coplanar with A16, while U18 points up above G17 and out into the major groove (Gaudin et al., 2006). In contrast, in the dsRBD/AAGU complex, the base of U18 is in the minor groove, and the positions of both G17 and U18 are significantly different, with the base of G17 pointing into the minor groove from near the top of the tetraloop and U18 below G17. Thus, the AAGU tetraloop in the hairpin undergoes a large conformational change upon binding to the dsRBD, to a conformation that presents a minor groove surface and backbone contacts to helix x1 that are highly similar to those in the AGAA tetraloop.

Because the dsRBD has the same binding affinity for the two hairpins but the AAGU tetraloop undergoes a larger conformational change, we measured the binding by isothermal titration calorimetry (Figure S3). Although the two complexes have the same ΔG, the dsRBD/AAGU complex has larger negative values for both ∆H and ∆S. For the dsRBD/AAGU and dsRBD/AGAA complexes, ∆H = −1.42 × 10^4 versus −0.91 × 10^4 kcal/mol and ∆S = −21.8 and −3.94 kcal/mol, respectively. These results indicate that although the AAGU/dsRBD complex undergoes a larger change in enthalpy upon complex formation, this is offset by a compensatory decrease in entropy.

Comparison of the Protein-RNA Interfaces in the Rnt1p dsRBD/AAGU and dsRBD/AGAA Complexes

In both the dsRBD/AAGU and dsRBD/AGAA complexes, the β1-β2 loop contacts the stem minor groove of base pairs 2–5; the N-terminal end of helix x2 inserts into the major groove between base pairs 5 and 10, and helix x1 specifically recognizes the minor groove of the tetraloop and top 2 bp (Figures 3 and 6; Table S1). Almost all of the contacts are to the phosphodiester backbone. Detailed comparison of the dsRBD/AAGU and dsRBD/AGAA complexes shows that the interactions between the protein and RNA stem are nearly identical (Figure 6; Figure S4). In the minor groove of the 3 bp adjacent to the tetraloop, the D367 side-chain carboxyl group interacts with A20 2’ OH and A21 2’ OH through potential direct or water-mediated hydrogen bonds, and the side chain of K371 forms potential hydrogen bonds to A20 2’ OH and A21 O4’ for both complexes. On the 3’ side of the tetraloops, the guanidinium group of the R372 stacks onto the ring of the base G17 (in the AAGU tetraloop) or A17 (in the AGAA tetraloop) in the complexes (Figure 6; Figure S4). On the 5’ side of the tetraloop, the nonpolar side chain of M368 stacks onto the A15 ribose, and its sulfur group forms a potential water-mediated hydrogen bond with C14 O2. In the dsRBD/AGAA complex, the R372 guanidinium group and S376 OH form hydrogen bonds with the 2’ OH of A17 and A18, respectively (Figure S4), whereas in the AAGU complex the R372
The guanidinium group forms a hydrogen bond with the \(2'\) OH of A15 and G17, and S376 OH forms a hydrogen bond with the \(2'\) OH of U18 (Figure 6B). These small differences can be attributed to the difference in sequence at these positions. Neither the tetraloop sequence nor the top 2 bp are conserved and, consistent with this, no specific contacts to the bases were observed. Mutation of M368, which has a potential interaction with C14 O2, to alanine, does not affect binding (Henras et al., 2005). Thus, the dsRBD recognizes the A/uGNN and AAGU tetraloops in the same way, by shape-specific binding.

Conformational Changes in the dsRBD upon Binding to Target RNA

Because the structure of the free Rnt1p dsRBD has been reported (Leulliot et al., 2004), we were able to examine any conformational changes that take place in the dsRBD upon binding to the AAGU hairpin as well as the AGAA hairpin in detail. We acquired a set of RDC data for the free dsRBD in solution. Of the NMR solution and two crystal structures (from one asymmetric unit) reported, the experimental RDCs fit best to the crystal structure of chain A (Protein Data Bank [PDB] ID code 1T4O) (Figure S5), so this structure was used for comparison to our bound complexes. To quantitatively compare the structures of the free and AAGU tetraloop-bound dsRBDs, the experimental RDCs from the secondary-structure elements \(1\), \(2\), \(3\), \(4\), and \(5\) for the dsRBD/AAGU complex were plotted versus the RDCs calculated from the crystal structure (Figure 7A). Helix \(3\) was excluded from this analysis, because it adopts three different orientations in the solution and two crystal structures (Leulliot et al., 2004). The correlation gives a Q factor of 32%, but when the RDCs from helix \(1\) are deleted from the analysis, the Q factor decreases to 16%. Similar results were obtained for dsRBD bound to the AGAA hairpin (Figure 7B). When experimental RDCs from helix \(1\) only are compared (free dsRBD versus dsRBD/AAGU complex and dsRBD/AAGU complex versus dsRBD crystal chain A), poor correlations are obtained (Q = 32% and 49%, respectively) (Figure S5). Taken together, these data indicate that there is a significant change in helix \(1\) when the dsRBD binds to target RNA, consistent with structural differences observed by direct comparison of the structures as described below.

Comparison of the structures of the free and AGAA hairpin-bound dsRBD revealed that all of the regions of the dsRBD that interact with the RNA show significant changes in position between the free and bound dsRBD (Figure 7C). The \(1\)-\(2\) loop, which inserts into the stem minor groove in the complex, points away \(6.6\) Å in the free dsRBD. The N-terminal end of helix \(2\) and the \(3\)-\(2\) loop also shift to insert into the major groove. Helix \(1\) rotates about 18° (Figure 7E) and bends slightly from L374 to S376 (Figure 7D) to fit into the convex surface of the tetraloop. In the free dsRBD, helix \(1\) begins at N369, whereas in the complex it begins at L366. Side chains of M368, R372,
and S376 all shift position to align along one face of the helix to form van der Waals interactions and hydrogen bonds to the 2' OH in the tetraloop minor groove (Figures 6A and 7D). Thus, helix α1 undergoes a change in helix length and bend and rotates 18° when it binds to the dsRNA hairpin substrate.

DISCUSSION

Although most dsRBDS bind to dsRNA, the finding that the binding of Rnt1p dsRBD to A/uGNN hairpins is a major determinant of target selection provides the first clear example of a binding specificity for a dsRBD (Chanfreau et al., 1998b, 2000; Nagel and Ares, 2000; Wu et al., 2004). Structural studies revealed that helix α1 recognizes the specific shape of this broad class of tetraloops (Wu et al., 2004). Thus, the discovery of a second class of tetraloops that did not conform to this minimal consensus and had a different free tetraloop structure led to the proposal that Rnt1p bound these substrates in a different way (Gaudin et al., 2006). Comparison of the dsRBD/AAGU structure, reported here, with the dsRBD/AGAA structure revealed that the AAGU hairpin has the same backbone fold in the complex as the AGNN tetraloops, and the dsRBD interactions and RDCs are the same for both complexes. We conclude that a conserved recognition mode is used for all Rnt1p substrates, regardless of their terminal loop sequences.

Conformational analysis of the free Rnt1p dsRBD (Leulliot et al., 2004) versus the dsRBD in the dsRBD/AAGU and dsRBD/AGAA (Wu et al., 2004) complexes revealed that helix α1 has a significant change in conformation upon binding to the tetraloop. We previously compared the structure of Rnt1p dsRBD in complex with the AGNN hairpin to that of a nonspecific complex of Xlrpba dsRBD with dsRNA (Wu et al., 2004). We noted that the two dsRBDS had a difference of ~15° in the orientation of helix α1 which positions the Rnt1p dsRBD helix α1 to fit perfectly into the minor groove of the AGNN tetraloop and the top of the stem without changing the spacing of contacts to the minor groove and major groove, 1 and 0.5 turns away, respectively. Interestingly, the structure of the free Rnt1p dsRBD is similar to the structure of Xlrpba dsRBD in complex with dsRNA, with an rmsd of 0.41 Å (Figure S6A). Thus, the conformational change in helix α1 may be a key factor in the specific recognition of Rnt1p substrates.

Conformational Change in the AAGU Tetraloop upon dsRBD Binding

For the AGAA tetraloop, the positions of the bases in the free versus bound are very similar, although there is some change in the backbone on the 3' side of the loop (Figure SD). Because the structures of the hairpins capped by AGAA, AGUU, and UGCA tetraloops, which are all substrates for Rnt1p, all had a similar fold with a syn G (Lebars et al., 2001; Wu et al., 2001) and this fold was retained in the dsRBD/AGAA complex (Wu et al., 2004), it was proposed that the dsRBD recognized the conserved shape of the tetraloop. It was therefore surprising to find that for the AGAU hairpin, the positions of the bases and the backbone trajectory both change significantly in the complex (Figure 5C). Thus, it appears that the AGAU tetraloop and helix α1 of the dsRBD cooperatively fold to form a specific complex with a conserved tetraloop fold. In the complexes, these two
different tetraloops provide a rare example of two distinct RNA sequences that adopt the same functional fold (Zhang et al., 2010). Whereas the conformational changes of the free versus bound AAGU tetraloop are larger than for the AGAA tetraloop, both the free and bound tetraloops have features in common that are likely essential for recognition and binding. In all cases, the backbone turns after the second nucleotide, and the position of the backbone in the turn is the same. On the 5' side of the tetraloop, the first two bases point into the major groove and are stacked on each other. In the complexes, these two bases have no contacts to the dsRBD and the third base is positioned above the binding site. Finally, we note that the ACAA tetraloop has been proposed to have a similar conformation to the AGAA and AAGU tetraloops, such that helix α1 would not be able to insert into the minor groove.

Comparison with Other dsRBD/RNA Complexes

Although the dsRBD is the second most abundant family of RNA recognition motifs, structures of only a few dsRBDs in complex with RNA have been solved. There are now six proteins for which the structures of both the free dsRBD and the dsRBD in complex with RNA have been reported. In addition to Rnt1p dsRBD (Leulliot et al., 2004; Wu et al., 2004; and this work), these include Staufen dsRBD (Bycroft et al., 1995; Ramos et al., 2000), TAR RNA binding protein 2 (TRBP2) (Yamashita et al., 2011), Arabidopsis HYL1 dsRBD (Yang et al., 2010), ADAR2 dsRBD1 and dsRBD2 (Stefl et al., 2006, 2010), and Aquifex aeolicus RNase III (Gan et al., 2006, 2008; Ramos et al., 2000; Ryter and Schultz, 1998). All of the free dsRBDs, with the exception of ADAR2 dsRBD1 and dsRBD2, superimpose well on each other and have virtually the same angle of helix α1 relative to the other secondary-structure elements (Figure S6). Furthermore, the conformations of the free and RNA-bound dsRBDs of HYL1, TRBP, Staufen, and A. aeolicus RNase III are the same, respectively, indicating that helix α1 does not change its conformation upon binding RNA. Of the complexes solved to date, only the dsRBD of Rnt1p and dsRBDs of ADAR2 have different helix α1 positions in complex with RNA relative to the free dsRBD (Figures S6I and S6J). The dsRBDs of ADAR2 have recently been shown to bind dsRNA in a sequence-specific manner, with base recognition via the minor groove from one amino acid each on helix α1 and the β1-β2 loop (Stefl et al., 2010). These two dsRBDs undergo relatively large conformational changes upon RNA binding, similar to Rnt1p. However, in contrast to Rnt1p dsRBD, the position of helix α1 in the free ADAR2 dsRBD1 and dsRBD2 is different compared to Xlrpba and the other dsRBDs (Figure S6).

Rnt1p requires specific tetraloop structures for substrate cleavage both in vivo and in vitro, whereas A. aeolicus RNase III, the homolog of Escherichia coli RNase III, cleaves dsRNA in vitro with little apparent sequence specificity. Crystal structures of A. aeolicus RNase III in complex with RNA have revealed...
that, in addition to non-sequence-specific contacts to the backbone, three bases have direct contacts to the dsRBD, two in helix a_1 and one in the b_1-b_2 loop (Gan et al., 2006). One of these, Q157, is conserved in all bacterial RNase IIIs, and deletion of it abolished cleavage and binding. The equivalent residue in Rnt1p does not contact the RNA. The other two residues, including $A. aeolicus$ RNase III Q161 in helix a_1, have been proposed to give rise to sequence-specific binding (Stefl et al., 2010). Of the sequence- or tetraloop-specific dsRBD/RNA complexes solved to date, $A. aeolicus$ RNase III is the only example where there is no significant change in the orientation of the dsRBD helix a_1 upon binding to RNA.

In conclusion, our results show that the noncanonical AAGU tetraloop adopts a canonical fold upon binding to the dsRBD and that reorientation of helix a_1 plays a major role in substrate-specific recognition. We propose that the Rnt1p dsRBD initially binds nonspecifically to dsRNA and scans along the RNA until it reaches an AnuGNN or AAGU tetraloop. Helix a_1 is locked into position by the tetraloop fold like a ball in a glove, allowing subsequent positioning of the active site of Rnt1p at the cleavage site 14–16 bp away.

EXPERIMENTAL PROCEDURES

NMR Sample Preparation

The Rnt1p dsRBD, consisting of residues 366–453, was expressed as a glutathione transferase (GST) fusion protein and purified essentially as described (Wu et al., 2004), except for the addition of 1 mM DTT to the gel-filtration purification step. Details of the purification are given in Supplemental Experimental Procedures. NMR samples were $1 mM$ dsRBD in $20 mM$ sodium phosphate (pH 6.5), $150 mM$ NaCl, $1 mM$ DTT. For NMR binding studies, the 32 nt AGAA (Figure 3A), AAGU, or UUCG hairpins were prepared by in vitro transcription using His$_6$-tagged mutant T7 polymerase (P266L) (Guillerez et al., 2005) with a synthetic DNA template and purified on denaturing gels as described (Wu et al., 2001). Unlabeled, uniformly ^{13}C, ^{15}N-labeled, and A-, U-, G-, or $C.^{13}C$, ^{15}N-labeled AAGU hairpins were used for structure determination of the dsRBD/AAGU complex. The dsRBD/AAGU complex was prepared at a 1.1:1 ratio (RNA:protein) by adding the dsRBD to the RNA under dilute conditions followed by concentration in NMR buffer to $1 mM$ complex.

NMR Spectroscopy and Structure Calculations

All NMR spectra were recorded at $25^\circ C$ on Bruker DRX 500 and 600 MHz spectrometers, except for 2D NOESY spectra of exchangeable proton resonances of RNA, which were recorded at $10^\circ C$. The assignments of the Rnt1p dsRBD in the complex were derived from the analysis of 3D CBCANH, 3D CBCA(CO)NH, 3D HCCH-TOCSY, 3D HCCH-COSY, 3D ^{13}C-NOESY-HSQC,
and 3D 15N-NOE-SY-HSQC experiments (Grzesie and Bax, 1993; Kay et al., 1994; Schleucher et al., 1994) acquired on 15C,15N-labeled dsRBD in complex with unlabeled AAGU hairpin. The assignments of the AAGU hairpins were derived from 2D HCCH-COSY, 3D HCCH-TOCYS, 2D NOESY, 2D TOCYS (Cromsigt et al., 2001), and a suite of 2D filtered/edited NOE experiments (Peterson et al., 2004) using unlabeled dsRBD with A-, G-, U-, or C-15C,15N-labeled AAGU. Finally, intermolecular NOEs were derived from 2D filtered/edited NOE-SY-HSQC experiments as described (Peterson et al., 2004). One-band 1H-15N RDCs were measured from HSQC-IFAP experiments (Ottiger et al., 1998) in the presence and absence of C125Es/35/hexanols (Ruckert and Otting, 2000) on a 600 MHz spectrometer. A total of 84, 81, and 83 RDCs were obtained for the free dsRBD, dsRBD/AGAG complex (Wu et al., 2004), and dsRBD/AAGU complex, respectively. Structure calculations were performed essentially as described (Peterson et al., 2004), and details are given in Supplemental Experimental Procedures. For comparison purposes, the free dsRBD/AGAG complex was re-refined with the larger set of RDCs (81 versus 43).

Determination of Apparent Kd from 1H-15N HSQC Chemical Shift Titrations

The AAGU, AGAG, and UUGG hairpins were individually titrated into 0.1 mM 1H-15N-labeled dsRBD samples prepared in 500 μM high-salt NMR buffer (20 mM sodium phosphate [pH 6.5], 300 mM NaCl, 1 mM DTT) up to RNA-protein ratios of 2:1 (Figure 1). The higher-salt conditions (300 mM NaCl), instead of the 150 mM NaCl used for the structure studies, were used in order to minimize nonspecific binding. 1H-15N HSQC spectra were recorded for each titration point. The apparent dissociation constant Kd was obtained from changes in weighted chemical shift differences ∆½(N,H) = [(∆½(N,H)max)/2] = ½[(P30 + L0 + K4) – [(P30 + L0 + K4)2 – 4P30L0]1/2], where ∆½(N,H)max is the average chemical shift difference between the free and bound forms, and P30 and L0 are the total concentration of dsRBD and AAGU hairpin, respectively.

Cleavage Kinetics Assays

Full-length Rnt1p was expressed with an N-terminal His6 tag in BL-21 (DE3) Gold cells and purified on a GE Healthcare HiTrap Ni2+-affinity column, followed by anion-exchange (HiTrap Q) and gel-filtration (HiLoad S75) chromatography. Purified Rnt1p was concentrated to ~5 mg/ml. For kinetics assays, 52 nt RNA hairpins snr47-AGAG, snr47-AGAU, or snr47-UUGG (Figure 2A) were 32P-end labeled with T4 polynucleotide kinase. Cleavage reactions were prepared under single-turnover conditions with 25 mM RNA and 1 μM Rnt1p in 20 mM Tris (pH 8.0), 150 mM NaCl at 25°C, and reactions were initiated by adding MgCl2 to a final concentration of 5 mM. Ten microliter aliquots were removed at time points of 0.25, 0.5, 1, 2, 4, and 8 min, and quenched with 10 μl of formamide gel-loading buffer with 20 mM EDTA. Samples were run on a 10% denaturing polyacrylamide gel (15:1 acrylamide:bisacrylamide), dried, and imaged on a Molecular Imager FX Pro Plus (Bio-Rad). Bands in the gel image corresponding to the uncleaved fraction of the substrate were quantified using ImageJ (NIH). Plotted values are the average of three experiments.

In Vivo Analysis of Tetraloop Mutants

Tetraloop mutants (AAGU or UUGC) were inserted into the tetraloop upstream from the snr47 snoRNA gene using the delitto perfetto method (Storici et al., 2001). A core KanR–URA3 cassette was inserted between the second and third positions of the snr47 snoRNA tetraloop, and double-stranded DNA oligonucleotides were used to excise the core sequence and introduce the AAGU or UUGC sequence. Genomic DNA sequences were confirmed by sequencing. Strains were grown in YPD and harvested, and northern blot and primer extension analysis were performed as described (Chanfreau et al., 1998a; Herras et al., 2005).

ACCESSION NUMBERS

Coordinates and restraints for the 16 lowest-energy structures of the Rnt1p dsRBD/AAGU complex have been deposited in the Protein Data Bank under ID code 2LBS, and chemical shifts have been deposited in the BioMagResBank under accession number 17574.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, six figures, and one table and can be found with this article online at doi:10.1016/j.str.2011.03.022.

ACKNOWLEDGMENTS

This work was supported by NIH grants GM37254 (to J.F.) and GM61518 to (G.C.). K.R. was supported by a Whitcome Fellowship and Ruth L. Kirschstein National Research Service Award GM007185. The authors thank Qi Zhang for helpful advice.

Received: December 29, 2010
Revised: March 1, 2011
Accepted: March 31, 2011
Published: July 12, 2011

REFERENCES

CHAPTER 4

Intrinsic Dynamics of an Extended Hydrophobic Core in the *S. cerevisiae* RNase III

dsRBD Contributes to Recognition of Specific RNA Binding Sites
Intrinsic Dynamics of an Extended Hydrophobic Core in the *S. cerevisiae* RNase III dsRBD Contributes to Recognition of Specific RNA Binding Sites

Elon Hartman†, Zhonghua Wang†, Qi Zhang, Kevin Roy, Guillaume Chanfreau and Juli Feigon

Department of Chemistry and Biochemistry, and Molecular Biology Institute, P.O. Box 951569, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA

Correspondence to Juli Feigon: feigon@mbi.ucla.edu

http://dx.doi.org/10.1016/j.jmb.2012.11.025

Edited by A. G. Palmer III

Abstract

The *Saccharomyces cerevisiae* RNase III enzyme Rnt1p preferentially binds to double-stranded RNA hairpin substrates with a conserved (A/u)GNN tetraloop fold, via shape-specific interactions by its double-stranded RNA-binding domain (dsRBD) helix α1 to the tetraloop minor groove. To investigate whether conformational flexibility in the dsRBD regulates the binding specificity, we determined the backbone dynamics of the Rnt1p dsRBD in the free and AGAA hairpin-bound states using NMR spin-relaxation experiments. The intrinsic microsecond-to-millisecond timescale dynamics of the dsRBD suggests that helix α1 undergoes conformational sampling in the free state, with large dynamics at some residues in the α1–β1 loop (α1–β1 hinge). To correlate free dsRBD dynamics with structural changes upon binding, we determined the solution structure of the free dsRBD used in the previously determined RNA-bound structures. The Rnt1p dsRBD has an extended hydrophobic core comprising helix α1, the α1–β1 loop, and helix α3. Analysis of the backbone dynamics and structures of the free and bound dsRBD reveals that slow-timescale dynamics in the α1–β1 hinge are associated with concerted structural changes in the extended hydrophobic core that govern binding of helix α1 to AGAA tetraloops. The dynamic behavior of the dsRBD bound to a longer AGAA hairpin reveals that dynamics within the hydrophobic core differentiate between specific and nonspecific sites. Mutations of residues in the α1–β1 hinge result in changes to the dsRBD stability and RNA-binding affinity and cause defects in small nucleolar RNA processing *in vivo*. These results reveal that dynamics in the extended hydrophobic core are important for binding site selection by the Rnt1p dsRBD.

© 2012 Elsevier Ltd. All rights reserved.

Introduction

RNase III enzymes process double-stranded RNA (dsRNA) substrates for many non-coding RNA precursors, including pre-rRNAs, pre-small nucleolar RNAs (snoRNAs), and pre-small nuclear RNAs, as well as microRNA and small interfering RNA. RNase III family members typically have one or two dsRNA-binding domains (dsRBDs) and one or two endonuclease domains (endoNDs), which cleave dsRNA substrates as a dimer. Each endoND cleaves the backbone of one RNA strand via a two-Mg$^{2+}$ catalytic mechanism, leaving a two-nucleotide 3’ overhang on processed RNAs, a defining feature of RNase III cleavage. In *Saccharomyces cerevisiae*, Rnt1p is the only characterized RNase III enzyme and is involved in the processing of the pre-rRNA precursor and of the precursors of many snoRNAs and small nuclear RNAs. For most of these non-coding RNAs, Rnt1p cleavage provides a site for subsequent processing by the Rat1p or Xrn1p exonucleases or the exosome. Rnt1p activity is also important for the quality control of mRNA, processing unspliced mRNAs. Rnt1p cleavage can influence transcription termination by cleaving stem–loop structures that are found downstream from normal polyadenylation signals. Finally, Rnt1p cleavage limits the expression of a
number of mRNAs.\(^{15,22-24}\) Thus, Rnt1p activity controls the production of a large number of cellular transcripts. Rnt1p has a characteristic substrate specificity, cleaving the dsRNA stem of \((A/u)\)GNN tetraloop hairpins 14 and 16 bp from the conserved tetraloop on its RNA targets.\(^{25,26}\) Selective binding by the dsRBD to \((A/u)\)GNN tetraloop hairpins, a unique feature of Rnt1p, determines target site selection.\(^{26}\)

Although *S. cerevisiae* does not have RNAi machinery, other budding yeasts carry out RNAi with a Dicer, called Dcr1, which is evolutionarily related to Rnt1.\(^{27}\) Dcr1 resembles Rnt1 in having a single endoND that dimerizes intermolecularly, unlike other eukaryotic Dicers, which have two tandem endoNDs that dimerize intramolecularly. The Dcr1 endoND is followed by a dsRBD, but has an additional dsRBD separated by a long linker sequence. How these dsRBDs contribute to substrate recognition and processing is unknown, although the endoND-adjacent dsRBD in Dcr1 is required for small interfering RNA processing. Intriguingly, *Candida albicans* Dcr1 has been found to carry out both RNAi and Rnt1 functions.\(^{28}\)

Canonical dsRBDs have an \(αβββα\) secondary-structure motif and interact with a broad range of dsRNA substrates. Residues in helix \(α1\), the \(β1–β2\) loop, and helix \(α2\) mediate interactions with successive RNA minor, major, and minor grooves on one face of the duplex, respectively.\(^{29}\) The dsRBDs generally recognize dsRNA without any additional substrate specificity, a binding mode typified by the crystal structure of the Xrpbpa dsRBD in complex with A-form dsRNA.\(^{30}\) In contrast, the structure of human ADAR dsRBD in complex with dsRNA revealed that this and other dsRBDs, notably *Aquifex aeolicus* RNase III dsRBD, can have some sequence specificity for their dsRNA substrates through hydrophobic contacts between dsRBD side chains and nucleotide bases.\(^{31}\) Additionally, some dsRBDs have a canonical dsRBD fold but do not independently bind to dsRNA with high affinity, such as the human Drosha dsRBD.\(^{32}\)

The Rnt1p dsRBD is unique among dsRBDs studied to date in recognizing RNA hairpins capped by a tetraloop with the consensus sequence \((A/u)\) GNN,\(^ {25}\) through structure-specific recognition of the tetraloop fold by helix \(α1\), with no base-specific contacts.\(^{33}\) Binding of the Rnt1p dsRBD to the conserved tetraloop fold is required for correct substrate cleavage,\(^ {25}\) although cleavage independently from the presence of the tetraloop can be observed *in vitro* in specific conditions.\(^ {24,26}\) The structure of the Rnt1p dsRBD differs from canonical dsRBDs in having an additional C-terminal helix \(α3\) that has been proposed to contribute to specific recognition of Rnt1p substrates by indirectly reshaping the RNA binding surface.\(^ {33,34}\) Our recent structure of the dsRBD bound to an AAGU tetraloop hairpin,\(^ {35}\) a specific but non-canonical substrate,\(^ {8,36}\) showed that the dsRBD employs a single binding mode for AGAA and AAGU tetraloop hairpins, with the AAGU tetraloop adopting the same shape as the AGAA tetraloop upon binding by the dsRBD. The identification of a single binding mode for two substrates with dissimilar sequences and conformations in the free state provided further evidence for the structure-specific, rather than sequence-specific, nature of the interaction between the Rnt1p dsRBD and target RNAs. This study further showed that conformational changes in the tetraloop-binding helix \(α1\) are important for allowing the dsRBD to adopt the bound conformation.\(^ {38}\)

The dynamic properties of biomolecules often contribute to their biological functions by enabling conformational changes necessary for binding and catalysis. Moreover, conformational flexibility can allow proteins to sample functionally important alternative conformations.\(^ {37,38}\) Here, we have investigated the intrinsic backbone dynamics of the Rnt1p dsRBD using NMR \(^{15}\)N spin-relaxation measurements. Further, we have examined the relationship between dsRBD dynamics and structural changes that occur upon binding to AGAA tetraloop hairpins. Slow-timescale dynamics of the dsRBD indicate that helix \(α1\), which interacts with the tetraloop in the complex, undergoes conformational sampling in the free state, with particularly large dynamics at a hinge within the \(α1–β1\) loop. Upon binding to RNA, dynamics at the \(α1–β1\) hinge are partially quenched. We have determined the solution structure of the free dsRBD for the same construct previously used for the structures of Rnt1p dsRBD/RNA complexes, enabling precise comparison between free and bound states. Changes in the structure and dynamics of the dsRBD upon binding to an AGAA hairpin substrate for regions distal to the binding face reveal a network of hydrophobic residues within \(α1\), the \(α1–β1\) loop, and \(α3\) with specific dynamic properties that facilitate binding to specific tetraloops. Mutation of individual residues in the \(α1–β1\) hinge causes changes in dsRBD conformation and stability and results in defects in snoRNA processing *in vivo*. These results show that the intrinsic dynamics of the dsRBD contributes to the selection of specific tetraloop-hairpin substrates by Rnt1p and that helix \(α1\), the \(α1–β1\) loop, and helix \(α3\) cooperatively contribute to regulation of the dynamics of the RNA-binding region of the dsRBD through interactions within an extended hydrophobic core.

Results

Solution structure of the Rnt1 dsRBD\(^ {366-453}\)

Three structures of the free Rnt1p dsRBD have been reported: a solution structure [Protein Data
Helix α3 has a different length and orientation in each of these structures, and this heterogeneity was inferred to reflect dynamics for this helix in solution. Helix α3, unique to the Rnt1p dsRBD, was proposed to contribute to specific RNA binding by reshaping the RNA-binding surface of the dsRBD through steric effects on helix α1 and the α1–β1 loop. However, in the crystal structures, helix α3 of chain A terminates at residue 443 due to disorder in the crystal, and the position of helix α3 of chain B is affected by crystal packing. In the solution structure, there are three nonnative residues beyond 447 in helix α3. We previously acquired residual dipolar couplings (RDCs) for the free dsRBD to determine which of the reported structures most closely reflects the conformation of the dsRBD in solution. We showed that the measured RDCs for the free dsRBD correlate best to the back-calculated RDCs for chain A of the crystal structure, although its helix α3 is shorter than in the other reported structures of the free and bound dsRBD. However, the large difference between the measured and back-calculated RDCs for helix α3 in the free dsRBD suggested that none of the structures of the free protein accurately describe the orientation of helix α3 in solution (Supplementary Fig. 1). In order to be able to completely describe the structural changes in the Rnt1p dsRBD upon RNA substrate binding, we determined the solution structure of the free dsRBD (residues 366–453), including an extensive set of RDCs (Fig. 1a and b). This is the same construct used for the solution structures of the dsRBD/RNA hairpin complexes. The structures of the dsRBD are well converged, with a backbone RMSD to the mean of 0.56 ± 0.11 (Fig. 1a and Table 1). Comparison of our solution structure with the previously determined structures of Rnt1p dsRBD shows that the positions of the three β-strands and helix α2, which comprise a hydrophobic core common to all dsRBDSs, are nearly identical (RMSD < 1.3 Å, RMSD for the α2 and the β-sheets between crystal structures is ~0.8 Å, and that between the NMR structure is ~1.2 Å) (Fig. 1c). The β1–β2 loop shows evidence of flexibility in all of the reported structures, based on high B-factors in the crystal structures and a larger range of conformations in the solution ensembles, especially for the previously determined solution structure. This is consistent with our characterization of the dynamics discussed below. However, there are significant differences in the orientations of helix α1, helix α3, and the α1–β1 loop (Fig. 1d and e), particularly between the two solution structures. In our solution structure of the dsRBD 366–453, residue I448 is part of Fig. 1. Solution structure of the Rnt1p dsRBD 366–453. (a) Superposition of the 20 lowest-energy structures of the free dsRBD. (b) Stereoview of the lowest-energy structure of the free dsRBD. (c) Comparison of the dsRBD determined here (blue) with previously determined solution (1T4N; residues 364–447) (green) and crystal (1T4O; residues 362–471) chain A (red) and chain B (orange) structures. (d and e) Comparison of helix α1, the α1–β1 loop, and helix α3 in (d) the solution structures of the dsRBD 366–453 and dsRBD 364–450 (1T4N) and (e) the solution structure of the dsRBD 366–453 and the crystal structures chain A and chain B. In all structures, helix α1 begins at residue 369. Helix α3 has three non-native residues beyond residue 447 in the solution structure 1T4N. Helix α3 ends at 443 in the crystal structure (1T4O) chain A, at 448 in the crystal structure (1T4O) chain B, and at 448 in our solution structure. Structures in (c) to (e) are aligned on α2, β1, β2, and β3.
helix α3, which is the nonnative Ala in the previously determined solution structure. Interestingly, as shown below, I448 has one of the largest chemical shift changes upon binding to RNA substrate (see Fig. 6). The overall fold of the α1–β1 loop is the same for our solution structure and the two crystal structures, although the position of the loop is different (Fig. 1e). Detailed analysis of our solution structure of Rnt1p dsRBD reveals interactions among residues from helices α1 and α3 and the α1–β1 loop that constitute an extended hydrophobic core not present in other dsRBDs. In canonical dsRBDs, residues in helix α1 and the α1–β1 loop are typically solvent exposed. While contiguous with the hydrophobic core common to all dsRBDs, formed by contacts among helix α2 and the β-sheets, this extended hydrophobic core constitutes a distinct internal network of hydrophobic interactions, indicating a potential functional role in tetraloop-specific recognition by the Rnt1p dsRBD.

Structural comparison of free and RNA-bound Rnt1p dsRBD reveals concerted changes in the extended hydrophobic core

Comparison of the solution structure of the free dsRBD366–453 with the dsRBD in complex with AGAA (Fig. 2) and AAGU tetraloop hairpins confirms the previously described conformational changes in the dsRBD at the RNA-binding interface that were based on comparison to crystal structure chain A33,35 and provides additional details. Upon binding to the tetraloop minor groove, helix α1 is extended three residues at its N-terminus, rotates 18°, bends between residues L374 and S376, and translates toward the RNA. This reorientation of helix α1 is required for shape-specific binding to the tetraloop minor groove, which is different from the minor groove of A-form RNA. The β1–β2 loop, which interacts with the stem minor groove one helical turn away, moves toward the RNA by about 6 Å compared to its position in the free dsRBD. In the intervening major groove, helix α2 and the β3–α2 loop shift positions for side-chain interactions with the phosphodiester backbone. The side chains of the interacting residues all change positions.

In addition to these conformational changes for residues at the RNA-binding interface, the solution structure of Rnt1p dsRBD366–453 reveals specific changes in the positions of some residues at the

![Fig. 2.](image-url)
interface between helix \(\alpha_1 \) and helix \(\alpha_3 \), which are distal from the protein–RNA interface. Superposition of the free and RNA-bound dsRBD on the core \(\beta_1, \beta_2, \) and \(\beta_3 \) elements reveals that helix \(\alpha_1 \), helix \(\alpha_3 \), and the \(\alpha_1–\beta_1 \) loop all change positions significantly between the free and bound states (Fig. 2a). However, when the free and bound dsRBDs are aligned on \(\alpha_1 \) and \(\alpha_3 \), it becomes clear that these changes are concerted; that is, the backbones of all three of these elements are nearly superimposed, indicating that they all translate in space together (Fig. 3b). The concerted movement of helix \(\alpha_1 \) and helix \(\alpha_3 \) upon RNA binding includes some reorientation of side chains in the hydrophobic core (Fig. 3c–e). The \(I_{378} \) side chain is in the trans rotamer conformation in the free dsRBD but in the gauche conformation in the RNA-bound state (Fig. 3c and d). This side-chain rotation may be necessary to maintain close hydrophobic contacts between \(\alpha_1 \) and \(\alpha_3 \) in the complex. The Y380 ring rotates to a position perpendicular to its position in the free state (Fig. 3e). The backbone of the \(\alpha_1–\beta_1 \) loop moves from its position in the free dsRBD by about 4 Å to accommodate the changes in position of \(\alpha_1 \) and the \(\alpha_1–\beta_1 \) side chains in the bound dsRBD. These changes in side-chain conformation allow the extended hydrophobic core to maintain most of the hydrophobic contacts in the bound state.

Backbone dynamics of the free dsRBD

To investigate whether the concerted conformational changes in the extended hydrophobic core contribute to tetraloop-specific recognition and, more generally, how conformational flexibility within the free dsRBD affects substrate specificity and binding, we investigated the backbone dynamics of free and RNA-bound dsRBDs using NMR spin-relaxation experiments (Fig. 4). The measured \(^{15}\)N relaxation data, \(R_1 \) and \(R_2 \), and \(^{(1)}H–^{15}\)N heteronuclear nuclear Overhauser enhancement (NOE) were analyzed using the Lipari–Szabo model-free formalism to obtain a quantitative description of the backbone dynamics, where the order parameter \((S^2) \) and the internal correlation time \((\tau_c) \) describe the amplitude and timescale of backbone dynamics, respectively. In addition, to fully describe internal motions, model-free analysis also includes a term to account for chemical exchange at the microsecond-to-millisecond timescale \((R_{ex}) \). Overall, the \(S^2 \) values obtained from model-free analysis indicate that the dsRBD is relatively rigid for all structured residues at the picosecond-to-nanosecond timescale, with an average \(S^2 \) value of 0.86 (Fig. 5a). The single exception is residue N399, which has an \(S^2 \) value of 0.6 and is adjacent to a proline (P398) in the \(\beta_1–\beta_2 \) loop. We were unable to determine relaxation parameters for residue D397 on the other side of the proline due to spectral overlap. The conformational flexibility in the \(\beta_1–\beta_2 \) loop, as evidenced by the low \(S^2 \) value of N399, is consistent with the multiple conformations for the \(\beta_1–\beta_2 \) loop in the NMR structure ensembles and high B-factors in the crystal structures of the free dsRBD.\(^{34}\)

Slow-timescale motions, as reflected by the inclusion of an \(R_{ex} \) term during model-free analysis,
are present in some residues in helix α_1, the α_1–β_1 loop, strand β_1, the β_1–β_2 loop, the β_2–β_3 loop, and residues Y441 and R445 in helix α_3 (Fig. 5a and b). The R_{ex} values in the β_1–β_2 loop and the end of β_1 are consistent with the observed flexibility in this region and proposed P393 cis–trans isomerization. Within the extended hydrophobic core, a cluster of residues in helix α_1 and the α_1–β_1 loop exhibit notable R_{ex}. One of these residues, I378, has an unusually large value for microsecond-to-millisecond timescale exchange, with an R_{ex} value of 15 s$^{-1}$. I378 is the C-terminal residue in helix α_1 and its hydrophobic side chain is part of the extended hydrophobic core. This large R_{ex} could be due to I378 undergoing jumps between the trans and gauche– conformations in residues within the α_1–β_1 loop and the α_1–β_2 loop in the minor groove. The average R_1 and R_2 values on the dsRBD/AGAA hairpin complex are lower and higher, respectively, than those of the free protein, as would be expected for the increased molecular weight of the complex. Heteronuclear NOE values indicate that the dsRBD in the complex

Dynamics of the dsRBD in the dsRBD/AGAA complex

To determine whether specific RNA substrate binding changes the microsecond-to-millisecond dynamics observed in the free dsRBD, we collected R_1, R_2, and heteronuclear NOE values for the dsRBD/AGAA hairpin complex whose structure was previously reported (Supplementary Fig. 2). The AGAA hairpin, consisting of a 14-bp dsRNA stem capped by an AGAA tetraloop, is a model substrate derived from the Rnt1p recognition motif in the Rnt1p pre-snoRNA substrate snR47. This RNA provides a minimal binding site for the dsRBD, with only 2–3 bp extending below the interaction of the β_1–β_2 loop in the minor groove. The average R_1 and R_2 values on the dsRBD/AGAA hairpin complex are lower and higher, respectively, than those of the free protein, as would be expected for the increased molecular weight of the complex. Heteronuclear NOE values indicate that the dsRBD in the complex...
is rigid overall, except for the N- and C-termini and the \(\beta_1 \)–\(\beta_2 \) loop. Several residues in the \(\beta_1 \)–\(\beta_2 \) loop have heteronuclear NOE values between 0.4 and 0.6, indicating that this loop remains flexible in the dsRBD/AGAA hairpin complex.

Binding of the dsRBD to the AGAA hairpin results in an overall increase in the \(S^2 \) values of most of the protein residues (average increase of 0.15) (Fig. 5a and c). Exceptions are small decreases (\(<\)0.1) for helix \(\alpha_1 \) residues K371 and S376, which interact with the minor groove of the AGAA tetraloop, Y380 and L383 in the extended hydrophobic core of the \(\alpha_1 \)–\(\beta_1 \) loop, and the single residue R433 between \(\alpha_2 \) and \(\alpha_3 \) (Fig. 5c). \(R_{ex} \) values increase for most of the residues in helix \(\alpha_1 \), with particularly large increases for K371 and S376, which contact the RNA backbone. Helix \(\alpha_3 \), which has only two residues with \(R_{ex} \) in the free dsRBD, also shows \(R_{ex} \) for most residues. In contrast, the dynamic hinge residues I378 and Y380, both of which exhibit slow-timescale motions in the free protein, have lower \(R_{ex} \) values in the complex. Dynamics in helix \(\alpha_1 \) likely reflect flexibility at the protein–RNA interface. For helix \(\alpha_3 \), the uniform increase in \(R_{ex} \) could originate from propagation of the dynamics in helix \(\alpha_1 \) via the extended hydrophobic core and/or from an increase in entropy of the dsRBD in the bound state, an effect that has been observed in other RNA-binding proteins.\(^{40}\) A395 and V396, near P398 in the \(\beta_1 \)–\(\beta_2 \) loop, which contact the minor groove of the dsRNA stem, also have lower \(R_{ex} \) values in the complex (Fig. 5c and d). The decrease in slow-
timescale motions for residues in the dynamic hinge and the β1–β2 loop indicates that some slow-
timescale dynamics present in the free dsRBD are quenched upon binding to RNA.

Helix α1 residue S376 has no R_{ex} term in the free dsRBD but has the largest R_{ex} value in the dsRBD/AGAA complex. Helix α1 bends at S376 to insert into the minor groove, and the S376 side chain contacts the RNA backbone on the 3' side of the AGAA tetraloop. This correlation between changes in structure and dynamics suggests that the dynamic properties of S376 might have a functional role in allowing the dsRBD to adopt the bound conformation. Alternatively, chemical exchange at S376 might be caused by exchange between the specifically and nonspecifically bound states, reflecting the role of this residue in recognizing the backbone of the tetraloop.

To verify that the observed R_{ex} is attributable only to the intrinsic dynamics of the dsRBD and not to nonspecific protein–protein interactions or to exchange between the free and bound state, we measured R_2 values at concentrations of 1 mM and 0.5 mM for the dsRBD/AGAA complex and the free dsRBD (Supplementary Fig. 3). In the absence of these possible additional contributions to chemical exchange, R_2 values and NMR linewidths would be expected to be the same at both concentrations. In both cases, R_2 values and NMR linewidths for two protein concentrations are nearly identical, indicating that the dynamics determined by model-free analysis arise only from the intrinsic dynamics of the dsRBD and not from other possible contributions to chemical exchange.

In summary, two distinct changes in dsRBD dynamics in the extended hydrophobic core are observed upon substrate binding. First, there is a general increase in slow-timescale dynamics for residues in helices α1 and α3 that is associated with concerted changes in the extended hydrophobic core. Second, there is a decrease in slow-timescale dynamics for residues in the α1–β1 hinge and the β2–β3 loop, due to "locking in" of helix α1 by shape-specific binding to the tetraloop minor groove.

Ionic strength dependence of dynamics for the dsRBD in the dsRBD/AGAA complex

Previous NMR titration and isothermal titration calorimetry experiments revealed that the dsRBD can bind to the AGAA hairpin both specifically and nonspecifically at 150 mM NaCl, with saturation of the RNA at a protein:RNA ratio of 2:1. The relaxation data discussed above for the dsRBD/AGAA complex were measured at a protein:RNA ratio of 1:1.1 and were expected to primarily reflect values for the dsRBD bound to the specific site. To further confirm this, we investigated the binding and dynamics of the dsRBD/AGAA hairpin complex at 300 mM NaCl (Supplementary Fig. 4). At this salt concentration, nonspecific binding should be minimal. Chemical shift mapping for the dsRBD upon RNA binding at 300 mM NaCl revealed chemical shift changes similar in pattern to those for the complex at 150 mM NaCl, but with a much smaller magnitude (Fig. 6). This is consistent with the lower binding affinity of the dsRBD for RNA at a higher salt concentration, as measured by NMR titration and
isothermal titration calorimetry. At 300 mM NaCl, the dsRBD exhibits R_{ex} values similar overall to those observed at 150 mM NaCl (compare Fig. 7a and b with Fig. 5c and d). This observation is consistent with a single, specific binding site on the AGAA hairpin. Hence, the dsRBD is fully bound to the AGAA hairpin at the specific binding site under the conditions used for spin-relaxation experiments at a high concentration of the complex and 150 mM or 300 mM NaCl.

Dynamics of the dsRBD in the presence of both specific and nonspecific binding sites

As discussed above, the dsRNA construct was designed such that it has a minimal binding site for the dsRBD. To investigate whether there is a difference in dsRBD dynamics when both nonspecific and specific binding sites are present, we collected NMR spin-relaxation data for Rnt1p dsRBD in complex with an AGAA tetraloop hairpin with a 22-bp stem (AGAA222) at 300 mM NaCl (Supplementary Fig. 5). AGAA22 has a stem that is 8 bp longer than that of the AGAA hairpin (14 bp), allowing for nonspecific binding to the longer dsRNA stem in addition to specific binding site at the AGAA tetraloop. Because of the longer stem, Rnt1p dsRBD can potentially exchange between the specific site and nonspecific sites on AGAA22. AGAA22 more closely reflects native conditions for substrate binding by Rnt1p dsRBD, as the stem length is the same as the stem in the pre-snR47 snoRNA (excluding a single bulge). In general, the values for chemical exchange, as described by R_{ex}, are

Fig. 7. Fast- and slow-timescale dynamics of dsRBD/AGAA and dsRBD/AGAA22 complexes at 300 mM NaCl. (a and b) S^2 and R_{ex} model-free parameters for the (a) dsRBD/AGAA complex and (b) dsRBD/AGAA26 complex. (c and d) R_{ex} values mapped onto the structure of the (c) dsRBD/AGAA and (d) dsRBD/AGAA26 complex.
significantly larger for dsRBD/AGAA22 than for dsRBD/AGAA. Slow-timescale dynamics for dsRBD/AGAA22 are present for residues in helices α1 and α3 in or near the extended hydrophobic core, residues throughout the RNA-binding interface, including helix α2 and the β1–β2 loop, and in β2 and β3. In dsRBD/AGAA, there was no R_{ex} for any residues in the β1–β2 loop, while in dsRBD/AGAA22, most of the β1–β2 loop residues show R_{ex} (Fig. 7c and d). The R_{ex} in the β1–β2 loop is both larger and present in more residues than in the free dsRBD (Fig. 5a). Under the experimental conditions of 300 mM NaCl and excess RNA, the dsRBD is relatively selective for specific binding; thus, the additional contribution to R_{ex} arising from the presence of additional nonspecific binding sites can be attributed to exchange between tetraloop (specific) and stem (nonspecific) binding sites. It is notable that all of the elements of the dsRBD that interact with the minor and major groove of the dsRNA stem show more conformational exchange than when only a specific binding site is available. The additional protein dynamics for the dsRBD/AGAA22 complex, compared to the dsRBD/AGAA complex, also reveal the significance of conformational changes in the extended hydrophobic core, in addition to residues at the RNA binding interface, in binding site selection. We conclude that the difference in R_{ex} for the complex with AGAA22 versus AGAA reflects some nonspecific binding to the dsRNA on the longer substrate. Furthermore, once helix α1 locks in to the tetraloop, the rest of the dsRBD locks into place, resulting in a decrease of R_{ex} in the β1–β2 loop for AGAA versus AGAA22.

Hydrophobic interactions with the α1–β1 loop maintain dsRBD stability

To extend insights from our characterization of dsRBD structure and dynamics, we further investigated the importance of residues in the α1–β1 loop for RNA binding by generating four dsRBD mutants with single mutations in the α1–β1 loop: I378A, G379P, G379A, and Y380A. These three residues are part of the α1–β1 hinge in the extended hydrophobic core. The side chains of I378 and Y380 change position between the free and RNA-bound states and maintain hydrophobic contacts with residues in helix α3. The ϕ and ψ angles for G379 also change between free and bound states, due to conformational changes in the hydrophobic core (Fig. 3c–e). The 1H–15N heteronuclear single quantum coherence (HSQC) spectrum of I378A was poorly dispersed (Supplementary Fig. 6), and the CD spectrum showed no evidence for secondary structure (Supplementary Fig. 7), indicating that the majority of the protein is unfolded at 25 °C. However, in freshly prepared protein samples, there appears to be about 10% folded protein based on the 1H–15N HSQC. Addition of RNA to I378A results in some chemical shift changes indicative of binding for the peaks from the folded protein, but fewer than for the wild-type dsRBD, and the protein unfolds over time. Thus, we conclude that the mutation I378A destabilizes the protein and may also lower RNA binding affinity. Since I378 interacts with residue Y441, which is in helix α3 and part of the extended hydrophobic core, we tested the importance of this interaction by making a Y441A mutation. Y441A is also unstable in solution and precipitates after about 20 min at 25 °C, and 1H–15N HSQC spectra indicate that it is unfolded prior to precipitation. We note that the mutation R445A, in helix α3, was previously shown to destabilize the extended hydrophobic core of the dsRBD.

For the G379P mutant, CD spectra indicate that the T_m decreases by ~6 °C and that melting is less cooperative. The 1H–15N HSQC (Supplementary Fig. 7) has chemical shift changes throughout helices α1 and α3, and none of the resonances for the α1–β1 loop are observed (Supplementary Figs. 6 and 8). Analysis of the backbone chemical shifts for dsRBD G379P indicates that the C-terminal end of helix α1 and all of helix α3 are altered relative to the wild-type dsRBD (Supplementary Fig. 8). Addition of the AGAA hairpin to G379P up to a 2:1 excess of RNA resulted in almost no changes in the 1H–15N HSQC spectrum, indicating that the G379P substitution essentially abrogates binding of the dsRBD to RNA. G379A had a substantially altered 1H–15N HSQC spectrum (Supplementary Fig. 6) and is unstable, as the protein precipitated after 20 min at 25 °C. However, in the presence of the AGAA hairpin, the G379A mutant gives 1H–15N HSQC spectra, indicating that G379A forms a stable complex (Supplementary Fig. 6). Lastly, we found that Y380A degrades during expression, implying that the mutation of this residue also significantly destabilizes the protein.

In summary, all of the mutations in the α1–β1 loop and α3 destabilize the extended hydrophobic core to some extent and have variable effects on RNA binding. For the G379P mutation, changes to the extended hydrophobic core completely disrupt RNA binding, although this mutation has the smallest effect on dsRBD stability. For G379A, binding to RNA helps stabilize the folded state of the dsRBD. Because all of the residue substitutions in the extended hydrophobic core affect protein stability, we were not able to assess their effects on dynamics independently. Nevertheless, these results support a central structural role for the α1–β1 loop and extended hydrophobic core in maintaining dsRBD stability.
Effect of α1–β1 loop mutations on snoRNA processing in vivo

To determine whether the mutations in the α1–β1 hinge have an effect on cleavage of Rnt1p substrates in vivo, we introduced the single mutations I378A, G379A, and G379P into the RNT1 gene and examined by Northern blot the effect of these mutations on the processing of snR36 and snR47 snoRNAs in vivo. For comparison, we included in the analysis strains harboring a previously studied mutation in helix α1 that affect processing (K371A), a catalytically inactive mutant (E320K), and an RNT1 deletion (rt1Δ). Unlike the previously studied K371A mutant, all three α1–β1 loop mutants exhibit temperature-sensitive growth defects (Fig. 8a and b). The growth defects for strains bearing the I378A and G379A mutations are comparable and relatively modest, while the G379P strain had a growth defect comparable to the rnt1Δ strain. This is consistent with the in vitro results that showed that while stable, dsRBD G379P does not bind RNA.

The strain bearing the I378A mutation shows an inhibition of snoRNA processing comparable to the K371A mutation, with a slight processing defect for snR47 and a more pronounced defect for snR36 (Fig. 8c). snR36 was previously observed to be more sensitive than snR47 to mutations in the Rnt1p dsRBD, because of the presence of a large bulge after the fourth base pair below the tetraloop. The G379A strain exhibited only minor effects on snoRNA processing in vivo. Although it has a growth defect comparable to I378A, the dsRBD is stabilized by binding to RNA, which may explain the difference in effect on snoRNA processing. The G379P strain, in contrast, showed severe processing defects for both substrates. The processing defects in strains bearing the I378A, G379P, and G379A mutations are consistent with NMR and CD results that indicate that these mutations introduce changes in stability and RNA-binding affinities of the dsRBDs. We conclude that mutations in the α1–β1 hinge, all of which destabilize the extended hydrophobic core and affect RNA binding to different extents, compromise the function of Rnt1p in vivo.

Fig. 8. In vivo analysis of dsRBD α1–β1 loop mutants. (a) Growth of wild-type dsRBD and dsRBD hinge mutants, with serial dilutions at 16, 30, and 37 °C. (b) Growth curve for the wild-type dsRBD and dsRBD hinge mutants at 30 °C. (c) Northern blot analysis of snR47 and snR46 snoRNA processing for wild-type dsRBD and dsRBD hinge mutants, showing unprocessed precursor (P) and mature snoRNAs (M).
Discussion

dsRBDS recognize dsRNA primarily by interactions with the phosphodiester backbone of successive minor, major, and minor grooves via the β1–β2 loop, the N-terminal end of helix α2, and helix α1, respectively. The dsRBD of Rnt1p is unusual in that helix α1 recognizes a tetraloop through shape-specific recognition of its minor groove.33 The Rnt1p dsRBD also has an additional helix α3, which packs against the α1–β1 loop to form a distinctive extended hydrophobic core. All dsRBDS have a conserved hydrophobic core, with residues contributed by the C-terminal residues of helix α1, helix α2, and strand β3. Hydrophobic interactions among these residues in the core of the protein stabilize the folded conformation of the dsRBD.29,43

The unique hydrophobic interface between helices α1 and α3 in the Rnt1p dsRBD is contiguous with the conserved hydrophobic core. Through a detailed analysis of the structures and dynamics of the free and bound dsRBDS, we have shown that this extended hydrophobic core plays an essential role in enabling defined conformational changes associated with RNA substrate recognition. Residues in the α1–β1 loop that interact with helix α3 to form the extended hydrophobic core constitute a dynamic hinge that allows a concerted change in the positions of helix α1 and helix α3 between the free and bound states, a key feature of substrate recognition by the Rnt1p dsRBD (Fig. 3). The importance for RNA binding of residues in the extended hydrophobic core, which includes the α1–β1 hinge, is further supported by the results of mutagenesis of individual residues on snoRNA processing in vivo (Fig. 8).

Helix α3 has been previously proposed to contribute to specific RNA binding indirectly by affecting the length and orientation of helix α1 in the free protein.34 However, the orientation of helix α1 in the free dsRBD is the same as other dsRBDS that bind to dsRNA nonspecifically. Our results show that the helix α3 contributes to substrate-specific binding by participating in the reorientation of helix α1 in the bound state through concerted structural changes in the extended hydrophobic core.

The free dsRBD samples multiple conformations

Backbone dynamics of the free dsRBD obtained via model-free analysis of NMR spin-relaxation data reveal extensive slow-timescale dynamics primarily localized in the RNA-binding interface and extended hydrophobic core, including helix α1, the α1–β1 loop, and the β1–β2 loop, as well as limited dynamics in helix α3. Our comparison of free and bound structures shows that upon binding of the RNA substrate, the α1–β1 loop changes conformation to allow helices α1 and α3 to undergo concerted changes in orientation and side-chain position in order for helix α1 to be able to bind to the minor groove of the substrate tetraloop (Figs. 2 and 3). The β1–β2 loop also translocates about 6 Å to bind to the minor groove of dsRNA one helical turn away from the tetraloop (Fig. 2). Thus, the dynamic behavior of the free dsRBD on both fast and slow timescales is associated with conformational changes within the extended hydrophobic core that accompany substrate recognition. This localized flexibility supports the notion that conformational adaptation upon substrate binding is enabled by the dynamics of the free dsRBD. Mutations of residues in the α1–β1 loop affect the stability and RNA-binding properties of the dsRBD, revealing that the interactions of the α1–β1 loop with helix α3 are essential for dsRBD stability and function.

The observed dynamics of the α1–β1 loop in the free dsRBD and the concerted movement of helices α1 and α3 led us to propose that residues 378–380 in the α1–β1 loop serve as a dynamic hinge enabling conformational exchange between the free and bound states. One possible model for the contribution of the α1–β1 hinge is that hinge dynamics on the microsecond-to-millisecond timescale backbone facilitate conformational sampling by helix α1. Moreover, hinge dynamics would facilitate concerted movement of helices α1 and α3 upon binding because hinge residues I378 and Y380 are also part of the extended hydrophobic core. These dynamics, along with those of the β1–β2 loop, are partially quenched upon binding to the specific site on target substrates (Fig. 9). We cannot exclude, however, that the dsRBD experiences a combination of conformational selection and induced fit to achieve its final bound conformation.

Previous studies of the contribution of protein dynamics to RNA recognition have shown that high-affinity binding to RNA is generally associated with the presence of extensive R_{ex} throughout an RNA-binding domain. NMR relaxation studies of the two dsRBDS of protein kinase R indicated that residues that directly interact with the RNA and throughout helix α1, sheet β1, and helix α2 have slow-timescale motions for PKR dsRBD1, which binds to dsRNA with high affinity. In contrast, there are but few such motions for PKR dsRBD2, which has weaker binding affinity for dsRNA.44 Dynamics within the PKR dsRBD1 were proposed to allow for adaptation to nonuniform RNA substrates. The observed R_{ex} within PKR dsRBD1 and Rnt1p dsRBD are different in both the distribution and extent of slow-timescale dynamics. Thus, dsRBDS with different dsRNA substrates can have different dynamic modes despite having similar structures in the free state. Here, we have shown the first example where dynamic properties of a dsRBD are associated with defined structural changes in the protein that take place upon binding to RNA.
Substrate binding induces changes in backbone dynamics

In complex with RNA, dynamics in Rnt1p dsRBD are present throughout the extended hydrophobic core and RNA-binding interface, corresponding to binding-induced conformational changes. Changes in R_{ex} between free and AGAA tetraloop-bound dsRBDS are shown in Fig. 9. Residues within the α_1–β_1 hinge that are dynamic in the free dsRBD are partly or completely quenched, while residues within helices α_1 and α_3 have even larger slow-timescale dynamics in the complex. Residues at the N-terminus of helix α_1 in the complex fold only upon binding to RNA, and these residues also have a decrease in slow timescale dynamic upon binding. Two residues within the β_1–β_2 loop also have lower R_{ex} in the complex than in the free dsRBD, which is consistent with the stable interaction of this loop with the stem minor groove.

An increase of the prevalence of chemical exchange upon substrate binding appears to be a common feature of nucleic acid binding proteins, as well as proteins involved in protein–protein interactions. Typically, this increase in R_{ex} is observed to occur at sites distant from the interface with the partner molecular and implies an indirect role for conformational flexibility in binding. The increase in R_{ex} is often distributed throughout the protein and is not well correlated with specific structural changes. In contrast, for Rnt1p dsRBD, the observed increase in R_{ex} for regions of the protein distal from the RNA binding surface, particularly in the C-terminus of helix α_3, is correlated with conformational changes associated with RNA binding. The counterintuitive increase in dynamics for regions of the dsRBD distal to the RNA-binding face reveals that a broad network of residues within the dsRBD contributes to conformational adaptation to the specific tetraloop binding site. The results of these experiments highlight the importance of protein conformational flexibility, particularly within the extended hydrophobic core, in binding of the Rnt1p dsRBD to RNA tetraloop hairpin substrates.

Dynamics reflect binding site exchange on a long substrate

Because the dsRBD binds to the minimal substrate (AGAA) at 300 mM NaCl only at the specific tetraloop site, slow-timescale dynamics are likely to be limited to intrinsic dynamics of the bound state, reflecting intrinsic conformational entropy of the dsRBD in complex with RNA. However, exchange between specific and nonspecific sites becomes significant in the dsRBD/AGAA22 complex, as the longer stem allows for nonspecific binding away from the tetraloop. In the dsRBD/AGAA22 complex, chemical exchange values are quantitatively higher and are present throughout the dsRBD. Hence, dynamics within the dsRBD in the dsRBD/AGAA22 complex suggest that the dsRBD distinguishes between specific and nonspecific complexes after binding to the RNA substrate through conformational exchange. Increased dynamics throughout the extended hydrophobic core and RNA-binding interface, compared to the dsRBD/AGAA complex (Fig. 9b), suggests that flexibility within the RNA-bound dsRBD remains important for selection of the specific binding site even after the dsRBD is bound to RNA. Moreover, elevated R_{ex} values of helix α_1 and the β_1–β_2 loop would be expected to be present at the RNA-binding interface for the dsRBD/AGAA22 complex if the dsRBD searches between the specific tetraloop site and nonspecific stem region, since contacts to the RNA stem in the nonspecific complex would not be identical with the specific complex.

Comparison to budding yeast Dicer

Budding yeast Dicers have two dsRBDS: the first (dsRBD1) is located immediately adjacent to the endoND, as in Rnt1p, and the second (dsRBD2) is at the C-terminus of the protein and separated from dsRBD1 by a long intervening sequence with no known structural motifs. The Saccharomyces castellii Dcr1 dsRBD1, but not dsRBD2, was shown to
be necessary for efficient processing of long dsRNA substrates to 23-nt fragments and for specificity of the enzyme for dsRNA over single-stranded RNA. Dcr1, however, does not have tetraloop specificity. A superimposition of the crystal structure of the free Klyuyveromyces polysporus Dcr1 dsRBD1 and the solution structure of the free Rnt1p dsRBD (Supplementary Fig. 9) indicates that the two dsRBDS have the same overall conformation, including a short helix α3 in Dcr1, but differ in regions that are important for specific RNA binding by Rnt1p dsRBD. In Dcr1, there are no interactions between the α1–β1 loop and helix α3 because helix α3 is shorter in the Dcr1 dsRBD1, and the α1–β1 loop adopts a different conformation compared to the Rnt1p dsRBD. Although Dcr1 dsRBD1 has some conserved hydrophobic residues in the α1–β1 loop (e.g., L278 and I280 in K. polysporus Dcr1 correspond to Rnt1p dsRBD hinge residues I378 and Y380), it does not appear to have an extended hydrophobic core. L278 cannot undergo the rotamer change that we see for I378, and the I280 side chain is oriented toward the outside of the protein. These residues do not interact with helix α3 and do not appear to constitute an analogous hinge. Interestingly, K. polysporus Dcr1 L275 has hydrophobic interactions with the conserved residue Y341, which is in the loop extending past helix α3 in the dsRBD1. We speculate that the absence in Dcr1 dsRBD1 of an extended hydrophobic core involving the α1–β1 loop results in the loss of tetraloop specificity for K. polysporus and S. castellii Dcr1. Nevertheless, structural features within this region that are unique to the Dcr1 dsRBD may affect its binding affinity to Dcr1 substrates. Interestingly, C. albicans Dcr1 is able to carry out both Rnt1 and Dcr1 functions, suggesting that its dsRBD1 may retain the structural features necessary for tetraloop recognition, including the extended hydrophobic core.

Materials and Methods

NMR sample preparation

The Rnt1p dsRBD (residues 366–453 of Rnt1p) and single-residue mutants were expressed as glutathione S-transferase (GST) fusion proteins containing a thrombin cleavage site using the pGEX-2T vector (GE Healthcare) in BL21 (DE3) Gold cells (Stratagene). The 15N-labeled and 13C,15N-labeled GST-dsRBD fusion proteins were expressed at 30 °C and 37 °C, respectively, for 16 h in M9 minimal media containing 1 g/L 15NH4Cl and 1 g/L 13C-glucose. GST-dsRBD was purified using a GSTrap 4B glutathione Sepharose column (GE Healthcare), followed by a HiLoad 26/60 Superdex 75 pg (S75) gel-filtration column (GE Healthcare). GST-dsRBD was cleaved with 10 units of thrombin (GE Healthcare) per milligram of fusion protein for 24 h at a concentration of about 1 mg/mL in a buffer containing 20 mM Tris–HCl, pH 7.5, 150 mM NaCl, and 2.5 mM CaCl2. Cleaved dsRBD was purified on an S75 gel-filtration column in NMR buffer (20 mM sodium phosphate, pH 6.5, 150 mM NaCl, and 1 mM DTT) and concentrated to about 1 mM.

RNA samples were prepared by in vitro transcription from a synthetic double-stranded DNA template using mutant T7 RNA polymerase (P266L) and purified on a 15% denaturing polyacrylamide gel containing 8 M urea as previously described. RNA samples were electroeluted, further purified on a HiTrap Q anion-exchange column (GE Healthcare), exchanged into NMR buffer using an Amicon Ultra centrifugal filter, and concentrated to about 1 mM. RNAs were then refolded by heating to 95 °C and slow cooling to 4 °C. dsRBD/RNA complexes for NMR spectroscopy were prepared by adding RNA to protein at a 1:1.1 ratio of RNA:protein and concentrated to 0.8–1 mM.

NMR spectroscopy for structure calculations

NMR spectra for structure determination were recorded on Bruker DRX 500- and 600-MHz spectrometers at 25 °C. The assignments for the Rnt1p dsRBD were derived from analysis of 3D CBCANH, 3D CBACA(CO)NH, 3D HCCH-total correlated spectroscopy, 3D HCCH-correlated spectroscopy, 3D 15C-NOE spectroscopy-HSQC, and 3D 15N-NOE spectroscopy-HSQC experiments acquired on 13C,15N-labeled dsRBD. One-bond 1H–15N RDCs were measured from HSQC–in-phase/antiphase experiments in the presence and absence of the RDC alignment medium C12ES/Hexanol on the 600-MHz spectrometer. A total of 84 RDCs were obtained for the free dsRBD. For structure determination of the free dsRBD, a total of 2068 experimental distance restraints were obtained from NOE intensities and classified as strong (1.8–3.0 Å), medium (1.8–4.5 Å), and weak (1.8–6.0 Å). A total of 138 dihedral angles were derived from TALOS. Structures were calculated using the NIH-Xplor package following standard protocols. Briefly, the calculation started from the extended protein in random orientations. The protein was then folded during 40,000 steps of high-temperature dynamics with a time step of 0.002 fs. The structures were cooled down using 75 ps of slow cooling from 2000 K to 100 K. The final structures were obtained after refinement with 52 RDCs (only RDCs from secondary-structure elements were used for structure calculations) during a second slow cooling from 1200 K to 100 K. The axial (∼30 Hz) and rhombic (0.52) components of the alignment tensor were derived from a grid-search procedure. The force constant for the RDCs was gradually increased from 0.001 to 0.2 kcal mol−1 Hz−1. The 20 lowest-energy structures were selected, and the structures were analyzed using MOLMOL and PyMOL.

NMR spectroscopy for spin-relaxation experiments

R1, R2, and 1H–15N NOE values were measured for the free dsRBD and the dsRBD/AGAA and dsRBD/AGAA22 complexes at 20 °C on a Bruker DRX 600-MHz spectrometer. R1 experiments used the following time delays: for the free dsRBD, 41, 161, 299, 299, 437, and 644 ms; for the dsRBD/RNA complexes, 46, 207, 207, 575, 575, and 989 ms. R2 rates were determined with Carr–Purcell–
Meiboom–Gill experiments, with the following time delays: for the free dsRBD, 11.2, 22.4, 22.4, 44.8, 67.2, 67.2, and 89.6 ms; for the dsRBD/RNA complexes, 11.2, 22.4, 22.4, 33.5, 33.5, and 44.8 ms. Spectra were processed using NMRPipe/NMRDraw, and peak intensities were obtained using NMRView. Relaxation rates were determined by fitting the expression for relaxation decay, $\lambda\langle R \rangle = \lambda R^2$, to the peak intensities using in-house software.

Model-free analysis of relaxation data

Initial estimates of the rotational correlation time and the diffusion tensor for the free dsRBD$^{366–453}$ (2LUQ) and RDC-refined dsRBD/R3A complex (PDB ID: 2LUP) were obtained using the program HYDRONMR59,60 and were subsequently optimized using the program ModelFree 4.2061 prior to model selection. Relaxation parameters were interpreted using the Lipari–Szabo model-free formalism to obtain values for motional parameters describing the dynamic behavior of backbone amide bond vectors.52,62 ModelFree61 was used to fit relaxation data for each residue to one of five increasingly complex models using optimized initial estimates of the diffusion tensor and correlation time, where model 1 includes the parameters S^2, S^2, and τ; model 3, S^2, R_{ex}, model 4, S^2, τ, and R_{ex}, and model 5, S^2, S^2, τ, and R_{ex}. Following model selection for all residues, global and internal parameters were optimized with a grid-search algorithm using an axially symmetric diffusion tensor (Supplementary Tables 1 and 2). For model-free analysis, bond lengths of 1.02 Å and CSA values of 160 p.p.m. were used. Using a bond length of 1.04 Å results in small changes in the values of model-free parameters (<5%) but does not change the outcome of our analysis. To confirm that the R_{ex} terms that we observe reflect backbone chemical exchange rather than diffusion anisotropy, we checked that the most significant N–H bond vectors for the free dsRBD are not aligned with the long axis of the diffusion tensor by calculating the angle between the N–H bond and the diffusion tensor z-axis, as defined by the fitted diffusion tensor obtained after model-free analysis.

In vivo analysis of RNT1 hinge mutants

All strains were derived from the BMA64 background. The rnt1::TRP deletion mutant and RNT1 K371A dsRBD mutant were described previously.9,42 The dsRBD hinge mutants (I378A, G379A, G379P) and the catalytic mutant (E320K) were constructed using the delitto perfetto method.64 A strain carrying the CORE KanR-URA3 cassette at position S376 was transformed with double-stranded DNA oligonucleotides to excise the CORE sequence and introduce the appropriate mutation in the hinge (I378A, G379A, or G379P), while the E320K mutant was produced from a strain with the CORE KanR-URA3 insertion at position E320. Genomic DNA sequences were confirmed by sequencing. Strains were grown in YPD and RNA was harvested and analyzed by Northern blotting as previously described80 with the following modifications: 10 µg of RNA was denatured with glyoxal, run on 1 X BPTE 2% agarose gels as previously described,50 and transferred to Hybond-N+ membranes (GE Healthcare).

Accession numbers

Coordinates for the 20 lowest-energy structures of the Rnt1p dsRBD$^{366–453}$ have been deposited in the PDB under accession code 2LUQ, and chemical shifts have been deposited in the Biological Magnetic Resonance Data Bank under accession code 18535.

Acknowledgements

This work was supported by National Institutes of Health grants GM37254 and GM48123 to J.F. Qi Zhang was a Baltimore Family Fund Postdoctoral Fellow of the Life Sciences Research Fund. We thank Anni Zhao for help with preparation of the hydrophobic core mutants.

Supplementary Data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jmb.2012.11.025

Received 18 September 2012; Received in revised form 17 November 2012; Accepted 20 November 2012

Available online 28 November 2012

Keywords:

NMR; Rnt1; RNA binding domain; protein–RNA; spin relaxation

† E.H. and Z.W. contributed equally to this work.

Present address: Q. Zhang, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Campus Box 7260, Chapel Hill, NC 27599-7260, USA.

Abbreviations used:

dsRNA, double-stranded RNA; dsRBD, double-stranded RNA-binding domain; snoRNA, small nucleolar RNA; endoND, endonuclease domain; PDB, Protein Data Bank; RDC, residual dipolar coupling; NOE, nuclear Overhauser enhancement; GST, glutathione S-transferase.

References

CHAPTER 5

Stress-Induced Nuclear RNA Degradation Pathways

Regulate Yeast Bromodomain Factor 2 to Promote Cell Survival
Stress-Induced Nuclear RNA Degradation Pathways Regulate Yeast Bromodomain Factor 2 to Promote Cell Survival

Kevin Roy, Guillaume Chanfreau*

Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America

Abstract

Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2) is limited by spliceosome-mediated decay (SMD). Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD). We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that BDF2 plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress.

Introduction

DNA in eukaryotes is wrapped around histone octamers to form nucleosomes [1]. The tails of the histone proteins are subject to a diverse set of chemical modifications, including acetylation, phosphorylation, methylation, and ubiquitination, impacting the majority of DNA-based processes, including transcription, heterochromatin formation, DNA replication, and DNA recombination and repair [2,3]. Non-histone proteins recognize specific tail modifications to mediate the downstream effects [4]. Histone lysine acetylation, one of the best-studied modifications, has important roles in transcription activation, DNA repair and heterochromatin formation [5]. Histone acetylation can increase accessibility of DNA by weakening the interaction between the positively charged histone tail and the nucleosomal DNA [6]. Histone acetylation can also recruit proteins containing bromodomains, which are evolutionarily conserved motifs that recognize acetyl-lysines and play an important role in anchoring chromatin-associated complexes to the nucleosome [7].

S. cerevisiae bromodomain factors 1 and 2 (Bdf1p and Bdf2p) localize throughout the genome at loci enriched for acetylated histones 3 and 4 [5]; [8], where they function in various aspects of transcription initiation and chromatin remodeling [9], as well as protection of euchromatin against heterochromatin spreading [10]. While the bdf1Δbdf2Δ double deletion is lethal, both single deletion mutants are viable, indicating that there is at least partial functional redundancy between the two paralogs [11]. In wild-type cells, Bdf1p is present at nearly 3-fold the levels of Bdf2p [12], and each occupies distinct genomic locations [8]. Cells lacking *BDF1* (bdf1Δ) show an upregulation of Bdf2 protein (Bdf2p) levels [13] and a redistribution of Bdf2p to the acetylated histones at genomic loci normally bound by Bdf1p [8]. The deletion of *BDF2* affects expression of less than 0.05% of the transcriptome in normal conditions, while the deletion of *BDF1* results in a greater than 2-fold change in the levels of ~15% of all expressed transcripts [10].

In addition to activating TFIID-dependent transcription [11], Bdf1p is part of the SWR1-C chromatin-remodeling complex responsible for replacing histone H2A with the variant H2AZ [14]. The NuA4 histone acetyltransferase acts upstream, depositing an acetyl group on the histone H4, resulting in the recruitment of Bdf1p and SWR1-C [15]. Recent work has revealed that mutations in NuA4 subunits, Bdf1p, SWR1-C, or H2AZ render cells hypersensitive to DNA damage agents, suggesting that histone acetylation-mediated H2AZ deposition plays crucial roles in the
This analysis revealed the presence of a canonical Rnt1p stem-loop within the open reading frame (ORF) of the yeast gene encoding bromodomain factor 2 (BDF2) (Fig. 1A). This 40 base-long stem-loop is situated within the ORF-encoded intron of the BDF2 mRNA, 1165 nucleotides downstream of the 5'-SS and 298 nucleotides upstream of the annotated 3'-SS [13], Fig. 1B. The existence of this stem-loop structure was confirmed in vivo in a transcriptome-wide study of RNA secondary structure that employed dimethyl sulfate (DMS) modification of single-stranded RNA coupled to deep sequencing [27]. Consistent with its potential degradation by Rnt1p, microarray analysis showed that the BDF2 transcript is upregulated 2-fold in cells lacking Rnt1p (rnt1Δ) [28]. Furthermore, recent studies have found that BDF2 mRNA exhibits a high transcription rate in conjunction with a short half-life that is similar to the histone mRNAs, suggesting that RNA degradation may play a major role in its regulation [29], see Discussion. These initial observations suggested that BDF2 expression is highly regulated at the level of RNA degradation and raised the possibility that Rnt1p may directly control BDF2 expression.

To investigate if the upregulation of BDF2 mRNA in rnt1Δ is specifically due to the loss of Rnt1p catalytic activity, we compared BDF2 transcripts levels in wild-type (WT) and rnt1Δ strains, and in a strain expressing the catalytically inactive rat1 Δ320K mutant (Fig. 1C, lanes 1–2, 7–8). This analysis revealed a substantial increase of BDF2 mRNA upon the loss of Rnt1p catalytic function. To formally demonstrate cleavage of BDF2 by Rnt1p in vivo, we analyzed BDF2 species in strains carrying mutations in various exonucleases in order to stabilize the 3' product of Rnt1p cleavage, which is normally subject to decay by 5'–3' exonucleases due to the presence of an unprotected 5'-end with an exposed monophosphate. The xrn1Δ background was used to inactivate the major pathway of cytoplasmic 5' to 3' degradation. To inactivate the nuclear 5' to 3' exonuclease Rat1p, we used the temperature-sensitive rat1-1 mutant. In a parallel approach, we deleted the MET22 gene in the xrn1Δ background. Upon a shift to medium lacking methionine, this strain accumulates 3'-phosphoadenosine-5'-phosphate (pApP), a metabolite that inhibits cellular 5' to 3' exonuclease activities [30]. We utilized a probe hybridizing to the 3'UTR of BDF2 mRNA and found that both methods of inactivating the 5' to 3' exonucleases revealed a substantial accumulation of a species migrating faster than the full-length BDF2 mRNA (Fig. 1C, lanes 3,4,9,10). This species was no longer detected upon disruption of RNT1 in these strains (Fig. 1C, lanes 5,6,11,12) suggesting that it is the downstream (5') product of Rnt1p cleavage.

We detected a slower migrating form of BDF2 mRNA in samples from rnt1Δ mutant backgrounds (Fig1C, asterisk). Previous studies had identified two different transcription start sites for BDF2 corresponding to two distinct nucleosome free regions (NFRs) [31–33]. To confirm that two different forms of BDF2 mRNA differing by their 5'-UTR were present, we performed prolonged electrophoresis in high percentage gels (2% agarose). This enabled the detection of two closely migrating forms of the BDF2 mRNA (denoted BDF2-L and BDF2-S), the longer of which was up-regulated in the rat1Δ22Δ background after a shift to medium lacking methionine (Fig. 1D, upper panel, lanes 4,6). This analysis confirmed that BDF2-S is the predominant form in wild-type cells under normal conditions. We subsequently used probes targeted to the 5'UTR of the transcript arising from the upstream transcription start site (discussed below), to demonstrate that BDF2-L is indeed a 5'-extended form of BDF2-S.

We next tested whether Rnt1p could directly cleave the BDF2 mRNA in vitro by incubating recombinant Rnt1p enzyme with total RNAs extracted from a strain expressing the catalytic mutant rat1 Δ320K (Fig. 1D, lanes 7–8). The 3'-UTR probe detected a
single band from the in vitro cleavage reaction, and this band co-migrated with the band stabilized in vivo in the xrn1Δ background (Fig. 1D, upper panel, lanes 3, 4, and 8). Next, we utilized a 5′UTR probe to detect the upstream product of Rntl1p cleavage. This probe was designed to bind predominantly to BDF2-L, and with only a short stretch of complementarity to the 5′-end of BDF2-S. This resulted in an enhanced signal for BDF2-L relative to BDF2-S, consistent with BDF2-L having a 5′-extension. Furthermore, in vitro cleavage of total RNAs by Rntl1p gave rise to two different 5′-products, the longer of which was also observed as an in vivo cleavage product in the xrn1Δ met22Δ background (Fig. 1D, lower panel, lane 4). This was surprising as the 5′ cleavage product generated by Rntl1p exhibits an exposed 3′-OH, lacks a stabilizing poly(A) tail, and is subject to degradation by 3′ to 5′ exonucleases [23,34]. The stabilization of this species upon depletion of 5′ to 3′ exonuclease activity may be an indirect consequence of 5′ to 3′ exonucleases being saturated by RNA substrates in these conditions. We tested the ability of Rntl1p to cleave the mRNA encoding the BDF2 paralog (BDF1), and other targets of spliceosome-mediated decay [13] identified in our computational screen, but found no evidence for in vivo or in vitro cleavage of these transcripts (Fig. S1).

To precisely identify the Rntl1p cleavage site on BDF2 mRNA, we performed primer extension analysis using a primer hybridizing to the 5′-end of the top six base pairs of the Rntl1p-target stem loop (Fig. S2). This resulted in an enhanced signal for in vivo cleavage with recombinant Rntl1p (Fig. 1E), corresponding to 14 and 15 bases below the tetraloop for the 5′- and 3′-cleavage sites, respectively (Fig. 1A and 1E, arrows 1 and 2). Primer extension analysis using RNAs extracted from the 5′ to 3′ exonuclease mutants detected the same site in vivo for the 5′ cleavage, and a 3′ cleavage site 17 nucleotides below the tetraloop (Fig. 1E, lane 3 and 1A, arrow 3). The distances from the cleavage site to the tetraloop are consistent with the known enzymatic properties of the enzyme in vitro and in vivo ([25] [35]). Importantly, these cleavage sites were no longer detected when Rntl1p was inactivated in the 5′ to 3′ exonuclease mutants (Fig. 1E, lane 4), showing that they are dependent on Rntl1p activity.

To confirm that this stem loop structure is required for Rntl1p cleavage, we constructed a plasmid-borne version of BDF2 fused at the C-terminus to GFP, and disrupted the top six base pairs with synonymous mutations (Fig. 1A). We transformed plasmids expressing either the wild-type BDF2 mRNA or the stem mutant into the xrn1Δ rnl1-1 background and tested for the presence of an Rntl1p cleavage product from these constructs. We utilized a GFP probe to avoid hybridization with endogenous BDF2 mRNA, and detected the Rntl1p degradation intermediate from the WT BDF2 construct, which was not observed after disruption of the Rntl1p stem loop (stem mutant, Fig. 1F). These results confirmed that Rntl1p degrades BDF2 mRNA in vivo by recognition of a canonical Rntl1p-target stem loop.

Mutation of the Rntl1p-target stem loop upregulates BDF2-S and stabilizes the intron-exon 2 degradation intermediate of spliceosome-mediated decay (SMD)

A previous study demonstrated that cytoplasmic nonsense-mediated decay (NMD) and nuclear degradation systems can have partially redundant roles in the degradation of various unspliced pre-mRNAs, such that only upon inactivation of both systems does substantial accumulation of these species occur [36]. We found a slight increase in the BDF2-L form upon depletion of the gene coding for the NMD helicase Upfl1p (upfl1Δ; Fig. 1G), consistent with the presence of multiple upstream ORFs in the extended 5′ UTR that would elicit recognition of a premature-termination codon and NMD in accordance with the faux'-3′ UTR model [37]. To test whether NMD cooperates with SMD or Rntl1p in the regulation of BDF2 mRNA, we mutated the BDF2 5′-splice site (5′-SS) or the Rntl1p-target stem loop at the BDF2 chromosomal copy in otherwise wild-type or upfl1Δ backgrounds (Fig. 1G). During the course of this study, RT-PCR analysis of full-length BDF2 mRNA and its spliced products generated by SMD revealed that mutating the 5′-side of the top six base pairs of the Rntl1p-target stem loop from UUGAUC to CAGCAG inadvertently created a new 3′ splice site, due to the introduction of two YAG sequences proximal to a polyuridyline tract (UGUC) (Fig. S2). As an alternative approach to inactivating Rntl1p cleavage in cis, we deleted twelve nucleotides at the top of the stem-loop structure, resulting in the in-frame removal of four codons (UGA-UCU-GAU-GAU) encoding an SSDD amino acid sequence (red letters, Fig. 1A). Both mutations of the Rntl1p stem loop resulted in slightly increased BDF2-S mRNA levels (Fig. 1F). These stem-loop mutations did not noticeably affect BDF2-L levels in the upfl1Δ background, suggesting that NMD is the primary degradation system regulating BDF2-L. Strikingly, we observed a band migrating faster than BDF2-S in the stem-loop mutants. This band was also detectable at lower levels in WT cells, but not in the 5′-SS mutant. This band matches the size expected for the linearized intron-exon2 product of SMD, which would be generated by debraniching of the lariat intermediate generated by the first splicing step of the BDF2 mRNA [13,21]. To definitively demonstrate the identity of this band as the intron-exon2 spliced product, we performed a probe-walking experiment with probes hybridizing to exon1, the intron, and exon2 (Fig. S3). Only the intronic and exon2 probes detected this band, while all three probes detected the full-length BDF2 mRNA (Fig. S3). It is remarkable that the intron-exon2 species is readily detectable in the absence of exonuclease mutations, as it contains an exposed 5′-phosphate and should be subject to rapid 5′ to 3′ decay. The substantial accumulation of this species in stem-loop mutants suggests that a large fraction of BDF2 mRNA is subject to SMD in the absence of Rntl1p cleavage.

Rp6 and the nuclear retention factors Mlp1/2 regulate BDF2-S

We next tested whether the nuclear exosome co-factor Rp6p and NMD have functional overlap in regulating the BDF2 mRNA. We found that while both repress BDF2-L, there is no additive increase upon inactivation of both degradation systems (Fig. S4A, right panel). The loss of Rp6p also resulted in increased BDF2-S levels, as well as in stabilization of the SMD and Rntl1p cleavage products (Fig. S4A, left panel). The Mlp proteins have previously been implicated in the nuclear retention of unspliced mRNAs [38]. To test the hypothesis that these proteins mediate the nuclear retention of the unspliced-like full-length BDF2 mRNA, we inactivated Mlp1p and Mlp2p, both of which function to prevent the export of intron-containing mRNA from the nucleus in a manner that depends on 5′-splice site recognition [39] [36]. The mlp1Δ mlp2Δ strain exhibited an upregulation of BDF2-S, suggesting that the leakage of BDF2-S out of the nucleus results in diminished nuclear decay (Fig. S1B). Mlp1/2 had no effect on the levels of full-length BDF2 mRNA or its degradation intermediates.

Inactivation of Rntl1p-mediated decay (RMD) of BDF2 rescues the salt sensitivity of the bdf1Δ mutant and its inability to grow on non-fermentable carbon

In non-fermentable carbon sources or hyperosmotic stress conditions, BDF2 levels are limiting for growth in bdf1Δ cells,

85
Figure 1. BDF2 mRNA contains a canonical Rnt1p target stem-loop within its intron and is cleaved by Rnt1p in vivo and in vitro. A. The predicted RNA secondary structure for the BDF2 transcript is shown for positions +1330 to +1371 of the open reading frame (chr IV: 332354–332395). B. Two different transcription start sites give rise to short and long forms of BDF2 (-S and -L). The 5'-splice site (S-SS) and the intronic RNase III cleavage site (RCS) positions are shown relative to exon 1 (blue box) and exon 2 (yellow box). The BDF2 intron (chr IV: 331189-332695) encodes amino...
as overexpression of BDF2 mRNA suppresses bdf1A growth defects in a dose-dependent manner [18]. The presence of two distinct nuclear degradation systems acting on the BDF2 mRNA prompted us to investigate the physiological importance of these degradation pathways in these environmental conditions. A previous study found that blocking SMD of BDF2 mRNA by mutating the 5'-SS improved the growth of bdf1A in the presence of 0.6 M NaCl [13]. To compare the consequences of SMD inactivation and RMD inactivation on bdf1A growth phenotypes, we deleted BDF1 in the BDF2 5'-SS mutant (bdf2 5' SS mut), the stem-loop mutants (bdf2 SLA and bdf2 stem), and the double mutant (bdf2 3' SS mut-stem). In synthetic minimal medium (SDC), but not rich medium (YPD), we found that inactivation of RMD by the stem-loop deletion (bdf2 SLA) resulted in a modest growth enhancement overall wild-type BDF2 (Fig. 2A, top panel). By contrast, the 5'-SS mutant grew at the same rate as the WT in both of these conditions, consistent with previous observations using plasmid-borne BDF2 [13]. At 0.2 M and 0.4 M NaCl, the inactivation of RMD resulted in a slight rescue of the bdf1A growth defect, with SMD inactivation showing no effect (Fig. 2A, top panel). The simultaneous inactivation of SMD and RMD showed no additional effect over the stem loop deletion strain in these conditions. Surprisingly, at 0.6 M NaCl, the inactivation of RMD resulted in a substantial growth rescue (Fig. 2A, middle panel). The stem loop mutation (which incidentally introduced an additional 3'-SS) resulted in a reduced rescue compared to the stem loop deletion. Inactivating the 5'-SS in the stem mutant resulted in a similar rescue to that of the stem loop deletion, suggesting that the presence of the new 3'-SS site enhanced the SMD of BDF2 mRNA in these conditions. Importantly, the growth rescue observed upon the deletion of the stem-loop confirmed that the removal of the SSD1 amino acid sequence from the Bdf2p protein did not perturb protein function, validating the use of this mutant to assay the phenotypic consequences of increased BDF2 expression due to RMD inactivation.

We next tested different carbon sources, and found that inactivation of RMD, but not SMD, restored the growth of bdf1A cells on the non-fermentable carbon sources ethanol and glycerol (Fig. 2B, top panel). Furthermore, inactivation of RMD conferred a substantial growth rescue in galactose, for which optimal growth requires simultaneous respiration and fermentation [39]. By contrast, enabling the 5'-SS failed to rescue growth in galactose, and slightly exacerbated the growth defect of bdf1A. It is possible that regulation by SMD occurs at a different phase of the cell cycle than RMD, and that inactivating SMD results in toxic levels of Bdf2p at a particular stage in the presence of galactose. On the other hand, RMD inactivation might increase levels of Bdf2p at a stage where more Bdf2p is beneficial. Overall, these results suggest that the underlying basis for bdf1A growth defects in hyper-osmotic stress and respiratory conditions is the degradation of BDF2 mRNA by RNase III.

Simultaneous inactivation of the RMD and SMD pathways of BDF2 suppresses the hypersensitivity of the bdf1A mutant to elevated temperatures, high salt and lithium stress

While the inactivation of BDF2 RMD rescued bdf1A growth defects in moderate levels of salt stress, we found that only the simultaneous inactivation of RMD and SMD allowed the bdf1A strain to grow at elevated temperatures in non-fermentable carbon (34°C and 37°C), or in high salt stress (1.2M NaCl) (Fig. 2B). We also tested lithium chloride stress, as it confers not only osmotic stress but also lithium ion toxicity. Strains lacking Bdf1p are sensitive to 0.1 M lithium chloride and hyper-accumulate lithium ions [40,41]. The simultaneous inactivation of RMD and SMD of BDF2 mRNA enabled growth of bdf1A at 0.3 M lithium chloride (Fig. 2B, bottom right). These results suggest that in these conditions, both SMD and RMD play significant roles in limiting BDF2 expression, as inactivation of either degradation pathway alone is insufficient to enhance the growth of bdf1A cells. Furthermore, these results suggested that either bdf1A cells require more BDF2 mRNA to survive in stress conditions than is required for growth in normal conditions, or that these stress conditions enhance the activity of the nuclear degradation pathways of BDF2 mRNA, resulting in reduced levels of BDF2 mRNA relative to normal growth conditions. As cells lacking BDF1 are strictly dependent on BDF2 for survival, we hypothesized that stress-induced degradation of BDF2 mRNA might be responsible for the phenotypes detected in the bdf1A strain.

RMD limits BDF2 expression in osmotic stress

The previous growth assays suggest that RMD plays an important role in regulating BDF2 expression particularly in salt stress conditions. To understand how BDF2 expression behaves in these conditions, we monitored BDF2 mRNA levels in wild-type cells after the shift from normal to high salt medium. Within 8 minutes of a shift to high osmolality, we observed a marked drop
Figure 2. Mutation of the Rnt1p target stem-loop and 5′-splice site suppresses bdf1Δ growth defects in various environmental conditions. The top row of spot dilutions in each panel is the wild-type (WT) parent strain. The rest are from the bdf1Δ background with either WT BDF2, mutations in the 5′-splice site (5′-SS), deletion of the Rnt1p stem-loop (SLΔ), mutation of the Rnt1p stem-loop (stem), or both (5′-SS+stem). Unless indicated otherwise, growth was conducted at 30°C for the indicated number of days. A. Inactivating Rnt1p cleavage rescues bdf1Δ salt sensitivity. The differences between the BDF2 stem mutation (stem) and the deletion of the stem (SLΔ) are due to an additional 3′-SS introduced by the stem mutation. B. Inactivating Rnt1p cleavage rescues the inability of bdf1Δ to grow on non-fermentable carbon (YPEG) and improves growth on galactose (YPGal). Simultaneous inactivation of both Rnt1p- and spliceosome-mediated decay rescues growth at elevated temperatures and in lithium stress.

doi:10.1371/journal.pgen.1004661.g002
in the levels of the BDF2 mRNA (Fig. 3A). By contrast, BDF1 and RNT1 mRNA levels increased in the first 8 minutes of osmotic shock. After 1 hour, BDF2 levels were still repressed, while BDF1 and RNT1 levels had returned to pre-treatment levels. To assess BDF2 expression and the levels of its RMD degradation intermediates after prolonged growth in high salt conditions, we monitored the levels of BDF2 mRNA in wild-type and rrp6A strains during steady state growth in either normal medium or high salt (Fig. 3B). To test whether the Mlp1/2 factors might mediate increased nuclear retention and RMD of BDF2 mRNA during osmotic stress, we also examined the mlp1 mlp2 and mlp1 mlp2 A rrp6A strains. Under normal growth conditions, we observed a stabilization of the 5' product of RMD in the rrp6A strain, as expected (Fig. 3B). Remarkably, full-length BDF2 was undetectable under steady-state growth in high-salt conditions, while the RMD cleavage products persisted. This suggested that transcription of the BDF2 gene continues after prolonged exposure to osmotic stress, but that the transcripts are continuously degraded by SMD and RMD such that full-length BDF2 mRNA is no longer detected. Inactivation of the Mlp1/2 factors had no effect on the levels of full-length BDF2 mRNA or its degradation intermediates, suggesting that the increased targeting of BDF2 mRNA by Rnt1p is independent of these nuclear retention factors.

To test whether the salt sensitivity of bdf1A is a consequence of increased RMD of BDF2 mRNA, we examined BDF2 mRNA levels in the bdf1A background after a prolonged shift to high salt conditions. This revealed a significant reduction of BDF2 mRNA levels for the WT BDF2 and the 5'-SS mutant after six hours (Fig. 3C). Notably, we detected the intron-exon2 product in BDF2 WT and the stem loop deletion strains in normal medium, as observed previously for mutations inactivating RMD in an otherwise wild-type BDF1 background (Fig. 1F). This demonstrates that in normal growth conditions, spliceosome-mediated decay degrades a large fraction of BDF2 mRNA in a manner that does not require Bdf1p, contrary to previous observations [13]. By two hours of shift to high salt, this SMD degradation intermediate disappeared and the RMD degradation intermediate was now detected in both the WT and the 5'-SS mutants. Strikingly, BDF2 mRNA levels in the stem-loop deletion strain actually increased during this time course (Fig. 3C). This demonstrates that BDF2 mRNA repression during osmotic stress is due to increased RMD rather than transcriptional repression. Furthermore, this confirms that bdf1A-salt sensitivity is a consequence of increased RMD and loss of BDF2 full-length mRNA in osmotic stress, rather than a specific requirement for Bdf1p in activating osmotic stress response genes.

To examine how RMD affects the regulation of BDF2 mRNA in the initial phase of the salt stress response, we monitored the levels of full-length BDF2 mRNA and the SMD and RMD degradation products in the wild-type strain and strains carrying the 5'-SS and stem loop mutations after 20 minutes of osmotic shock (Fig. 3D). In normal medium, we detected the intron-exon2 product resulting from SMD in the stem-loop mutants. Significantly, we detected the accumulation of the RMD cleavage intermediate in WT and the 5'-SS mutant after 20 minutes in high salt (Fig. 3D). Consistent with the results from the bdf1A background, full-length BDF2 mRNA increased in the stem-loop mutants, but not the 5'-SS mutant, suggesting that osmotic stress-induced transcripts are normally rapidly degraded by RMD. A previous study had found that the transcription rate of BDF2 mRNA increases 10 minutes after osmotic shock in 0.4 M NaCl [12]. Our data show that this increase in transcription rate is counter-acted by an even greater increase in BDF2 mRNA degradation through the RMD pathway.

To confirm that the increased abundance of the RMD cleavage intermediate is not due to a decrease in its degradation rate, we monitored levels of the cleavage product in the rrp6A strain, as the nuclear exosome is the primary factor involved in the decay of this cleavage intermediate. The RMD cleavage intermediate increased substantially after 20 minutes in osmotic shock in this context, showing that the increased abundance of this cleavage intermediate is due to hyper-activation of RMD (Fig. 3E). We confirmed that the in vitro cleavage bands induced in salt stress match the migration of the bands produced by in vitro Rnt1p cleavage (Fig. 3F). These results indicate that yeast RNase III plays a hitherto unappreciated role in the regulation of gene expression during osmotic stress.

We next tested the impact of an extended shift in 0.6 M NaCl on BDF2 mRNA levels, and found a substantial reduction of full-length BDF2 transcripts by one hour in both the WT and 5'-SS mutant (Fig. 3G). Strikingly, the bdf2 SLA mutant exhibited an increase in full-length BDF2 mRNA levels throughout the first hour of high salt exposure, consistent with the increased transcription rate reported previously [42]. Interestingly, the SMD intron-exon2 product, present in bdf2 SLA in normal conditions, was absent after 15 minutes of salt stress (Fig. 3G). By one hour, this product re-appeared, suggesting that osmotic stress results in a transient deactivation of RMD (Fig. 3G). The dramatic decrease in BDF2 mRNA levels detected in both the WT and the 5'-SS mutant, but not in the bdf2 SLA mutant, demonstrates that RMD is the primary mechanism controlling BDF2 mRNA expression in salt shock conditions. The increase in RMD activity for the BDF2 mRNA is not simply a consequence of decreased competition by SMD, resulting in increased flux of BDF2 mRNA through RMD, because the 5'-SS mutation in normal salt conditions does not phenocopy the RMD hyper-activation that occurs during salt stress (Fig. 3G). Indeed, the BDF2 mRNA harboring the 5'-SS mutation displays a similar profile in salt stress as WT BDF2, where by 60 minutes the RMD degradation product is present at higher levels than full-length BDF2 mRNA (Fig. 3G). Overall, these data confirm that RMD of BDF2 mRNA is hyper-activated in salt stress.

Next we investigated the impact of BDF2 RMD on Bdf2p-regulated genes during osmotic stress. A previous study found that the loss of Bdf2p resulted in the upregulation of 20 transcripts at least 2-fold [10]. These transcripts were enriched in stress-responsive genes, including genes involved in carbohydrate metabolism and the heat shock response. We hypothesized that Bdf2p might normally repress these genes, and that an excess of Bdf2p, due to the inactivation of RMD, might inhibit the activation of these transcripts in response to osmotic stress. To test this hypothesis, we monitored the expression of various genes that were reported to be upregulated in bdf2A (Fig. 3G and S5). We found a significant decrease in the induction of the GPH1 transcript in bdf2 SLA mutant after two hours, but not in the WT 5'-SS mutant, or bdf2A strains. GPH1 encodes glycogen phosphorylase and is critical for preventing the over-accumulation of glycogen during various stress responses and in stationary phase [43]. Our data suggests that during osmotic stress, Rnt1p must repress BDF2 mRNA levels in order for cells to fully induce GPH1 expression.

Inactivating the SMD of BDF2 sensitizes the bdf1A mutant to DNA replication fork stress-inducing agents hydroxyurea and camptothecin

Cells lacking BDF1 are hypersensitive to the DNA damage agents methyl methanesulfonate (MMS) and hydroxyurea (HU) [16]; [44]. The broad range of phenotypes rescued by inactivating
Figure 3. Hyper-activation of Rnt1p cleavage of BDF2 mRNA in osmotic stress. A. The wild-type strain was exposed to high salt stress (1 M NaCl) and harvested at the indicated time points by dispensing cultures directly into −80°C pre-chilled ethanol. BDF1 and BDF2 were detected with riboprobes targeted to their respective 3' -UTRs. RNT1 was detected with a riboprobe targeted to its open reading frame. A strain deleted for RNT1 (rnt1Δ) is included as a control (far right lane). The ethidium bromide-stained rRNAs are shown as loading controls. B. The indicated strains were
grown in either normal conditions (YPD) or high salt conditions (YPD+0.6 M NaCl) under steady state growth. BDF2 mRNA and its degradation intermediates were detected with a riboprobe targeting the exon1-intron region. ADH1 is a loading control. C. bdf1Delta strains carrying either WT BDF2, the 5'-SS mutation (5'-SS mut), or the deletion of the Rnt1p target stem loop (bdf2 SLA), were shifted from normal to high salt conditions for two and six hours. The 25S rRNA was detected with an oligonucleotide probe as a loading control. D. Wild-type BDF1 strains with WT BDF2, bdf2 SLA, the mutation of the stem-loop (stem mut), 5'-SS mut, or both mutations (5'-SS/ stem mut) were exposed to high salt for 20 minutes. The 25S and 18S rRNAs probed with radiolabeled oligonucleotides are shown as loading controls. E. WT and the nuclear exosome co-factor Rrp6p mutant (rrp6Delta) were shifted for 20 minutes to 0.6 M NaCl (20), and then shifted back to normal medium for another 20 minutes (+20). SCR1 is a loading control. F. RNA from the mutant strain was incubated with buffer or recombinant Rnt1p to demonstrate that the cleavage products observed in salt stress in the wild-type background co-migrate with the in vitro Rnt1p cleavage products. SCR1 is a loading control. G. Wild-type and the specified BDF2 mutants were shifted to 0.6 M NaCl for the time points indicated. An exon2 probe for the stress-induced, intron-containing transcript detects both spliced and unspliced species. TSL1, GPA1, and HSP12 were detected with riboprobes targeted to their respective open reading frames. Vertical black lines on the left side indicate panels that were part of the same blot. SCR1 and the 25S and 18S rRNAs are loading controls.

doi:10.1371/journal.pgen.1004661.g003

Discussion

BDF2 expression is predominantly regulated at the level of RNA decay

In this study we demonstrate that two major nuclear RNA degradation pathways, Rnt1p- and spliceosome-mediated decay, limit the expression of BDF2 mRNA, and that BDF2 expression is tightly regulated at the post-transcriptional level in specific environmental conditions. Strikingly, in normal growth conditions, the BDF2 gene exhibits a high transcription rate (0.51 RNA molecules per minute per cell) in the top 4.6% of all RNA polymerase II (Pol II)-transcribed genes [29], with an mRNA stability that is among the lowest of all S. cerevisiae Pol II transcripts (~5 minute half-life, lowest 1.1% [48]). During osmotic stress, a condition where BDF2 mRNA levels rapidly drop, the Pol II transcription rate across the BDF2 gene paradoxically increases. However, RNase III-mediated degradation (RMD) over-compensates for the increased transcription, and BDF2 mRNA levels drop rapidly. Simultaneously, there is a transient decrease in spliceosome-mediated decay (SMD) of BDF2 mRNA during salt stress. A decrease in spliceosome activity during osmotic stress is consistent with a recent report that intron-containing ribosomal protein pre-mRNAs, the predominant substrates for the spliceosome, accumulate as unspliced transcripts in osmotic stress conditions when their degradation by nonsense-mediated decay is inactivated [49]. Therefore, both nuclear and cytoplasmic RNA degradation systems have evolved to degrade intron-containing transcripts that accumulate during osmotic stress. By contrast, SMD of BDF2 mRNA plays a critical role during DNA replication stress, as evidenced by the toxicity of the 5’-SS mutation to cells lacking BDF1 when grown in the presence of DNA double-strand break agents (Fig. 4A). Conversely, we found that RMD of BDF2 mRNA is diminished during hydroxyurea exposure and its inactivation confers no phenotype towards bdf1Delta cells in HU or CPT (Fig. 4A,D). Interestingly, there was not a significant effect of the 5’-SS mutation on BDF2 mRNA levels in HU during the time window we examined (Fig. 4C,D). It is possible that an effect of HU on BDF2 mRNA levels in the 5’-SS mutant requires longer exposure times to HU. It is also possible that the 5’SS mutation results in enhanced leakage of the “unspliced-like” BDF2 mRNA.

RMD and SMD of BDF2 mRNA led us to expect a rescue of bdf1Delta growth defects in DNA damaging conditions as well. Startlingly, inactivation of BDF2 SMD resulted in enhanced toxicity of HU and camptothecin (CPT) for the bdf1Delta strain (Fig. 4A). Both HU and CPT result in the destabilization of replication forks and subsequent induction of double-strand breaks (DSBs) through different mechanisms [45], [46]. Interestingly, the stem-loop mutation resulted in a slight rescue of the growth defect conferred by the 5’-SS mutation in 20 μM CPT, and to a lesser extent in 20 mM HU (Fig. 4A). It is possible that SMD and RMD predominate at different stages of the cell cycle, and in the presence of DNA replication stress, additional molecules of Bdf2p gained at one stage by inactivating RMD can compensate for the toxicity by preventing an excess accumulation of Bdf2p protein.

Furthermore, the lack of toxicity of the stem-loop mutations increased toxicity of excess Bdf2p due to SMD inactivation at 50 mM HU led us to hypothesize that RMD activity on BDF2 mRNA might be decreased in these conditions, and that the flux of BDF2 mRNA degradation through SMD or RMD could be dependent upon specific environmental conditions.

SMD predominates over RMD of BDF2 mRNA in HU-induced DNA damage

The toxic effect of HU observed for the bdf1Delta strain harboring the 5’-SS mutation suggested that SMD protects against HU toxicity by preventing an excess accumulation of Bdf2p protein. Furthermore, the lack of toxicity of the stem-loop mutations indicated that SMD of the BDF2 mRNA might predominate over RMD in DNA damage conditions. Bdf2p protein levels were reported to increase in response to the DNA damage agents MMS and HU [47]. To determine if the increase in protein is due to an increase at the mRNA level, we monitored BDF2 mRNA expression after exposure to these DNA damage agents. Both treatments resulted in a transient increase in BDF2 mRNA in the first hour, with slight differences in the kinetics, followed by a decrease to normal levels after two hours (Fig. 4B).

To further investigate how SMD and RMD affect the levels of BDF2 mRNA in the bdf1Delta background, we exposed the 5’-SS and stem-loop mutants to 50 mM HU for two hours. There was no significant change in the levels of full-length BDF2 mRNA or the intron-exon2 SMD degradation intermediate throughout this time course (Fig. 4C). Nonetheless, the time course demonstrated that SMD of BDF2 mRNA remains active in the presence of HU. Because of the lack of an effect of the stem mutations on bdf1Delta growth in HU, we predicted that Rnt1p cleavage activity might decrease in HU. To test how RMD on BDF2 mRNA behaves during HU exposure in the wild-type BDF1 background, we treated wild-type, the 5’-SS mutant, the stem-loop deletion mutant, and rrp6Delta strains with 200 mM HU and monitored the expression of BDF2 mRNA and its degradation products. Consistent with reduced RMD, there was a substantial drop in the levels of the RMD intermediate within 30 minutes of HU treatment in the rrp6Delta background (Fig. 4D). Furthermore, the intron-exon2 SMD product, which is normally degraded by Rnt1p due to the presence of the Rnt1p target stem loop in the intron, actually increased in the WT strain throughout the HU treatment. Together these results indicate that RMD of BDF2 mRNA is inhibited during DNA replication stress, and that the increased flux of BDF2 mRNA through SMD is important to protect bdf1Delta cells from the toxic effects of excess Bdf2p accumulation.

The increase at the mRNA level, we monitored
to the cytoplasm and thus increased levels of Bdf2p translation, as the nuclear retention of intron-containing transcripts by Mlp1p is known to require an intact 5'-splice site [38]. This would be consistent with our finding that Mlp1/2p proteins regulate BDF2 mRNA levels (Fig. S4B).

Our results reveal that the relative flux of BDF2 mRNA degradation through RMD or SMD is dependent on the particular environmental condition, such that when one degradation system is inactivated, the other system predominates (Fig. 5). During DNA replication stress, the RMD intermediate decreases while the SMD degradation intermediate increases. These molecular phenotypes are consistent with the growth phenotypes of the BDF2 5'-SS and BDF2 stem loop mutations in the bdf1A background in these stress conditions. It appears that the BDF2 gene has evolved to retain the degradation signals for both systems, such that its tight post-transcriptional control is maintained in conditions that block either RMD or SMD. Therefore, the presence of two independent nuclear degradation pathways acting on the BDF2 mRNA guards against excess accumulation of BDF2 mRNA across a range of stress conditions.

Figure 4. Spliceosome-mediated decay of BDF2 mRNA predominates over Rnt1p cleavage during DNA replication stress. A. The set of strains from Figure 2 were grown on media containing the indicated concentrations of hydroxyurea (HU), dimethyl sulfoxide (DMSO), which was the vehicle control for camptothecin (CPT), and methyl methanesulfonate (MMS). B. The wild-type strain was incubated with the indicated concentrations of MMS or HU for the indicated time points. BDF2 mRNA was detected with a riboprobe targeting exon1. The 25S rRNA is a loading control. C. bdf1A strains carrying either WT BDF2, the 5'-SS mutation (5'-SS mut), or the deletion of the Rnt1p target stem loop (bdf2 SL Δ), were exposed to 50 mM HU for 1 and 2 hours. The BDF2 full-length mRNA and SMD intron-exon2 degradation intermediates were detected with an exon1-intron riboprobe. ADH1 is a loading control. D. The indicated strains were exposed to 200 mM HU for the specified time points. BDF2 mRNA and the SMD and RMD degradation intermediates were detected with same probe as (C). The 18S rRNA was probed with a radiolabeled oligonucleotide as a loading control.

doi:10.1371/journal.pgen.1004661.g004
The observation that BDF2 mRNA is detectable in WT cells in normal growth conditions suggests that a substantial fraction of BDF2 mRNA normally escapes nuclear degradation by SMD and RMD. In salt stress, an increase in the absolute activity of RMD leads to a substantial increase in the overall fraction of full-length BDF2 mRNA subject to nuclear degradation. Furthermore, inhibiting both RMD and SMD has an additive effect compared to inhibiting either pathway alone in specific conditions (Fig. 1D and Fig. 2B), demonstrating that the pathways are non-redundant and independently regulate BDF2 mRNA in a condition-specific manner (Fig. 5).

RMD and SMD modulate Bromodomain factor 2 expression to maintain cellular fitness in response to adverse environmental conditions.

Despite detailed biochemical work on the binding affinities of Bdf1p and Bdf2p for different acetylated histone tail peptides [50], and extensive chromatin immunoprecipitation studies mapping genomic binding sites [8], it is largely unknown how Bdf1p and Bdf2p achieve their specificity in vivo and how these factors are regulated in different conditions. We found that during osmotic stress, degradation of BDF2 mRNA is required for the full induction of glycogen phosphorylase (GPH1, Fig. 3F), suggesting that Bdf2p may normally repress a subset of salt-stress induced genes. We also found that inactivating SMD or RMD in a wild-type background resulted in sensitivity to lithium chloride (Fig. S6), suggesting that decreasing BDF2 mRNA levels via nuclear RNA decay constitutes an important mechanism for adapting gene expression to lithium ion stress.

The regulation of BDF2 expression by these two RNA degradation mechanisms controls highly specific phenotypes. Strikingly, the inactivation of SMD, but not RMD, sensitized bdf1Δ cells to hydroxyurea (HU) and camptothecin (CPT), but not methyl methanesulfonate (MMS) (Fig. 4A). While all three agents stall replication fork progression, only HU and CPT induce in vivo double-strand DNA breaks (DSBs) [51]. This suggests that an excess of Bdf2p in the absence of Bdf1p is toxic specifically in the presence of DSBs. This finding is consistent with a report that the fission yeast homolog of BDF2 is toxic to cells with unstable replication forks, as the deletion of BDF2 suppressed the HU sensitivity of numerous S-phase checkpoint mutants [17]. It remains to be determined whether the toxicity of Bdf2p is due to a...
direct effect on chromatin structure, or rather due to its effects on gene expression in DNA damage conditions. Notably, the human homolog of Bdf2p, BRD4, has been shown to activate cell death in response to DNA damage by promoting chromatin condensation [52]. It is therefore possible that at least some of the functions of Bdf2p in the DNA damage response have been conserved from yeast to humans. Significantly, we found that BDF2 is required for resistance of wild-type cells to DMSO (Fig. S6), which has been implicated in causing DNA damage by an unknown mechanism [53]. Therefore, Bdf2p is beneficial in specific conditions, and can play antagonizing roles in the DNA damage response depending on the specific type of DNA damage.

Overall, our study highlights how environmental stress conditions can differentially control RNA degradation systems to regulate gene expression (Fig. 5), and emphasizes the importance of modulating bromodomain factors expression in the cellular response to environmental changes. The ability of the cell to degrade or stabilize specific transcripts by environmentally-controlled RNA degradation pathways mirrors the control that transcriptional activators and repressors can provide in response to stress conditions. We speculate that the presence of SMD and/or RMD degradation signals in other mRNAs may allow for broad post-transcriptional fine-tuning of gene expression in conditions where the activity of these degradation systems is modulated. Future work will unravel precisely what mechanisms regulate RNase III and spliceosome-mediated decay in different environmental conditions, as well as uncover the repertoire of transcripts targeted by these pathways.

Materials and Methods

RNA secondary structure screen

Transcripts targeted by spliceosome-mediated decay were obtained from Supplementary Table 2 from [13]. The 5’ and 3’ UTRs for each transcript were obtained from [31] from Saccharomyces Genome Database. If the transcript did not have an annotated UTR, the open reading frame start or stop coordinates were used. Each sequence was first split into 200 base fragments in 100 base overlapping steps. mFold [24] was used to predict the fold of each 200 base sequence, and sequences capable of adopting stem-loop structures with an NGNN or NGAG sequence were identified for further study.

Strains

The BMA64 (mating type a) background was used to generate the mutant strains used in this study (Table S1). The indicated deletion mutants were constructed by the lithium acetate/PEG method [54] by replacing the open reading frames with PCR products encoding either S. cerevisiae TRP1, S. kluvyeri HIS5, or the KANMX6 gene [55,56]. Strains containing the rat1-1 mutation were previously described [28]. Mutations were introduced into the endogenous BDF2 gene by the delitto perfetto method [57]. First, the CORE cassette encoding the URA3 and KANMX6 genes was inserted at Rnt1p-target stem loop (chrIV:332367-80). G418 resistant colonies were screened for successful integration of the CORE cassette by PCR. For the second step, we used the pUG23-BDF2 plasmid (described below), containing either the WT or various BDF2 mutations, as a template to generate high-fidelity PCR products (NEB Phusion). Primers were designed so that the resulting PCR products contained >100 bases of homology flanking the mutation sites (Table S1). 200 μl of each PCR product were precipitated in 1 ml ethanol and 40 μl 3 M sodium acetate pH 5.2. Pellets were washed in 70% ethanol and resuspended in 34 μl water and used for excision of the CORE cassette by standard yeast transformation techniques [54]. Transformations were plated overnight on YPD, and then replica-plated to 5-FOA to select for loss of URA3. Colonies were screened for sensitivity to G418 to confirm loss of the CORE cassette, and mutations were confirmed by PCR amplification of the BDF2 locus followed by sequencing (Agilent Technologies, Inc).

Plasmids

The BDF2 open reading frame without the stop codon was amplified by high-fidelity PCR (NEB Phusion) from WT genomic DNA with the forward primer containing the SpeI restriction site and the reverse primer containing the ClaI restriction site (Table S1). The insert was cloned into the pUG23 vector and 5’-splice site and stem-loop mutations were constructed with the Quick-Change site-directed mutagenesis kit (Agilent Technologies, Inc). All plasmids and mutations were confirmed by sequencing (Laragen, Inc.).

Media and culturing

Unless otherwise indicated, cultures were grown in YPD (1% yeast extract, 2% bacto-peptone, 2% dextrose) at 30°C at 200 rpm. SDC (67% yeast nitrogen base with ammonium sulfate, 2% dextrose, and 0.2% complete amino acid mixture) was used to culture strains containing the met22A deletion, and where indicated these cultures were pelleted, washed once with SD medium lacking methionine (SD-MET), and resuspended in SD-MET for 12 hours. Strains containing the pUG23 vector were grown in SD-URA-MET. Strains containing the rat1-1 mutation were grown at 25°C and shifted to pre-warmed flasks containing the same medium at 37°C. All cultures were harvested by centrifugation at 4000 rpm for 2 minutes, washed in deionized water, and spun down in microcentrifuge tubes. The supernatant was removed and pellets were flash-frozen in liquid nitrogen and stored at −80°C.

RNA extraction and northern blot analysis

RNA extractions were performed by the addition of 400 μl acid-washed glass beads, 500 μl phenolchloroform:isoamyl alcohol (25:24:1, pH 6.7, Fisher Scientific), and 500 μl of RNA-SDS buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM EDTA, 2% SDS) to the frozen pellets. Samples were vortexed for 1 minute, heated in a 65°C water bath for 5 minutes, and vortexed for an additional minute. Samples were spun at 13,200 rpm for 5 minutes, and 450 μl of the supernatant was transferred to a new tube containing 450 μl of phenol:chloroform:misoamyl alcohol. Samples were vortexed for 1 minute, and spun at 15,000 rpm for 5 minutes. 400 μl of supernatant were precipitated in 1 ml EtOH and 40 μl of 3M NaOAc pH 5.2, and incubated at −80°C for 30 minutes. Samples were spun at 15,000 rpm for 5 minutes, and pellets were washed with 70% EtOH and resuspended in nuclease-free water (Ambion). In vivo cleavage of 50 μg total RNA with 4 pmol recombinant Rnt1p was performed at 30°C for 20 minutes as described [58,59]. 1 volume of RNA was denatured in 5 volumes of glyoxal buffer [60] (10 mM DMSO (Sigma-Aldrich), 8% glyoxal w/v (Sigma-Aldrich), 5% glycerol, 40 μg/ml ethidium bromide, 1× BPTE pH 6.5 (10 mM PIPES (Sigma-Aldrich), 30 mM Bis-Tris (Sigma-Aldrich), 10 mM EDTA pH 8.0]). Samples were vortexed and denatured at 55°C for one hour. Samples were chilled on ice for 10 minutes, and 10× BPTE-RNA loading dye (0.25% xylene cyanol, 0.25% bromophenol blue, 5% glycerol, 1× BPTE) was added to each sample before loading on 2% agarose gels with 1× BPTE buffer. Electrophoresis was performed at 4 V/cm while mixing the buffer...
with magnetic stir bars. Gels were visualized and washed for 10 minutes in deionized water, 20 minutes in 75 mM NaOH, an additional 10 minutes in deionized water, and 10 minutes in 10× SSPE (1.5 M NaCl, 100 mM sodium phosphate, 100 mM EDTA, pH 7.4). Gels were passively transferred in 10× SSPE to positively charged nylon membranes (Hybond-N+, GE Healthcare Life Sciences). Blots were cross-linked with the auto cross-link function (120,000 joules/cm²) on the Stratalinker UV Crosslinker 2400 (Stratagene), and stored in 2× SSPE at 4°C. PCR probes were constructed by in vitro transcription with the T3 RNA polymerase (Promega) and α-32P-UTP (Perkin-Elmer) following the manufacturer’s protocol, with the exception that radioactive UTP was used instead of radioactive CTP. Templates were constructed by PCR using genomic DNA and primers hybridizing to the target gene (Table S1). The reverse primer contained at its 5’ end the promoter sequence (5’-AAATGGCAATTCAGCTGACGATAAGGGA-3’). Blots were pre-hybridized in Church’s buffer (1% BSA, 1 mM EDTA, 0.3 M NaPO₄, pH 7.2, 7% SDS) at 65°C for 1 hour, and transcription reactions were diluted in 100 µl of deionized water and added directly to the hybridization bottles. Hybridizations were conducted overnight at 65°C, and blots were washed for 20 minutes with 2× SSPE+0.1% SDS at 65°C, followed by two washes for 20 minutes with 0.1× SSPE+0.1% SDS at 65°C. Blots were exposed to K-screens (Kodak) and scanned with the BioRad FX Phosphorimager.

Primer extension mapping of the Rnt1p cleavage site

20 pmol of BDF2 downstream RCS reverse primer (5’-CAATTGGTTGGAATTCAGCTGACGATAAGGGA-3’) was labeled with γ-32P-ATP with T4 polynucleotide kinase (NEB) according to the manufacturer’s protocol. Primer extension was performed using the SuperScript III reverse transcriptase (Invitrogen/Life Technologies) according to manufacturer’s protocol, except that denaturation was performed at 75°C for 4 minutes in a thermocycler, followed by primer annealing at 45°C for 5 minutes. Primer extension was performed at 55°C for 60 minutes, followed by 70°C for 15 minutes to inactivate the enzyme. An equal volume of 5× formamide loading dye (Ambion) was added to the primer extension reactions, heated at 75°C for 3 minutes, and 10 µl was loaded onto 8% polyacrylamide sequencing gels. To obtain the sequencing ladder, a PCR product was first generated using the reverse primer and the BDF2 exon1 forward primer (5’-GGCAATTCCTGTTTACTGCGACG-3’) and pUG25-BDF2 as template. The PCR product was used as a template with the Thermo Sequenase Cycle Sequencing Kit using 0.5 picomoles of labeled primer for each of the 4 deoxyxynucleotide sequencing reactions (according to manufacturer’s protocol). Gels were dried at 80°C for one hour on a vacuum gel drier (Amersham Pharmacia), and exposed to K-screens (Kodak) and scanned with the BioRad FX Phosphorimager.

RT-PCR analysis

40 µg total RNA of total RNA was treated with DNase I (Ambion) according to manufacturer’s protocol, 5 µg of DNase I-treated RNA was reverse-transcribed with random hexamers and M-MLV reverse transcriptase (Invitrogen) according to manufacturer’s protocol. 2 µl of cDNA was used as a template in standard 50 µl PCR with the forward primer 5’-AACGACCGGAGAGTATGTTAAGAAGAGAAG-3’ and either reverse primer R1 5’-ATCTCTGATTAAATCTTTGCAATTAGTCG-3’ or R2 5’-TGCTCTGATTGCGATTCTCGACG-3’. The following thermo-cycler parameters were used: 94°C 2 min, 35 cycles of 94°C 30 s, 60°C 30 s, 72°C 60 s. RT-PCR products were analyzed on 1× TAE 2% agarose gels and stained with ethidium bromide. The identity of each band was verified by gel extraction of the excised band followed by Sanger sequencing (Laragen, Inc.).

Plate growth assays

Cultures were grown to mid-log phase (OD₆₀₀nm 0.4–0.6) and 1 ml of each culture was spun at 13,200 rpm for 30 seconds. Pellets were resuspended in 1 ml of sterile water, and diluted to OD₆₀₀nm 0.1 followed by four 5-fold serial dilutions in sterile water. 4 µl of each dilution was spotted onto the indicated media. Hydroxyurea was purchased from Alfa-Aesar, and camptothecin and methyl methanesulfonate were purchased from Sigma-Aldrich.

Supporting Information

Figure S1 Northern blot analysis of genes identified as targets of spliceosome-mediated decay (Supp. Table 2 from [13]) containing RNA sequences capable of folding into canonical Rnt1p target stem-loops. Riboprobes for the indicated genes were designed to target the open reading frames. SCR1 is shown as a loading control. The NPL3 readthrough transcript is a positive control for a known Rnt1p mRNA target [60,61]. (TIF)

Figure S2 RT-PCR analysis of full-length BDF2 mRNA and spliced products generated by spliceosome-mediated decay in wild-type, the strain carrying the disruption of the Rnt1p stem loop (bdf2 stem mutant), and the deletion of nuclear exosome co-factor RRP6 (rrp6Δ). (A) The locations of the forward (F) and reverse primers (R1 and R2) are shown relative to the Rnt1p cleavage site (RCS), the previously annotated AAG 3’-splice site at +1672 to the ORF [13], and an alternative AAG 3’-splice site at +1595 (identified here by sequencing). The stem mutant introduces two 3’-splice site CAG motifs into the Rnt1p target stem-loop downstream of the (UUC)₄ polypyrimidine tract. (B) RT-PCR was performed with the same forward primer and either R1 (top panel) or R2 (bottom panel). The spliced species corresponding to each band is indicated to the right of each band. The band denoted with an asterisk in both panels arises from mis-priming of the F primer 3’ end at +1426 in the BDF2 ORF. (TIF)

Figure S3 Probe walking to verify the identity of the BDF2 mRNA degradation intermediates generated by spliceosome-mediated decay and Rnt1p. RNA from the indicated strains was analyzed on the same gel in a triplicate series and transferred to three strips of membranes. Riboprobes were designed to hybridize to exon1 (probe I), the intron (probe II), or exon2 (probe III) of BDF2 mRNA and blots were aligned during the exposure to compare the migration of each BDF2 species. The band labeled with the asterisk on the exon1 blot is due to cross-hybridization with the 18S rRNA. (TIF)

Figure S4 The nuclear exosome co-factor RRP6, the nonsense mediated decay (NMD) factor UPF1, and the pre-mRNA nuclear retention factors MLP1/2 participate in the surveillance of BDF2 transcripts. (A) A riboprobe for the BDF2 exon1 detects the 5’ products of Rnt1p and spliceosome endonucleolytic cleavage (left panel). A riboprobe was designed to hybridize to the 5’ UTR of BDF2-L, upstream of the annotated transcription start site for BDF2-S (chrIV: 331002), in order to exclusively detect BDF2-L. and its RMD degradation intermediate (right panel). (B) A riboprobe spanning exon 1 and the intronic region up to the Rnt1p cleavage site (RCS) (+23 to +1303 into the ORF) detects
full-length BDF2 as well as Rnt1p cleavage products (top half). The BDF2-L full-length transcript and its RMD product were detected with the 3'-UTR probe that does not bind BDF2-S (bottom half).

Figure S5 Wild-type and the specified BDF2 mutants were shifted to 0.6 M NaCl for the time points indicated. GLK1, HAL5, GRE3, and LEU1 were detected with riboprobes targeting the open reading frames of their respective transcripts. SCR1 is a loading control.

Figure S6 The wild-type strain and the specified BDF2 mutants were grown on plates with the indicated media at 30°C for the indicated number of days. (A) Inactivation of RMD or SMD of BDF2 mRNA has no effect on the growth of the wild-type strain in high salt or hyperosmotic stress conditions. (B) Inactivation of RMD or SMD of BDF2 mRNA confers sensitivity to 0.6 M lithium chloride, but not methyl methanesulfonate (MMS) or hydroxyurea (HU). (C) Cells lacking BDF2 are hyper-sensitive to 2% dimethyl sulfoxide (DMSO), and do not grow on the combination of 2% DMSO and 100 μM camptothecin (CPT).

Table S1 *Saccharomyces cerevisiae* strains, plasmids, and oligonucleotides used in this study. The strain ID, genotype and reference is provided for each strain studied. The plasmids are generated from the pUG23 vector, and contain the described mutations in the BDF2 ORF. The oligonucleotide sequences used to generate T3 riboprobe templates or radiolabeled oligonucleotide probes are indicated, with a reference to the relevant figures. The oligonucleotides used to generate the plasmids and yeast strains are indicated along with the purpose of each primer pair.

Acknowledgments

We thank Rebekah Liu and Douglas Zhang for extensive technical assistance, and Jason Gabulas for helpful comments and critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: KR GC. Performed the experiments: KR. Analyzed the data: KR GC. Contributed to the writing of the manuscript: KR GC.

References

Figure S1
Figure S2

A

\[BDF2 \]

WT RCS
stem: \[UUCUUCAUUAUCAUC \]

stem
mutant: \[UUCUUCAUACAGCAG \]

B
Figure S3

probe I

probe II

probe III
Figure S5
Figure S6

A

<table>
<thead>
<tr>
<th></th>
<th>YPD</th>
<th>YPD + 1.2 M NaCl</th>
<th>YPD + 1.5 M KCl</th>
<th>YPD + 1.5 M sorbitol</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5' SS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLΔ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5' SS + stem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bdf2Δ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td>1.5 days</td>
<td>3.5 days</td>
<td>2.5 days</td>
<td>2.5 days</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>YPD + 100 mM HU</th>
<th>YPD + 0.01% MMS</th>
<th>YPD + 0.6 M LiCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDFP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5' SS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLΔ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5' SS + stem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bdf2Δ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td>2.5 days</td>
<td>2 days</td>
<td>4.5 days</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>YPD</th>
<th>YPD + 2% DMSO</th>
<th>YPD + 2% DMSO + 100 μM CPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDFP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5' SS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLΔ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5' SS + stem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bdf2Δ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td>1.5 days</td>
<td>2 days</td>
<td>3.5 days</td>
</tr>
</tbody>
</table>
CHAPTER 6

The Dark Side of Poly(A) Tails Reveals Genome-Wide Mechanisms of Nuclear RNA Processing and Decay
The Dark Side of Poly(A) Tails Reveals Genome-Wide Mechanisms of Nuclear RNA Processing and Decay

Kevin Roy, Jason Gabunilas, Elisabeth Petfalski, Rebekah Liu, Duy Ngo, Marco Morselli, Abigail Gillespie, Doug Zhang, Matteo Pellegrini, David Tollervey, and Guillaume Chanfreau

Abstract

RNA polymerase II (Pol II) transcribes the vast majority of the eukaryotic genome. However, a substantial fraction of Pol II transcription does not produce stable RNA. Various nuclear RNA decay pathways are coupled to the activity of the Trf4/5p-Air2/1p-Mtr4p polyadenylation (TRAMP) complex. TRAMP adds a destabilizing oligo(A) tail to target RNAs, promoting their 3´ end trimming or degradation by the nuclear exosome in a manner dependent on the Rrp6p component of the nuclear exosome. In order to identify the 3´ ends targeted by TRAMP-exosome activity genome-wide, we mapped the global profile of poly(A)+ RNA 3´ ends accumulating in yeast cells lacking Rrp6p. This confirmed snoRNA 3´-extensions as major targets of Rrp6p, and revealed distinct profiles for polyadenylated mature box C/D and box H/ACA snoRNA 3´ ends in the absence of Rrp6p. We demonstrate that the transcriptional activator Reb1p serves not only as a roadblock, but impacts RNA processing by enhancing Nrd1p-Nab3p-Sen1p mediated termination and controlling poly(A) site selection in 3´ untranslated regions of pre-mRNAs. Furthermore, we reveal that a global roadblock of Pol II by TFIIB at tRNA genes plays a major role in restricting pervasive transcription. In addition, we uncover a previously hidden class of long intergenic non-coding RNAs (lincRNAs) targeted by the yeast nuclear RNase III homolog Rnt1p, and show that co-transcriptional cleavage of IncRNAs by Rnt1p plays an important role to limit pervasive transcription during the salt stress
response. Our results demonstrate how diverse 3´ end processing mechanisms operate to control pervasive transcription and regulate gene expression genome-wide.

Introduction

A variety of chromatin-based modifications repress spurious RNA polymerase II (Pol II) transcription initiation in intragenic, intergenic, and heterochromatic regions (Carrozza et al., 2005; Govind et al., 2010; Kim and Buratowski, 2009; Xue et al., 2015). However, increasing evidence demonstrates that the vast majority of the eukaryotic genome is subject to transcription at some level by Pol II (Berretta and Morillon, 2009; Tisseur et al., 2011). In addition to transcribing stable functional RNAs, Pol II transcribes a vast array of cryptic unstable transcripts (CUTs) with ill-defined functions (Wyers et al., 2005). A substantial fraction of Pol II transcription units produce transcripts that are not observed in wild-type cells due to their rapid decay by a combination of cytoplasmic and nuclear RNA degradation pathways (van Dijk et al., 2011; Wyers et al., 2005). These pervasive transcripts arise from divergent transcription at bidirectional promoters, antisense transcription at termination regions of genes, and at nucleosome-free regions throughout intergenic sequence (Xu et al., 2009; van Dijk et al., 2011; Wyers et al., 2005). A major question emerging from these studies is how these cryptic RNAs are distinguished from *bona fide* mRNAs and selectively destabilized (Porrua and Libri, 2015).

In budding yeast, various mechanisms selectively target cryptic Pol II transcripts for decay, the most well-characterized being the Nrd1p-Nab3p-Sen1p (NNS) termination pathway, the functional homologue of which in metazoans is the RBM7-NEXT pathway (Lubas et al., 2011). In this mode of termination, Nrd1p and Nab3p recognize specific motifs in the nascent RNA and recruit the Sen1p helicase to direct termination (Carroll et al., 2007). Other modes of transcription termination coupled to RNA decay include co-transcriptional cleavage by the yeast
RNase III homolog Rnt1p and roadblock termination by the Reb1p transcriptional activator (Colin et al., 2014; Ghazal et al., 2009; Rondón et al., 2009). The unprotected 3´ ends of RNAs released by these various mechanisms are then targeted by the TRAMP complex, consisting of the Mtr4p helicase, the Trf4p or Trf5p poly(A) polymerase, and the Air1p or Air2p Zn-knuckle RNA binding proteins (Wyers et al., 2005; LaCava et al., 2005; Vanácová et al., 2005). The TRAMP complex tags the 3´ end of the RNA with an oligo-adenosine tail, which recruits the nuclear exosome for rapid 3´-5´ decay of the transcript (Callahan and Butler, 2010). The TRAMP subunit Mtr4p interacts directly with the nuclear exosome co-factor Rrp6p to promote unwinding of the 3´ end of the RNA into the core tunnel of the exosome for 3´ trimming or complete degradation by the Rrp44p/Dis3p catalytic subunit (Schuch et al., 2014).

In the absence of Rrp6p, nuclear exosome-targeted RNA substrates are stabilized, and the distributive poly(A) addition by TRAMP results in a lengthening of the A tails (Wyers et al., 2005). Previous studies uncovered exosome substrates by using oligonucleotide arrays or RNA-seq to analyze RNAs accumulating in a strain lacking Rrp6p (Davis and Ares, 2006; Wyers et al., 2005; Xu et al., 2009). While these studies uncovered broad genomic regions targeted by the nuclear exosome, they lacked the ability to precisely identify 3´ ends targeted by TRAMP. In this study, we sequenced 3´ poly(A)+ ends of RNA accumulating in WT cells and rrp6Δ cells, creating a global profile of TRAMP-targeted RNA processing and degradation intermediates. We reveal the genome-wide impact of transcription pauses and roadblocks by Reb1p and TFIIIB. We demonstrate that Reb1p-induced pausing of Pol II enhances termination efficiency by promoting the usage of upstream 3´ processing sites for both the NNS and canonical cleavage and polyadenylation termination pathways. We also demonstrate that the TFIIIB Pol III transcription initiation factor blocks pervasive transcription genome-wide, coupling the pausing of Pol II to TRAMP / nuclear exosome degradation of the arrested 3´ end. These results also uncover genome-wide endonuclease cleavage by the yeast RNase III homolog Rnt1p. To
characterize the genome-wide role of Rnt1p in controlling the transcriptome, we employed a combination of Rnt1p UV crosslinking and analysis of cDNAs (CRAC), computational RNA folding, and high-throughput sequencing of in vitro cleaved RNA by recombinant Rnt1 to identify the precise sites of cleavage. Our results show how RNase III degrades both coding and pervasive transcripts to shape the quality and quantity of gene expression.

Results

Direct RNA sequencing (DRS) of poly(A)+ RNA in cells lacking the nuclear exosome component Rrp6 reveals nuclear exosome targets genome-wide

Previous work established that in the absence of the nuclear RNA exosome component Rrp6p, oligo(A) tails on TRAMP substrates are lengthened in vivo and can efficiently bind oligo-dT (Wyers et al., 2005). In order to globally assess TRAMP-nuclear exosome targets, we sequenced 3´ ends of poly(A)+ RNAs in wild-type cells and cells deleted for RRP6 with strand-specific direct RNA sequencing on the Helicos platform. We obtained more than 2.7 million uniquely mapped reads for each sample, with nearly 90% of the poly(A)+ 3´ ends in WT cells mapping to 3´ UTR regions (Fig 6.1A). In the remaining ~10% of reads, we detected 3´ ends mapping to intergenic regions, ORF antisense transcripts, stable unannotated transcripts (SUTs), Xrn1-sensitive unstable transcripts (XUTs), and cryptic unstable transcripts (CUTs). Significantly, the deletion of RRP6 resulted in a greater than 10-fold upregulation of 3´ ends in numerous categories of pervasive transcripts, including CUTs, SUTs, and XUTs, as well as in 5´ UTR regions and within ORFs, consistent the known role of Rrp6p in transcriptome surveillance and degrading early termination products within ORFs (Fig 6.1A). Overall, 15,298 upregulated poly(A)+ 3´ ends in rrp6Δ clustered into 3,395 distinct regions (Fig 6.1B). The class of transcripts with the highest number of clusters was the CUTs, consistent with the known role for
Rrp6 in degrading these transcripts (Wyers et al., 2005). Our approach also uncovered Rrp6p-targeted transcripts arising from unannotated intergenic regions, as well as throughout coding sequence (CDS) and antisense to coding sequence (Fig 6.1B).

Strikingly, the absence of Rrp6p resulted in greater than 20% of all poly(A)+ RNAs arising from the 79 small nucleolar RNAs (snoRNAs) and their downstream flanking regions (Fig 6.1A). snoRNAs are heavily transcribed by Pol II and the majority of snoRNAs undergo extensive processing at both the 5´ and 3´ ends. Nascent snoRNAs undergo transcription termination by the Nrd1p-Nab3p-Sen1p (NNS) pathway followed by exosome trimming (Carroll et al., 2004; Steinmetz et al., 2001). The trimming efficiency is significantly diminished in the absence of Rrp6p, and cells accumulate snoRNAs with extended 3´ ends containing poly(A) tails (Allmang et al., 1999; Grzechnik and Kufel, 2008; van Hoof et al., 2000). Metagene analysis of the downstream genomic regions for all 79 snoRNAs revealed the characteristically broad window of heterogeneous 3´ ends generated by NNS termination (Fig 6.1C), as previously demonstrated by tiling array and RNA-seq (Fox et al., 2015; Wyers et al., 2005). In addition, we identified a substantial peak centered at 25 nucleotides downstream of mature 3´ ends (Fig. 6.1D). This result is reminiscent with previous work showing that Rrp6p is required for optimal trimming of the final 30 nucleotides of the 3´ end of the precursor 5.8S rRNA (Briggs et al., 1998). Our result indicates that the majority of snoRNA 3´ processing intermediates follow a similar pathway (Fig 6.1D). As suggested for the 5.8S rRNA, our data is consistent with the model that the nuclear exosome trims RNP 3´ ends by threading the 3´ extensions through the core exosome, where Rrp44p/Dis3p processively hydrolyzes nucleotides until the lid of the exosome encounters the stable RNP 3´ end. This occurs at a distance of ~25 nucleotides from the lid to the Rrp44p/Dis3p active site, whereupon Rrp6p is required for efficient trimming of the final ~25 nucleotides (Makino et al., 2015).
Intriguingly, we found that mature Box C/D snoRNAs, but not Box H/ACA, exhibit polyadenylated mature 3´ ends in the absence of Rrp6p (Fig 6.1D.) Box H/ACA snoRNAs contain single-stranded 3´ ends protected by the Cbf5p protein, while box C/D 3´ ends are base-paired with their mature 5´ ends (Lapinaite et al., 2013; Zhou et al., 2011). Our results suggest that box C/D 3´ ends, but not the 3´ ends of box H/ACA RNAs, may normally be accessible to the TRAMP complex, and that Rrp6p trims these TRAMP-added poly(A) tails back to their mature 3´ ends. Surveillance by TRAMP and Rrp6p may serve as a quality control mechanism for monitoring the proper RNP structure of Box C/D 3´ ends. In the absence of proper base-pairing between the mature 5´ and 3´ ends of the Box C/D RNA, Rrp6p and the nuclear exosome would then initiate RNP turnover.

The Reb1p DNA binding factor pauses Pol II genome-wide and destabilizes nascent transcripts through degradation by Rrp6p

While the majority of snoRNAs exhibit a broad distribution of 3´ length extensions in the absence of Rrp6p, inspection of our data set revealed that a number of snoRNAs did not show a broad distribution and instead exhibited sharp peaks downstream of the +25 nt poly(A)+ peak. We noticed that many of these peaks were 10-15 nucleotides upstream of the TTACCCG motif, the recognition sequence for the Reb1p DNA-binding protein. Additionally, a computational analysis for enriched motifs downstream of peaks of Rrp6p-targeted clusters revealed TTACCCG as highly enriched (Fig 6.2A). We found the majority of these *rrp6Δ* clusters occur in intergenic regions and 5´ UTRs and in coding sequence, while much fewer were observed in 3´ UTRs (Fig 6.2B). Furthermore, aggregating all poly(A)+ 3´ ends in *rrp6Δ* around all 234 Reb1 consensus binding sites (TTACCCGG) in the genome resulted in a peak ~12 nucleotides upstream and ~15 nucleotides downstream of the motif. This distance is consistent with a collision between the leading edge of elongating Pol II and the footprint of the Reb1p DNA-bound protein (Fig 6.2C) (Colin et al., 2014). Nascent elongating transcript sequencing (NET-
seq) was previously developed to monitor the positions of 3’ ends associated with actively elongating Pol II (Churchman and Weissman, 2011). A previous study showed that the strains lacking the backtracking cleavage stimulatory factor TFIIS (dst1Δ) exhibit peaks of pausing near Reb1p sites (Colin et al., 2014). Reb1 can bind to consensus as well as near-consensus motifs (Ju et al., 1990). In order to examine the functional impact of these binding events, we gathered empirically determined Reb1p binding sites by ChIP-exo and high-throughput DNase I footprinting studies (Hesselberth et al., 2009; Rhee and Pugh, 2011). We analyzed all Reb1p near-consensus motifs in these data sets with at most 1 nucleotide deviation from the TTACCCG motif. Meta-gene analysis of the poly(A)+ peaks accumulating in the absence of Rrp6p revealed a striking overlap with the 3’ ends accumulating in the dst1Δ strain (Fig. 6.2D). These peaks are conspicuously situated proximally upstream of the boundary of genome-wide DNase I footprinting at these Reb1p sites (Fig. 6.2D) (Hesselberth et al., 2009). These data confirm that the 3’ ends of transcripts in Pol II complexes stalled at Reb1p sites across the genome are indeed targeted by Rrp6p.

Reb1p-induced pausing of Pol II enhances termination efficiency of the Nrd1p-Nab3p-Sen1p (NNS) pathway

Reb1p was previously shown to control pervasive transcription by acting as a roadblock to Pol II elongation, as the nascent transcripts of the arrested Pol II complex are cleared by the action of the TRAMP-exosome (Colin et al., 2014). This study suggested that Rsp5-mediated ubiquitylation of Pol II was necessary to remove Pol II from the template. However, the presence of these motifs proximally downstream of highly transcribed snoRNAs suggested a possible role for Reb1p acting in concert with termination by the NNS pathway. We chose first to examine the Box H/ACA snoRNA snR161, as this snoRNA exhibited the strongest signal proximally upstream of a Reb1p-binding site (Fig. 6.3A). We mutated the TTACCCG motif to TTACAAG, as the mutation of these two C’s to A’s was previously shown to completely abolish
Reb1p binding (Colin et al., 2014). We found that blocking Reb1p binding led to the accumulation of a broad range of 3´ end extensions of snR161 in the absence of Rrp6p (Fig 6.3B, top panels). Inserting an RNA cleavage signal for the nuclear RNase III homolog Rnt1p in place of the Reb1 binding site led to a reduction in the size distribution, demonstrating that the broad signal represents 3´ extensions (Fig. 6.3B, top panels). The gene downstream of snR161, *PDX3*, is only 100 nucleotides downstream of the Reb1p binding site. Our data suggest that the presence of the Reb1p binding site is important to enhance the termination efficiency by the NNS pathway, which normally occurs over a 200-300 bp window (Fig. 6.1D), to prevent transcriptional readthrough into the *PDX3* promoter. Interestingly, we found that the Reb1p site appears to serve as a bi-directional roadblock, as in its absence antisense transcripts accumulate when Rrp6p is genetically inactivated (Fig. 6.3B). Notably, the antisense transcripts are unaffected by the presence of the sense Rnt1p cleavage signal (RCS) as these signals requires specific RNA secondary structure for Rnt1p recognition (Fig. 6.3B). These results underscore the importance of the Reb1p transcriptional activator in enhancing snoRNA termination efficiency.

We next analyzed the function of an apparent roadblock Reb1p site in the 3´ UTR of *RPL9B* (Fig 2E). *RPL9B* was previously characterized to undergo two distinct modes of termination, one promoting expression from canonical cleavage and polyadenylation at various positions, and the other utilizing the NNS pathway downstream of these positions to auto-regulate *RPL9B* levels in manner dependent on Rpl9A/B protein levels (Gudipati et al., 2012). *RPL9B* was shown to contain multiple different poly(A) sites utilized by the cleavage and polyadenylation machinery, as well as NNS–dependent sites downstream (Gudipati et al., 2012). We analyzed nascent transcript elongating sequencing data for the wild-type and TFIISS mutant *dst1Δ* to profile Pol II occupancy in this region (Churchman and Weissman, 2011). We found evidence of Pol II pausing proximally upstream of the Reb1 binding site, and coinciding
ith the transcript 3’ ends accumulating in the absence of Rrp6p (Fig. 6.3C). The deletion of RRP6 results in various growth defects and decreased ribosome biogenesis (Fox et al., 2015). In order to examine the role of the Reb1p binding event in a less pleiotropic context, we employed the anchor-away approach, which involves tagging the protein of interest with a domain that forms a stable tertiary interaction with the tagged abundant ribosomal protein Rpl13Ap upon addition of rapamycin to the growth media (Haruki et al., 2008). The massive flow of ribosomes out of nucleus during yeast log phase growth provides a highly abundant “anchor” to rapidly deplete nuclear proteins. We selectively removed either Rrp6p and/or Reb1p from the nucleus, and found the removal of Reb1p and Rrp6p from the nucleus to result in a lengthening of the NNS-terminated transcripts (Fig. 6.3E). Taken together, these results suggest that termination efficiency by the NNS pathway is strongly enhanced by the Reb1p DNA binding factor.

Reb1p-induced pausing of Pol II controls the selection of alternative cleavage and polyadenylation sites

Reb1 sites are frequently found in between tandemly or convergently transcribed genes (Hartley and Madhani, 2009). After finding that termination efficiency by the NNS pathway is strongly enhanced by the Reb1p DNA binding factor, we speculated that Reb1p may also influence the cleavage and polyadenylation termination pathway. To test this possibility, we sequenced poly(A)+ 3´ ends of WT cells or Reb1p-FRB tagged cells treated with rapamycin for one hour to deplete Reb1p from the nucleus. Strikingly, the anchor away of Reb1p resulted in a substantial shift downstream for the predominant poly(A) site for various genes exhibiting multiple alternative 3´ ends (Fig. 6.4A). Increased RNA-seq signal in the distal 3´ UTR region confirmed the downstream poly(A) site usage (Fig. 6.4A).

We next examined genome-wide the prevalence of Reb1p binding sites internal to 3´ UTRs and within 100 bp downstream of 3´ UTRs. To determine 3´ UTR boundaries, we
examined transcript isoform sequencing (TIF-seq) of simultaneous 5´ and 3´ transcript ends (Pelechano et al., 2013), and set the 3´ boundary to cover 80% of all ORF-spanning 3´ ends.

We found a total of 271 Reb1p sites matching these criteria, and aggregated NET-seq data for these regions (Fig. 6.4B). We found the expected peak in the TFIIS mutant dst1Δ ~15 bp upstream of the Reb1 site (Fig. 6.4B). Interestingly, in contrast to the meta-gene analysis on all Reb1p binding sites (Fig. 6.2D), there was no backtracked and paused peak in WT cells at 3´ UTR Reb1p sites. Instead, a minor peak occurred directly at the Reb1p binding site (Fig. 6.4B).

We then normalized the signal for each of the 271 3´ UTRs within a 200 bp window around the Reb1p sites, and calculated the mean position of poly(A) site usage in WT and Reb1p anchor away treated cells. We found a global average lengthening of the 3´ UTRs in these regions by 6 nucleotides after anchor away of Reb1p (Fig. 6.4B). This indicated that Reb1p has an important role in globally influencing 3´ end selection by cleavage and polyadenylation, likely by pausing Pol II in the 3´ regions to promote the use of otherwise weak poly(A) sites upstream. In the absence of Reb1p, stronger poly(A) sites downstream may emerge before the usage of weaker upstream poly(A) sites and be used preferentially.

A role of Reb1p in promoting 3´ end cleavage and polyadenylation contrasts with its previously characterized role as a transcriptional roadblock that couples pausing to nuclear exosome decay of the nascent transcripts (Colin et al., 2014). To examine the relative locations of Reb1p sites across ORF transcripts genomewide, we aggregated all ORF transcripts with Reb1p sites within 100 bp upstream of the transcriptional start site to 100 bp downstream of the 3´ UTR end, with transcript termini accounting for 90% of the ORF transcript boundaries determined from TIF-seq data (Pelechano et al., 2013). To align all ORFs to the same window, we divided ORF regions into 100 bins and placed the Reb1p binding sites accordingly. This revealed a substantial accumulation of Reb1p sites upstream of promoters (Fig 6.5A), as expected (Hartley and Madhani, 2009). However, we also found Reb1p sites throughout ORF
regions, with an enrichment toward the poly(A) site region (Fig 6.5A). To see if the Reb1p sites in these different relative locations across ORF transcript regions behave differently with respect to roadblock termination, we screened these sites for the presence of \(rrp6\Delta \) upregulated poly(A)+ signal in a window from -20 to -10 nucleotides upstream of the Reb1p binding site (Fig 6.5B). This revealed an under-enrichment of Reb1p-proximal Rrp6p-targeted transcripts toward the 3´ end of genes, relative to the first half of genes and upstream and downstream genic regions (Fig 6.5B). This suggests that the context of the Reb1p site relative to the transcription start and poly(A) sites influences the tendency of Reb1p roadblocks to promote nuclear exosome targeting of the nascent transcripts (Fig 6.5B).

The tRNA gene \(tG(GCC)E \) promotes optimal NNS-dependent termination of snR53 transcription

In addition to finding Reb1p sites downstream of various snoRNA gene units, we found that snR53 transcription appeared to terminate within a short \(\sim 100 \) bp genomic window proximal to the tRNA gene \(tG(GCC)E \) (Fig 6.6A). Both the deletion and anchor away of \(RRP6 \) revealed poly(A) sites ending near the boundary of the tRNA gene (Fig 6.6A). NET-seq data also confirmed the presence of Pol II ending near the tDNA boundary (Fig 6.6A). To test how the presence of the tRNA transcriptional machinery functionally impacts snR53 termination, we co-depleted from the nucleus both \(RRP6 \) and the Bdp1p subunit of the Pol III initiation factor TFIIIB. Strikingly, this revealed the depletion of poly(A) signal proximal to the tRNA and the accumulation of a readthrough poly(A) peak \(\sim 300 \) bp downstream (Fig 6.6A). To confirm these observations, we probed for mature snR53 and the downstream region by Northern analysis of strains deleted for \(RRP6 \) and/or the \(tG(GCC)E \) gene (Fig 6.6B). This revealed that indeed optimal snR53 termination by the NNS pathway depends on the presence of the tRNA gene downstream. Taken together with our earlier results of Reb1p roadblock enhancement of NNS termination, we conclude that the NNS pathway is generally enhanced by obstacles in the
chromatin, and that particular genes have evolved to strictly depend on these obstacles for efficient NNS termination.

Genome-wide roadblock by Pol III initiation factor TFIIIB restricts interference by cryptic Pol II transcription

The presence of tRNAs was previously suggested to block cryptic intergenic transcription at various loci (Korde et al., 2014; Wang et al., 2014). To test the genome-wide prevalence of this phenomenon, we aggregated all rrp6Δ reads in a 500 bp window around tRNA genes, and found a prominent peak centered 65 bp upstream of the mature 5´ end of the tRNA genes (Fig. 6.7A). As transcription by Pol III typically initiates -13 bp upstream of the mature 5´ end of tRNAs, and TFIIIB binds at -35 bp upstream of the transcription start site (Grove et al., 2002), the 65 bp peak likely represents a collision of the leading edge of elongating Pol II with the TFIIIB complex. We again analyzed NET-seq data for evidence of Pol II pausing, and found substantial peaks representing paused and backtracked Pol II at 65 and 70 bp positions upstream of tRNA genes, respectively (Fig. 6.7B). Interestingly, we found that the major TRAMP-exosome targeted peaks coincide with the position of stalled Pol II, indicating that nascent Pol II transcripts stalled at TFIIIB sites can either undergo backtracking and TFIIS cleavage, or undergo Rrp6p targeted degradation. We conclude a global role for TFIIIB in roadblocking cryptic transcription by Pol II, and coupling Pol II stalling to nuclear exosome degradation of the nascent transcript.

We next examined the physiological importance of the TFIIIB-roadblocks. We found substantial accumulation of a 3´ end poly(A)+ peak upstream of the tRNA gene tN(GUU)P upon 1 hour anchor away of Rrp6p (Fig. 6.7A). This peak was significantly reduced with the simultaneous anchor away of Rrp6p and Bdp1p, indicating that this peak indeed arises from a TFIIIB roadblock (Fig. 6.7C). tN(GUU)P is situated downstream and antisense to the MEP3
gene. RNA-seq of cells anchored away for Bdp1p revealed accumulation of readthrough transcripts antisense to MEP3, which we confirmed by Northern blot (Fig. 6.7C). To test the impact of this tDNA gene on the expression of MEP3 in steady state growth, we deleted the tN(GUU)P gene and examined the levels of MEP3 and its antisense transcript (Fig. 6.7D). We found a substantial accumulation of MEP3 antisense transcripts upon deletion of the tRNA gene (Fig 3D), corroborating our results with the Bdp1p anchor away. This suggested a possible function for the tRNA gene in protecting MEP3 from transcriptional interference from the downstream antisense promoter. Accordingly, we detected a significant down-regulation of MEP3 transcripts upon the deletion of tN(GUU)P (Fig. 6.7D). MEP3 encodes an ammonium transporter that facilitates low-affinity but high mass transport of ammonium ion in ammonium replete conditions (Marini et al., 1997). The MEP3 paralog MEP1 mediates higher-affinity ammonium transport but a lower maximum transport rate (Marini et al., 1997). Notably, ammonium has been found to be toxic to aging yeast cells (Santos et al., 2012), and the deletion of MEP3 was previously found to extend chronological lifespan (Powers et al., 2006).

In order to test a physiological role for the tDNA roadblock in promoting expression of MEP3, we monitored the growth of WT, mep1Δ, mep3Δ, and tN(GUU)PΔ from log-phase into the diauxic shift (Fig. 6.7E). Strikingly, we found that cells containing either a deletion MEP3 or the tRNA gene downstream, but not MEP1, grew significantly faster during the exit from log phase (Fig. 6.7E). This indicates that the roadblock termination of antisense transcription by the tN(GUU)P gene plays a major role in controlling MEP3 expression.

Degradation of SMF1 mRNA by Rnt1p protects cells against cadmium stress

The majority of snoRNAs undergo 5´ endonucleolytic cleavage by nuclear RNase III homolog Rnt1p, the upstream products of which are degraded by the nuclear exosome (Chanfreau et al., 1998; Ghazal et al., 2005; Lee et al., 2003). Previous studies demonstrated that Rnt1p cleavage fragments are poly-adenylated by the TRAMP complex prior to degradation by Rrp6p
(Egecioglu et al., 2006). We therefore reasoned that identification of poly(A)+ cleavage intermediates could be used to identify Rnt1p cleavage products genome-wide. To obtain direct evidence for \textit{in vivo} binding of Rnt1p to these putative RNA targets, we performed UV crosslinking on a strain expressing tagged Rnt1p and then purified RNA-Rnt1p complexes under strict denaturing conditions. In order to discriminate signal due to non-specific background binding to abundant RNA species, we utilized a strain harboring the G379P mutation in the dsRNA binding domain. This mutation was previously shown to abolish high-affinity binding of Rnt1p to its specific stem-loop targets (Hartman et al., 2013). Comparison of cross-linked RNA fragments enriched at least two fold in the WT Rnt1p over the Rnt1p G379P revealed the identification of 977 specific binding targets (Fig. 6.8A).

Overlapping these peaks with Rrp6p-targeted poly(A)+ clusters revealed the \textit{SMF1} mRNA as a major target for Rnt1p cleavage in the beginning of the \textit{SMF1} open reading frame (Fig. 6.8B). Strikingly, we also found precise overlap of these peaks with 3´ end peaks in the NET-seq data (Fig. 6.8B). This indicates that these Rnt1p cleavage events are likely co-transcriptional, and that the cleavage fragments remain associated with the ternary elongation complex in a stable fashion. To confirm that Rnt1p activity is indeed responsible for these peaks, we prepared total RNA from cells lacking Rnt1p and Rrp6p, and treated these RNAs with purified recombinant Rnt1p or mock conditions. We then \textit{in vitro} poly-adenylated the cleaved or mock treated RNAs with recombinant poly(A) polymerase and performed poly(A)+ site sequencing. This revealed an exact overlap of the NET-seq 3´ ends with the site of Rnt1p cleavage \textit{in vitro} (Fig. 6.8B). \textit{SMF1} encodes a membrane-localized transporter of divalent cations, and exhibits broad specificity for manganese as well as other divalent cations (Supek et al., 1996). In the presence of the divalent toxic metal cadmium, Smf1p is regulated by rapid endocytosis and subsequent degradation at the protein level (Nikko et al., 2008). To test the physiological importance of Rnt1p cleavage of the \textit{SMF1} mRNA in these conditions, we
constructed mutations in the stem loop sequence that disrupted RNA secondary structure but maintained amino acid identity, and also introduced a frameshift mutation as an additional control. We then tested the growth of these strains by spot dilution onto agar medium. No difference in growth rate for these mutations was apparent under normal conditions (Fig. 6.8C). Strikingly, cells unable to cleave SMF1 by Rnt1p were highly sensitized to cadmium relative to WT cells (Fig. 6.8C). Importantly, the frameshift mutant showed a slight resistance to cadmium relative to WT, indicating that the Rnt1p stem loop mutation results in toxic gain-of-function for SMF1 (Fig. 6.8C). We conclude that Rnt1p cleavage plays a major role in regulating SMF1 expression, and complements post-translational regulatory mechanisms to prevent heavy metal toxicity.

Genome-wide co-transcriptional cleavage by Rnt1p controls expression of coding and non-coding transcripts in salt stress

We previously demonstrated a major role for Rnt1p in controlling the expression of BDF2 mRNA during salt stress (Chapter 5). To extend these results genome-wide, we first tested the ability of a Rnt1p anchor away strategy to mimic the effects of cis-acting mutations. We mock treated or rapamycin treated Rnt1p-FRB cells for one hour, and then shifted these cells to high salt stress for one hour (Fig. 6.9A). The anchor away of Rnt1p revealed a substantial upregulation of BDF2 transcripts, consistent with the genetic inactivation of Rnt1p or its cleavage signal in BDF2 (Fig. 5.3). Subjecting mock-treated cells to salt stress revealed the expected down-regulation of BDF2 mRNA, and the emergence of the Rnt1p cleavage product (Fig. 6.9A). Strikingly, the anchor away of Rnt1p prior to salt stress completely rescued the downregulation of BDF2 mRNA (Fig. 6.9A).

To test how many genes depend on nuclear Rnt1p cleavage for repression during salt stress, we performed high-throughput RNA sequencing on mock-treated or rapamycin treated Rnt1p-FRB strains in the absence or presence of salt stress. Differential expression analysis
revealed 157 genes with two-fold or greater upregulation in Rnt1p-anchor away salt stressed relative to mock-treated salt stressed cells (Fig. 6.9B). Interestingly, many of these genes corresponded to the class of pervasive transcripts known as CUTs, SUTs, and XUTs. We decided to focus on SUT098 as this non-coding transcript exhibited the highest signal amongst the CUTs/SUTs/XUTs in our crosslinking data (Fig. 6.9C). Similarly to SMF1 mRNA, we found a Rrp6p-targeted peak coinciding with both NET-seq 3'-end peaks, and a prominent peak generated by in vitro Rnt1p cleavage (Fig. 6.9C). We then assayed SUT098 by Northern blot and found that two different isoforms of the transcript (Fig. 6.9D, left panel). Upon a shift to salt stress, the shorter form became the more predominant isoform, while a prior treatment with rapamycin abolished this isoform shift (Fig. 6.9D, left panel). We next mutated the cleavage signal by deleting the stem-loop targeted by Rnt1p, and found that the shorter form was abolished by this mutation (Fig. 6.9D, middle panel). We next tested how the shift in 3'-end formation during salt stress impacts expression of the downstream gene, CHD1. We observed that normally, CHD1 expression increases after one hour of high salt exposure (Fig. 6.9D). This increase is completely abolished upon deletion of the SUT098 Rnt1p-targeted stem-loop to the expense of a SUT098 readthrough transcript (Fig. 6.9D). This indicates that alternative 3'-end processing of non-coding RNAs in stress conditions is important for the proper expression of downstream inducible genes.

Discussion

In this work, we profiled the genome-wide distribution of poly(A) tails accumulating upon inactivation of Rrp6p to understand how RNA processing pathways that couple to nuclear exosome degradation impact gene expression. We found that roadblocks by Reb1p and TFIIIB are a major source of exosome targeted poly(A) tails and play a genome-wide role in blocking Pol II transcription, expanding on previous studies (Colin et al., 2014; Korde et al., 2014; Wang et al., 2014). We demonstrated that the context of the Reb1p binding site plays a major role in
influencing the fate of the nascent transcript in the colliding Pol II complex. Our finding that
NNS-dependent termination is enhanced by Reb1p collision suggests that the elongation state
of the polymerase influences the outcome of the roadblock. We found that Reb1p roadblocks
associated with Rrp6p-targeted transcripts exhibit major stalling peaks in \(\textit{dst1}\Delta \) and
backtracked-cleaved peaks in WT cells (Fig. 6.2D). In contrast, Reb1p roadblocks near the 3´
ends of genes which are not associated with Rrp6p-targeted poly(A) tails have less prominent
stalling peaks in \(\textit{dst1}\Delta \) and no detectable backtracked-cleaved peaks in WT cells (Fig. 6.4B).
Instead, we found that Reb1p sites in 3´ UTR regions impact the selection of alternative poly(A)
sites by the cleavage and polyadenylation machinery, on average favoring upstream sites at the
expense of downstream sites (Fig. 6.4B). We propose that cleavage and polyadenylation site
selection is dictated by kinetic competition, and that stalling of Pol II by Reb1p allows more time
for potentially weaker upstream poly(A) sites to be used. At various genomic loci with
downstream stronger poly(A) sites, the depletion of Reb1p reveals a switch in favored poly(A)
site usage (Fig. 6.4A).

We have shown that TFIIIB functions as a roadblock to Pol II elongation and triggers
exosome degradation of the stalled Pol II transcripts. We demonstrated that the roadblock of
cryptic transcription plays an important role in preventing transcriptional interference into
downstream genes, using \(\textit{MEP3} \) as a model. Lastly, we defined new targets for the yeast
RNase III homolog Rnt1p, demonstrating that cleavage of the \(\textit{SMF1} \) divalent cation transporter
occurs co-transcriptionally and is critical for protecting cells against heavy metal toxicity. We
also uncovered a new class of pervasive transcripts targeted by Rnt1p, and showed that Rnt1p
cleavage plays a major role in controlling levels of both coding and non-coding transcripts
during the salt stress response.
Materials and Methods

Strains

Strains were prepared by standard yeast genetics techniques (Gietz and Schiestl, 2007). *RRP6* was deleted in the BMA64 WT background (mating type alpha) using the *hphMX4* marker. Site specific mutations at Reb1p binding sites, deletions of tRNA genes, and mutations of Rnt1p target stem loops were made using the *delitto perfetto* method (Stuckey and Storici, 2013). Briefly, CORE cassettes were first introduced into the site to be mutated, and the integration of the CORE cassette was confirmed by PCR on genomic DNA. Mutations were then introduced through transformation with oligonucleotides containing the desired modifications. All mutations were confirmed by Sanger sequencing (Laragen, Inc.). The parent strain for anchor away (HHY168, (Haruki et al., 2008)) was first modified by replacing the *natMX6* marker with the *hphMX4* marker by homologous recombination with a PCR product encompassing the TEF promoter and TEF terminator shared by these markers. The indicated anchor away strains were then constructed from the modified parent strain by standard transformation techniques using high-fidelity PCR products generated from either *pFA6a-FRB-kanMX6* or *pFA6a-FRB-HIS3MX6* to tag the gene of interest with the C-terminal FRB module.

Media and culturing

Unless otherwise indicated, cultures were grown in YPD (1% yeast extract, 2% bacto-peptone, 2% dextrose) at 30°C at 200 rpm. For anchor away experiments, FRB-tagged strains were either mock treated with 0.1% v/v of vehicle (90% ethanol, 10% Tween-20) or 1 mg/mL rapamycin to yield a final concentration of 1 µg/mL. All cultures were harvested by centrifugation at 4000 rpm for 2 minutes, washed in deionized water, and spun down in microcentrifuge tubes.
The supernatant was removed and pellets were flash-frozen in liquid nitrogen and stored at -80°C.

Northern analyses and high-throughput RNA sequencing analysis

RNA extractions and Northern blot were performed as described previously (Roy and Chanfreau, 2014). Direct RNA sequencing (DRS) was performed with total RNA from WT and \(rrp6\Delta \) cells using the Helicos single-molecule sequencing system (SeqLL, LLC). Reads were mapped as previously described allowing only uniquely mapped reads (Ozsolak and Milos, 2011). The 5´ ends of DRS reads correspond to one nucleotide upstream of poly(A) sites, as the first non-A residues for DRS are not sequenced (Ozsolak and Milos, 2011). To account for this, 5´ ends of reads were shifted one nucleotide downstream, and tallied for each chromosomal coordinate to generate bedgraphs for chromosomal coordinates and abundances of 3´ ends with poly(A) tails. Mapped positions were first filtered for A/G richness in the immediate genomic region downstream. Poly(A) sites with three or more A nucleotides downstream, and lacking C or T nucleotides in the initial eight nucleotides downstream were flagged as potential internal oligo-dT mis-priming events. Poly(A) sites upregulated in \(rrp6\Delta \) were clustered together if within 20 bp of another upregulated site. Annotating the genomic distribution of upregulated clusters was performed using the annotations provided by the pyCRAC package (Webb et al., 2014). Meta-gene analysis on snoRNA genes, tRNA genes, and Reb1p binding sites was conducted by first obtaining reads across genomic windows around these sites, normalizing the sum of the reads in the window to an arbitrary constant, and then aggregating those normalized reads for all genomic windows. Plots were generated using the matplotlib module of Python 2.7. All anchor away poly(A) site sequencing was conducted using the QuantSeq 3´-end RNA sequencing library preparation kit. Sequencing was performed with the custom sequencing primer (CSP) that includes a 3´ oligo-dT stretch so that the first
sequenced nucleotide corresponds to the poly(A) site (Lexogen, GmbH). Reads were mapped using RNA-STAR to the R64-2-1 version of the *S.cerevisiae* genome obtained from the *Saccharomyces* genome database (SGD) (Dobin et al., 2013). 5´ ends of mapped reads were processed as for the DRS data. Whole transcript RNA sequencing was performed with the Ilumina TruSeq Stranded mRNA library prep kits with sequencing performed on the HiSeq 2000 system in high output mode. Genome browser snapshots were generated from scalable vector graphics files from the Integrated Genomics Viewer (IGV) version 2.3.52.

Motif analyses

The 60 bp of sequences downstream of peaks of Rrp6p-targeted clusters were subjected to analysis by DREME motif discovery with default parameters (both sense and antisense sequence allowed) (Bailey, 2011).

In vitro Rnt1p cleavage coupled to high throughput sequencing of cleavage products

RNA samples were subjected to cleavage by recombinant Rnt1p as previously described (Roy and Chanfreau, 2014). Mock treatments and in vitro cleavage reactions were stopped by standard phenol-chloroform extraction, followed by precipitation in salted ethanol. Purified RNAs were then in vitro polyadenylated by *E. coli* poly(A) polymerase (NEB), and subject to QuantSeq 3´ end library preparation and sequencing as described above.

Cross-linking and analysis of cDNAs (CRAC)

The His6-TEV-ProtA tag with the *URA3* marker was inserted at the C-terminus of *RNT1* in strains carrying WT *RNT1* or the *rnt1 G379P* mutant in the BY4741 background (Hartman et al., 2013). CRAC was performed as previously described (Granneman et al., 2009). Reads were
mapped with RNA-STAR as described above, and mapped reads were processed with the pyCRAC software package (Webb et al., 2014).

Plate growth assays

Cultures were grown to mid-log phase (OD$_{600\text{ nm}}$ 0.4-0.6) and 1 ml of each culture was spun at 13,200 rpm for 30 seconds. Pellets were resuspended in 1 ml of sterile water, and diluted to OD$_{600\text{ nm}}$ 0.05 followed by five three-fold serial dilutions in sterile water. 4 μl of each dilution was spotted onto the indicated media. Cadmium chloride was purchased from Sigma Aldrich.
Figure 6.1

Genome-wide distribution of poly(A)+ 3´ ends in WT cells and cells lacking the nuclear exosome component Rrp6p

A. Global distribution of poly(A)+ 3´ ends in WT and rrp6Δ cells. Total RNA from WT and rrp6Δ cells were profiled by direct RNA sequencing (DRS) on an oligo-dT coated flow cell to determine 3´ ends of poly(A)+ RNA. Each sample yielded greater than 2.7 million uniquely mapped reads, which were tallied and grouped into the specified annotation types.

B. Distribution of poly(A)+ clusters upregulated in rrp6Δ over WT cells. 3´ ends of poly(A)+ RNA upregulated greater than 5 fold in rrp6Δ over WT and within 20 bp of each other were clustered together. The clusters were then grouped into the specified annotation types.

C. Meta-gene analysis of poly(A)+ reads in the snoRNA 3´ regions. Genomic regions 100 bp upstream of snoRNA mature 3´ ends to 500 bp downstream were assayed across all snoRNAs. The total reads for each snoRNA region were normalized to an arbitrary constant, and then summed for all snoRNAs.

D. Meta-gene analysis of poly(A)+ reads at the 3´ ends of different snoRNA classes. Genomic regions 10 bp upstream of snoRNA mature 3´ ends to 50 bp downstream were assayed across all snoRNAs, as well as the box C/D, and box H/ACA snoRNAs. The total reads for each snoRNA region were normalized to an arbitrary constant, and then summed for all snoRNAs.
Figure 6.2

The Reb1p DNA binding factor pauses Pol II genome-wide and destabilizes nascent transcripts through degradation by Rrp6p

A. DREME-motif analysis on regions downstream of Rrp6p-targeted poly(A)+ clusters. 60 bp of sequence downstream from the peaks of Rrp6p-targeted clusters were analyzed for enriched motifs by DREME.

B. Genomic distribution of Rrp6p-targeted poly(A)+ clusters within a 30 bp window upstream of Reb1 motifs.

C. Meta-gene analysis of poly(A)+ reads in \(rrp6\Delta \) cells around the consensus Reb1 motif TTACCCGG. Genomic regions 200 bp upstream and downstream of all occurrences of TTACCCGG were analyzed by meta-gene analysis for each 400 bp region exhibiting at least 10 reads.

D. Meta-gene analysis for RNA polymerase II nascent 3´ ends (NET-seq), DNase I resistant footprints, and poly(A)+ reads in \(rrp6\Delta \) for all experimentally determined Reb1p binding sites. Genomic regions from Reb1p ChIP-exo (Rhee and Pugh, 2011) and genome-wide DNase I footprinting (Hesselberth et al., 2009) were analyzed for sequences containing no more than one mismatch to the Reb1p motif TTACCCG. These chromosomal coordinates were then used in meta-gene analysis for the poly(A)+ reads in \(rrp6\Delta \) (this study), and the 3´ ends of Pol II nascent transcripts in WT cells or cells lacking the back-tracking cleavage stimulatory factor TFIIS (\(dst1\Delta \)) (Churchman and Weissman, 2011). The total reads from both strands around the Reb1p binding sites were normalized to an arbitrary constant. The left-to-right direction was oriented with respect to the strand exhibiting the higher upregulation in \(rrp6\Delta \), and the same direction was used for the orienting the NET-seq data.
Figure 6.3

Reb1p-induced pausing of Pol II enhances termination efficiency of the Nrd1p-Nab3p-Sen1p (NNS) pathway

A. Poly(A)+ 3’ ends in rrp6Δ cells for the 3’ region of snR161. The poly(A)+ 3’ ends in WT and rrp6Δ cells for the Crick (-) strand are shown in genome browser format for the genomic region encompassing snR161 and PDX3. The scale on the y-axis designates the reads per million mapped reads.

B. Analysis of 3’ extensions and antisense transcripts for snR161. The Reb1p binding site downstream of snR161 was mutated (mut) or replaced with a Rnt1p cleavage site (Δ::RCS). These strains were then deleted for rrp6Δ. 3’-end processing of snR161 was analyzed by Northern blot with probes to the indicated regions. 18S is shown as a loading control.

C. Reb1p promotes efficient NNS-mediated termination of RPL9B. The poly(A)+ 3’ ends in WT and rrp6Δ cells and NET-seq reads for the Watson (+) strand are shown in genome browser format for the genomic region around the 3’ end of RPL9B. The scale on the y-axis designates the reads per million mapped reads.

D. Northern analysis of RPL9B 3’ ends upon rapid nuclear depletion of Rrp6p or Reb1p by anchor away (Haruki et al., 2008). For the RRP6 and REB1 genes, the FKBP12-rapamycin-binding (FRB) domain of human mTOR was inserted at the C-terminus in the anchor away parent strain (HHY168) (Haruki et al., 2008). The indicated strains were either mock treated or treated with 1 µg/mL rapamycin (RAPA) for one hour, and RPL9B transcripts were analyzed by Northern blot with a 3’ UTR riboprobe upstream of the Reb1p binding site (top panel), or downstream of the Reb1p site (bottom panel). scR1 is shown as a loading control.
Reb1p-induced pausing of Pol II controls the selection of alternative cleavage and polyadenylation sites

A. Analysis of 3´ poly(A)+ ends upon nuclear depletion of Reb1p. Poly(A)+ 3´ ends and RNA-seq profiles for WT or REB1-FRB cells treated for one hour with 1 µg/mL rapamycin. The location of the Reb1 binding sites are depicted by orange boxes. The scale on the y-axis designates the reads per million mapped reads for the + strand.

B. Meta-gene analysis for 3´ UTR regions with Reb1p binding sites. The experimentally determined Reb1p binding sites were analyzed for proximity to 3´ UTR regions. 3´ UTR regions were determined from transcript isoform sequencing data (TIF-seq), by selecting 3´ ends from the stop codon and moving downstream that accounted for 90% of the total ORF-spanning signals (Pelechano et al., 2013). The experimentally determined Reb1p binding sites in these regions were centered in a genomic window of 200 bp, and the mean positions of the poly(A)+ ends were determined for WT and cells depleted of Reb1p from the nucleus. The positions relative to the first position of the Reb1 site are indicated with vertical lines. NET-seq data for WT and dst1Δ and DNase I footprints were analyzed by meta-gene analysis as performed in Fig. 6.2D.

Meta-gene analysis of Reb1 binding locations relative to transcription start sites and poly(A) sites for ORF transcripts

A. All open reading frames (ORFs) were analyzed for the presence of Reb1p binding sites from within 100 bp upstream of the transcriptional start site to 100 bp downstream of the 3´ UTR end. Transcript termini accounting for 90% of the ORF transcript boundaries were determined from
TIF-seq data as described in Fig. 6.4B. Reb1p binding sites in the ORF regions were separated into 100 bins, whereas upstream and downstream regions are shown as base pair distance.

B. ORFs were analyzed as in (A) but screened for the presence of rrp6Δ upregulated poly(A)+ signal in a window from -30 to -20 nucleotides upstream of the Reb1p binding site.

Figure 6.6

The tRNA gene tG(GCC)E promotes optimal NNS-dependent termination of snR53 transcription

A. Analysis of 3´ poly(A)+ ends in WT and rrp6Δ cells, or upon nuclear depletion of Rrp6p or both Rrp6p and the TFIIIB factor Bdp1p. NET-seq data for WT and dst1Δ cells demonstrates the overlap between 3´ poly(A)+ ends in accumulating after inactivation of Rrp6p and the nascent 3´ ends of elongating Pol II. The scale on the y-axis designates the reads per million mapped reads for the + strand.

B. Cells were deleted for RRP6, tG(GCC)E, or both, and snR53 3´ processing was analyzed by Northern blot with probes to the indicated regions. scR1 is shown as a loading control.

Figure 6.7

Genome-wide roadblock by Pol III initiation factor TFIIIB restricts interference by cryptic Pol II transcription

A. Meta-gene analysis of 3´ poly(A)+ ends in rrp6Δ around all tRNA genes. The + strand is shown in blue, and the - strand in green.
B. Meta-gene analysis of 3’ poly(A)+ ends in rrp6Δ, nascent 3´ ends in WT and dst1Δ, and DNase I footprints in a 100 bp window upstream of all tRNA genes. The - strand is shown as negative values.

C. Analysis of 3´ poly(A)+ ends upon nuclear depletion of Rrp6p or both Rrp6p and the TFIIIB factor Bdp1p. The RNA-seq profiles for WT and the anchor away of Bdp1p are shown. The scale on the y-axis designates the reads per million mapped reads for the + strand, and the RNA-seq profile shows the height of bedgraph-aggregated reads per million mapped reads. The right panel shows a Northern blot with a probe targeting transcripts antisense to MEP3. The relative location of the probe, and the direction of transcription start sites are shown at the bottom of the left panel. scR1 is shown as a loading control.

D. The effect of TFIIIB roadblock of downstream antisense transcripts on MEP3 expression.

Cells were deleted for tG(GCC)E in duplicate and probed for the antisense MEP3 transcripts or MEP3 with probes targeting the regions shown in C. RNA expression for MEP1, the paralogue of MEP3, is shown as a control for the specificity of the antisense cryptic transcription effect on MEP3. scR1 is shown as a loading control.

E. Growth curves for WT, cells lacking MEP1, MEP3, or tG(GCC)E. The indicated strains were grown in YPD to monitor cell growth through lag phase, log phase, and the diauxic shift.

Figure 6.8

Co-transcriptional cleavage of SMF1 by Rnt1p protects cells against cadmium stress

A. Rnt1p-RNA crosslinking analysis on cells expressing either WT or binding defective G379P versions of tagged Rnt1p. The number of distinct clusters arising from uniquely mapped reads is shown. WT Rnt1p exhibited 977 clusters upregulated at least 2 fold over G379P.
B. Rnt1p cleavage of SMF1 mRNA in vivo and in vitro. A genome browser view for 3´ poly(A)+ ends in WT and rrp6Δ, nascent 3´ ends in WT and dst1Δ (NET-seq), Rnt1p in vitro cleavage or mock treatment followed by in vitro polyadenylation, and Rnt1p-crosslinked RNA reads. The scale on the y-axis designates the reads per million mapped reads for the - strand.

C. Growth analysis of WT, smf1 null, or SMF1 strains with a mutation in the Rnt1p recognition site (stem mutant) in the presence of cadmium. The stem loop region in the SMF1 ORF was mutated with synonymous codons to disrupt the secondary structure recognized by Rnt1p. As a control, a frameshift mutation was added in addition to the mutated stem loop to generate the smf1 null. Cells were grown to log-phase and spotted in serial dilution on YPD plates with the indicated concentrations of cadmium chloride.

Figure 6.9

Genome-wide co-transcriptional cleavage by Rnt1p controls expression of coding and non-coding transcripts in salt stress

A. The effect of Rnt1p anchor away on BDF2 mRNA expression during salt stress. Cells expressing FRB tagged Rnt1p were mock treated or rapamycin treated for one hour, and then treated with 0.6M NaCl for one hour. BDF2 expression was analyzed by Northern blot with a probe to the BDF2 region upstream of the Rnt1p cleavage site. scR1 is shown as a loading control.

B. RNA-seq expression analysis on salt-stressed cells in the presence or absence of Rnt1p-anchor away. Cells were treated as in (A), and then extracted RNAs were analyzed by high-throughput RNA sequencing.

C. Rnt1p cleavage of the long non-coding RNA SUT098 in vivo and in vitro. A genome browser view for 3´ poly(A)+ ends in WT and rrp6Δ, nascent 3´ ends in WT and dst1Δ (NET-seq), Rnt1p
in vitro cleavage or mock treatment followed by in vitro polyadenylation, and Rnt1p-crosslinked RNA reads. The scale on the y-axis designates the reads per million mapped reads for the + strand.

D. Rnt1p cleavage mediates repression of SUT098 and activation of downstream CHD1 in salt stress. (Left panel) Cells expressing FRB tagged Rnt1p were mock treated or rapamycin treated for one hour, and then treated with 0.6M NaCl for the indicated time points. SUT098 expression was analyzed by Northern blot. (Right panels) WT cells or a strain carrying a deletion of the Rnt1p recognition stem loop were treated for one hour with 0.6M NaCl. T1 represents the 3’ end generated by Rnt1p cleavage, while T2 represents the downstream 3’ end generated by a different pathway.
Figure 6.2

A motifs downstream of rrp6Δ poly(A) sites

<table>
<thead>
<tr>
<th>motif</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTACCCG</td>
<td>1.3 x 10^{-16}</td>
</tr>
<tr>
<td>(T/C)TCTT(G/C)</td>
<td>4.6 x 10^{-13}</td>
</tr>
<tr>
<td>ATA(T/C)T</td>
<td>2.6 x 10^{-10}</td>
</tr>
<tr>
<td>GNTGGT</td>
<td>1.9 x 10^{-7}</td>
</tr>
</tbody>
</table>

B number of distinct Reb1 roadblocks in rrp6Δ

C TTACCGG consensus Reb1 motif

D experimentally determined Reb1 binding sites
Figure 6.4

A

![Gene expression profiles for different conditions across different chromosomes.

B

![Bar graph showing mean poly(A) distance to Reb1p site for different conditions.]}
Figure 6.5

A

Reb1 sites across ORF-T regions

B

Reb1 sites exhibiting Rrp6p-sensitive poly(A) sites upstream
Figure 6.6

A

<table>
<thead>
<tr>
<th>chrV bp:</th>
<th>61,800</th>
<th>61,900</th>
<th>62,000</th>
<th>62,100</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>+ strand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrp6Δ</td>
<td>poly(A)-seq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>NET-seq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRP6-FRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRP6-FRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDP1-FRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dstlΔ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

snR53 tG(GCC)E

B

WT rrp6Δ tG(GCC)Δ tG(GCC)Δ/rrp6Δ

snR53

3' ext. snR53

scR1

scR1
Figure 6.7

A

- *rpp6Δ* poly(A) sites
- + strand
- - strand

B

- WT NET-Seq
- dstf1Δ NET-Seq
- rpp6Δ poly(A) sites
- DNase I footprints

C

- + strand chrXVI
- bp:
- 811,000
- 812,000
- 813,000

- WT
- RRP6-FRB
- RRP6-FRB
- BDP1-FRB
- BDP1-FRB

D

- WT
- IN(GUUP) #1
- IN(GUUP) #2

- asMEP3
- scR1
- MEP3
- MEP1
- scR1

E

- WT
- *mep1Δ*
- *mep3Δ*
- th(GUUP)Δ

Graph E

- O.D.
- time (hours)

Chain of Thought: The figure presents various biological data and analysis. Figure A shows the distribution of poly(A) sites in two strands (+ and -). Figure B compares different NET-Seq profiles, including WT, dstf1Δ, and rpp6Δ. Figure C illustrates the genomic context with identified sites and bands. Figure D provides a representation of gene expression through Western blots. Figure E tracks the optical density over time for different genotypes.
Figure 6.8

A

distinct crosslinked RNA clusters

WT Rnt1p

977

7411

13575

Rnt1p G379P

B

- strand
chrXV
bp:

91,000
91,100
91,200
91,300
91,400

poly(A)-seq

NET-seq

poly(A)-seq

mock cleavage
Rnt1p cleavage
Rnt1p CRAC

SMF1

C

WT

smf1 null

SMF1 stem mutant

0 uM CdCl2

5 uM CdCl2

WT

smf1 null

SMF1 stem mutant

10 uM CdCl2

20 uM CdCl2
Figure 6.9

A

<table>
<thead>
<tr>
<th>Rnt1p-FRB</th>
<th>Rapamycin:</th>
<th>0.6M NaCl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

B

mock + 0.6M NaCl

log expression

log expression

Rnt1p anchor away + 0.6M NaCl

C

- strand chrV bp: 504,800 504,900 505,000

WT 40

rrp6Δ 40

WT 327

dst7Δ 144

mock cleavage 27

Rnt1p cleavage 27

Rnt1p CRAC 865

SUT098

CHD1

D

min in .6M NaCl: 0 0 0 45 90 0 45 90

Rnt1p-FRB

mock + RAPA

SUT098

18S

SUT098 RCS:

WT 60

SLΔ 60

SUT098 RAS:

WT 60

SLΔ 60

SUT098-ChD1 - readthrough

CHD1

scR1
References

van Dijk, E.L., Chen, C.L., d'Aubenton-Carafa, Y., Gourvennec, S., Kwapisz, M., Roche, V., Bertrand, C., Silvain, M., Legoix-Né, P., Loeillet, S., et al. (2011). XUTs are a class of Xrn1-

