Lawrence Berkeley National Laboratory
Recent Work

Title
LOCALIZED MOMENTS ON RHODIUM IN Pd-Rh ALLOYS

Permalink
https://escholarship.org/uc/item/97g841c1

Authors
Rao, G.N.
Matthias, E.
Shirley, D.A.

Publication Date
1969-03-01
LOCALIZED MOMENTS ON RHODIUM IN Pd-Rh ALLOYS

G. N. Rao, E. Matthias, and D. A. Shirley

March 1969
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
LOCALIZED MOMENTS ON RHODIUM IN Pd-Rh ALLOYS

G. N. Rao, E. Matthias, and D. A. Shirley

Department of Chemistry and
Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

March 1969

ABSTRACT

The Knight shifts of 100Rh in very dilute Pd-Rh alloys were measured over a temperature range between 4.2°K and 1053°K by γ-γ perturbed angular correlation techniques. The Knight shifts were negative, very large (up to -15%) and strongly temperature-dependent. The Curie-Weiss behavior of the Knight shift and the difference in its temperature dependence between a dilute Pd-Rh alloy and pure palladium establishes the existence of a local moment on the rhodium atom. From existing susceptibility data the impurity susceptibility, χ_i, was calculated. Its temperature-dependence is conspicuously different from that of the Knight shift. The partial derivative $\frac{\partial \chi_i(T)}{\partial T}$ was used to obtain the apparent core-d hyperfine field, $H_{hf}^{(d)}$. The result is

$$H_{hf}^{(d)} \approx -700 \text{ KG for } T > 400°K$$

and

$$H_{hf}^{(d)} \approx -43 \pm 1 \text{ KG for } T < 400°K .$$

The drastic change in the field at about 400°K indicates that above this temperature the localized moment is concentrated on the Rh atom, while
at lower temperatures the polarization of the lattice by the impurity atom seems to be rather long-ranged, suggesting the formation of a quasi-bound state. Knight shifts for 100Rh in Ag and Pt hosts are also reported.
I. INTRODUCTION

The formation of localized moments on impurity atoms in various metal alloys is well-known for solute atoms of the 3d transition group.1 Much less experimental evidence is presently available about localized states on 4d atoms in dilute alloy systems. We have studied this question in the Pd–Rh alloy system.

The macroscopic properties of this system—susceptibility, resistivity, and specific heat—have been studied previously. The anomalous variation of the susceptibility of Pd–Rh alloys with temperature as well as with rhodium concentration has been of particular interest.2,3,4,5,6 The susceptibility maximum in palladium around 85°K led Lidiard3 to assume that an antiferromagnetic state occurs below 85°K, but other experiments do not support this contention. The anomalous peak in susceptibility around 85°K can also be obtained by assuming a special distribution for the density of states near the Fermi level.7 No evidence for the existence of a second-order transition was obtained from specific heat measurements.8 Neutron diffraction experiments9 have established that at low temperatures the spontaneous moment per Pd atom must be less than 0.03 B.M. NMR experiments showed that the magnetic moment should be several orders of magnitude smaller than the upper limit given from the neutron diffraction experiments.10 Additional experimental studies on resistivity and thermoelectric power11 as a function of temperature with small impurities of rhodium would be helpful in interpreting the susceptibility data for Pd–Rh alloys.
The present Knight-shift studies were undertaken to see whether or not a localized moment is formed on the rhodium atom in a palladium matrix. Usually, a localized moment is detected through magnetic moment measurements as well as through the temperature dependence of incremental changes in susceptibility, resistivity, specific heat and thermoelectric power resulting from the addition of small concentrations of the impurity to the host metal. In the work reported here we tried to establish the existence of a local moment by studying the temperature-dependence of the Knight shift of the impurity nucleus. We used the method of perturbed \(\gamma \) angular correlations, since the decay of \(^{100}\)Rh is a favorable case\(^{12}\) for this type of measurement. Besides the advantage of an extremely high sensitivity, this method is sufficiently accurate to measure the change of the Knight shift of \(^{100}\)Rh in very dilute Pd-Rh alloys.

The angular correlation method is described in Section II. Data analysis is treated in Section III. Results are given in Section IV. In Section V the Knight shift data are compared with the impurity susceptibility and conclusions are drawn about the localized state.
II. EXPERIMENTAL METHOD

Let us consider a γ-γ cascade where the nucleus in an excited state A decays to the intermediate state B by the emission of γ_1 and then to the final state C by the emission of γ_2. If the nuclei are initially oriented at random, i.e. if all the magnetic substates have equal population, the gamma radiation emitted from the nuclei will have an isotropic intensity distribution. In a γ-γ coincidence experiment a system of oriented nuclei is prepared by choosing those nuclei in the intermediate state that have emitted gamma radiation in a fixed direction k_1. Due to the multipole character of the γ-radiation, γ_2 quanta emitted in the direction k_2 will have a non-isotropic intensity distribution with respect to k_1. If there are no extranuclear perturbations acting on the intermediate state B this intensity distribution can be expressed in terms of the Legendre polynomials 13

$$W(\theta) = \sum_{\lambda \text{ even}} A_{\lambda}(1) A_{\lambda}(2) P_{\lambda} (\cos \theta) , \quad (1)$$

where $\theta = \langle k_1, k_2 \rangle$. The coefficients $A_{\lambda}(1)$ and $A_{\lambda}(2)$ depend on the spins and multipolarities of the transitions γ_1 and γ_2 and are tabulated in Ref. 14.

A magnetic field H' at the nucleus interacts with the static magnetic dipole moment μ of the intermediate state B during the time interval between the formation of this state ($t = 0$) and the emission of γ_2 at time t. The interaction Hamiltonian has the form

$$\mathcal{H} = - \mu \cdot H' . \quad (2)$$
If the magnetic field H' is perpendicular to the plane containing k_1 and k_2, the angular correlation pattern $W(k_1, k_2)$ simply rotates around the H'-axis with the Larmor precession frequency

$$\omega_L = -gH' \frac{\mu_N}{h}.$$

In this case the perturbed angular correlation (PAC) can again be expressed in terms of Legendre polynomials

$$W_1(\theta, t) = \sum_{\lambda} A_\lambda(1) A_\lambda(2) P_\lambda(\theta - \omega_L t).$$

Time t and angle θ are now equivalent and by keeping the detectors at a fixed angle θ_0, one can observe periodic intensity modulations in the time spectrum of the coincidences (a typical example is shown in Fig. 1). From the periodicity of those modulations the product $g\cdot H'$ can be extracted.

The PAC technique provides an excellent tool to sense microscopically the magnetism associated with an impurity atom in a metallic host lattice. The rotation of the angular correlation pattern yields the effective magnetic field

$$H' = H_0 (1 \pm K_\|)$$

where H_0 is the applied field and $K_\|$ the impurity Knight shift

$$K_\| = \frac{\Delta H}{H_0} = \frac{8\pi}{3} \langle |\psi(0)|^2 \rangle \sum_i \chi_i.$$

The PAC technique provides an excellent tool to sense microscopically the magnetism associated with an impurity atom in a metallic host lattice. The rotation of the angular correlation pattern yields the effective magnetic field

$$H' = H_0 (1 \pm K_\|)$$

where H_0 is the applied field and $K_\|$ the impurity Knight shift

$$K_\| = \frac{\Delta H}{H_0} = \frac{8\pi}{3} \langle |\psi(0)|^2 \rangle \sum_i \chi_i.$$
This method is many orders of magnitude more sensitive than conventional NMR. Unlike the Mössbauer effect, the PAC technique can be used at any temperature and is therefore well-suited for studying the temperature dependence of Knight shifts.

To study very dilute Pd-Rh alloys we used the angular correlation of the 84-75 keV cascade in 100Rh, populated in the decay of 4-day 100Pd15 (Fig. 2). The anisotropy of this correlation is about $+30\%$.12 The intermediate state of this cascade has a half-life of $T_{1/2} = 235$ nsec and a g-factor of $g = +2.151$.

100Pd was produced by (p,4n) reaction on a target of pure rhodium metal (100% 103Rh) foil, with an incident proton energy of 45 MeV, at the Berkeley 88-inch cyclotron. Chemically separated16 carrier-free 100Pd activity was electroplated on pure (99.5% to 99.997%) palladium foil and melted in an induction furnace in vacuum after flushing several times with argon. The molten alloys were kept in the liquid state for at least 10 minutes, so that the radioactive palladium dissolved uniformly into the host metal, and thereafter they were gradually cooled down to room temperature over about 12 hrs. The resulting shiny alloys were rolled and annealed in the induction furnace from 12 to 20 hrs at 950°C and cooled gradually. The source dimensions were approximately 0.25 mm2 with a thickness of about 20,000 Å.

Two thin-window Ge(Li)-diodes specially made for fast-timing work were used for detecting the 84- and 75-keV gamma rays. Fast and slow pulses from the germanium detectors were fed into the time- and energy-selecting channels, respectively (Fig. 3). Each fast-timing circuit consisted of
three 1 nsec amplifiers followed by a 100-MC interface discriminator. Outputs from the interface discriminators served as the start and stop pulses for an 'Eldorado' time-interval counter, model 793, which measures the delay between the two gamma rays to 1 nsec accuracy. This digitized time information was dumped through an interface onto IBM-compatible magnetic tape via a Kennedy 1500/5 incremental tape unit. The start and stop pulses were energy-gated in the conventional way. In parallel to the digital counter computer, data were also taken with an analog time-to-height converter (adjusted for a range of 1.6 µsec) and a multichannel analyzer in the coincidence mode (see Fig. 3). The multichannel analyzer was calibrated with the help of an 'Eldorado' digital delay pulse generator, model 610, which puts out pulses with an adjustable delay of 1 to 999,999 nsec between start and stop pulses.
III. DATA ANALYSIS

In the case of the 84-75 keV cascade of 100Rh with spin sequence $1^+ \rightarrow 2^+ \rightarrow 1^-$, the summation index λ is limited to $\lambda = 0,2$ and the time dependence of $W(\theta, t)$ appears as a sinusoidal modulation. The total time spectrum of the coincidences (see Fig. 1) can be described by a six-parameter equation that takes into account exponential decay, background and phase of the rotation:

$$I(t) = a + b e^{-t/\tau} [1 + c \sin (2\omega t + \phi)].$$

(7)

The amplitude of the modulation is related to the conventional angular correlation coefficients in Eq. (4):

$$c = \frac{3}{4} \frac{A_2(1) A_2(2)}{1 + \frac{3}{4} A_2(1) A_2(2)}.$$

(8)

Both Fourier analysis and autocorrelation techniques were used to extract the frequency of the Larmor precession from the data. The sine, cosine, and absolute Fourier transforms were calculated from the equations

$$A(\omega) = \int_0^{T_{\text{max}}} I(t) \sin \omega t \, dt$$

$$B(\omega) = \int_0^{T_{\text{max}}} I(t) \cos \omega t \, dt$$

$$F(\omega) = [A^2(\omega) + B^2(\omega)]^{1/2}.$$

(9)
It should be noted that only the absolute transform \(F(\omega) \) can be used for frequency determination. To evaluate \(\omega_L \) from the data the typical procedure is: The number of coincidences in 1 to 1000 nsec are picked up from the magnetic tape and the data are fitted with Eq. (7). The best values for background, exponential and phase are then used for calculating the Fourier transforms (Eq. (9)). A typical plot of the sine, cosine and absolute transforms for \(\text{Ag-Rh} \) at room temperature are shown in Fig. 4. Multi-channel data can be analyzed in the same way, and the upper parts of Figs. 5 and 6 represent examples.

By using the autocorrelation function it is possible to improve the signal-to-noise ratio by more than an order of magnitude compared to the simple Fourier transform.\(^{17}\) In this technique the Fourier integral

\[
G(\omega) = \int_0^{T_{\text{max}}} \frac{C(t)}{C(0)} \cos(\omega T) \, dT
\]

contains the autocorrelation function

\[
\frac{C(T)}{C(0)} = \frac{\text{ave}[W(t) - \bar{W}] [W(t + T) - \bar{W}]}{\text{ave}[W(t) - \bar{W}] [W(t) - \bar{W}]} \quad (11)
\]

where \(T \) is the time lag at which the data are correlated. Typical autocorrelation spectra are shown in the lower parts of Figs. 5 and 6.
IV. RESULTS

The results of our Knight shift measurements of 100Rh in palladium, silver and platinum hosts are given in Tables I and II. For the evaluation of the Knight shifts the g-factor of the 75 keV state in 100Rh was taken as $+2.151$. This value contains a correction for the Knight shift, $K = +0.43\%$, of rhodium nuclei in rhodium metal as reported by Seitchick, et al. 4

The quoted error represents mainly the standard deviation of the frequency obtained from fitting Eq. (7) to the data. The magnetic field was measured by proton resonance. To control drifts the proton resonance was checked before, during, and after a measurement. In all cases the error in the magnetic field was found to be negligible compared to the statistical uncertainty in the frequency. For the digital THC the time calibration is intrinsically determined by the counting frequency of the time-interval counter and is accurate to better than 1 nsec over the total range of the counter. When multichannel data were used for the Fourier analysis, the analog THC was calibrated by a digital delay pulse generator (Eldorado 610) which provided the same accuracy as obtained with the digital THC. This uncertainty in the time calibration was small compared to the standard deviation of the frequency fit. Table III shows the reproducibility and typical errors of three runs made with 100Rh in silver at 300\°K.

For all results presented here, impurity-impurity interactions can safely be neglected. All sources were made by electroplating the carrier-free palladium activity on the host metal. After most of the 4-day palladium activity had decayed to rhodium a spectroscopic analysis of the metallic sources was done in a DC arc: no detectable traces of rhodium lines
were observed in the emission spectra. Activation analysis showed that the rhodium concentration is less than 1 part in 10^7 of the host metal. Most of these measurements were repeated with different palladium host purities (99.5%, 99.95%, and 99.997%), but no detectable changes in the results were observed. This is quite expected, because the effective magnetic field, H_{eff}, seen by the rhodium nucleus is a microscopic property specific to the rhodium atom. By contrast a macroscopic property such as the total mass susceptibility would be extremely sensitive to impurities, especially to paramagnetic impurities at low temperatures.

After-effects due to electron-capture decay of the 100Pd activity are not expected to affect the results since the measurements were performed with metallic sources. In a metal, a hole in the K-shell formed after the electron capture should move out to the conduction band and diffuse away in less than 10^{-12} sec, or fast compared to the decay of the 159-keV state from which the 84-keV γ-ray emanates, let alone that of the 235-nsec state.

The angular correlation could, in principle, be perturbed by quadrupole interactions. In all measurements presented here, this is unlikely since the host metals used have cubic structure and form solid solutions with the radioactive palladium. The decaying nucleus sees the cubic symmetry of the host metal, and impurity-impurity interactions must be small because of their great dilution. This is verified by the present (see Fig. 1) and previous experiments where no attenuation of the anisotropy was observed within the experimentally measured time range of about 1.2 μsec. The autocorrelation in Figs. 5 and 6 yields a line width very close to the natural width $(2\Delta \nu = \frac{1}{\tau} = 0.94 \text{ MHz})$. This evidence also permits the conclusion that any nuclear relaxation time is much larger than 1 μsec.
V. DISCUSSION

The Knight shift defined in Eq. (6) is the ratio of the additional magnetic field experienced by the nucleus in a metallic medium compared to the diamagnetic base for a pure metal. It depends on the Fermi electron density at the nucleus, \(\langle |\psi(0)|^2 \rangle_{E_F} \) and the total electronic susceptibility \(\chi \). We shall not be concerned here with the absolute magnitude of the impurity Knight shift, which in itself is a highly interesting problem. The goal of the present work was to use the temperature-dependence of the Knight shift to identify the localized moment formed by a rhodium atom in a palladium matrix.

In the rigid-band model, one assumes that the s and d bands are distinguishable at the Fermi energy \(E_F \). The density of states at \(E_F \) is then just the sum of the s and the d band contributions.

\[
N(E_F) = N(E_F)^s + N(E_F)^d
\]

(12)

Assuming that the spin-orbit contribution to the susceptibility is small, the total electronic susceptibility in a pure metal may be written as

\[
\chi(T) = \chi_p^s + \chi_p^d(T) + \chi_{VV} + \chi_{dia}
\]

(13)

where \(\chi_p^s \) and \(\chi_p^d \) are the Pauli spin susceptibilities due to the s- and d-spin electrons, \(\chi_{VV} \) is the analog of the temperature-independent Van Vleck susceptibility, and \(\chi_{dia} \) is the diamagnetic susceptibility of the core.
If spin-orbit interactions may be neglected, the total hyperfine field H_{hf} experienced by the nucleus in a pure metal, arises from the contact interaction of the conduction-band s-electrons, core-polarization by the d-electrons, and the orbital hyperfine field contribution. In close analogy to the susceptibility the Knight shift as a function of temperature can be expressed as:

$$K(T) = K_s + K_d(T) + K_{VV} + \delta K_{dia}$$

or

$$K(T) = \alpha_s \chi_s^d(T) + \alpha_d \chi_d^d(T) + K_{VV} + \delta K_{dia}$$

with coefficients

$$\alpha_s = 0.895 \times 10^{-4} \frac{H_s}{H_{hf}}$$

$$\alpha_d = \frac{3K(T)}{3\chi_d^d(T)} = 0.895 \times 10^{-4} \frac{H_d}{H_{hf}}$$

Here, H_s and H_d are the hyperfine fields per spin arising from the s band and the d band electrons, respectively. Contributions to the Knight shift from the Van Vleck type susceptibility, the diamagnetic susceptibility of the core and the Landau diamagnetic susceptibility are temperature independent. Only the d-band contributes significantly to the temperature-dependent part of the Knight shift because the temperature variation in the density of states at the Fermi energy is smaller in the more or less flat s-band compared to...
the peaked, narrow d-band. There will also be some contribution to the
temperature-dependent part of the susceptibility from the s-d exchange inter-
action. This contribution is usually neglected in first approximation. If
the temperature variations of K and χ are large and if K varies linearly
with χ then the partial derivative (Eq. (16)) can be used to obtain the
average core-polarization hyperfine field per d-spin, $H_{\text{hf}}^{(d)}$.

The temperature dependence of the Knight shift expressed by Eq. (15)
for a pure metal may be adapted to very dilute alloys of transition metals
also. The Pauli spin susceptibility from the conduction band d-electrons
is again the main source of the temperature-dependent part of the susceptibility.
The susceptibility of the impurity is a function of the density of states at
the Fermi energy (E_F). When a solute is introduced into a host metal, the
density of states at the Fermi energy of the solute will be changed because
of the conduction-electron scattering at the solute. The Knight shift on
the solute nucleus in the host matrix is dependent on unpaired-spin density
at the solute nucleus. The temperature-dependent part of this spin density
arises through core polarization by the d-band conduction electrons as in
the pure metal. In the dilute-alloy case, however, there is an important
qualification: $K_d(T)$ reflects the local d-spin density at the impurity
atom. In Fig. 7 the Knight shift K_1, when plotted against $(T + C)^{-1}$,
shows a typical Curie-Weiss behavior with $C = 321 \pm 24^\circ\text{K}$. This suggests that
a large contribution to the Knight shift arises (indirectly) from the d-electrons
which behave like an effective local moment with spin $\langle S_z \rangle$.

To obtain the core-d hyperfine field, $H_{\text{hf}}^{(d)}$, the impurity susceptibility
was calculated from susceptibility data of Manuel and St. Quinton and
The susceptibility of an alloy may be written as

\[\chi_{\text{alloy}} = C_i \bar{\chi_i} + C_h \bar{\chi_h} \]

(17)

and the "limiting impurity susceptibility", \(\chi_i \), is given by

\[\chi_i = \lim_{C_i \to 0} \left(\frac{\chi_{\text{alloy}} - C_h \chi_h}{C_i} \right) \]

(18)

where \(C_i \) and \(C_h \) are the number of impurity and host atoms per gram and \(\chi_i = \frac{\partial \chi_{\text{alloy}}}{\partial C_i} \) and \(\chi_h = \frac{\partial \chi_{\text{alloy}}}{\partial C_h} \) are the impurity and the host partial susceptibilities per atom, respectively. In Fig. 8 the inverse of the calculated impurity susceptibility is plotted versus temperature. For large concentrations (curve a) the influence of impurity-impurity interactions is apparent. With decreasing concentration the curves approach a "limiting" impurity susceptibility for zero concentration (curve g). Taking into consideration the uncertainty of the original data, curve g is compatible with a Curie-Weiss behavior with a large constant \(C \) (see Fig. 7).

In order to compare our experimental results on Knight shifts for rhodium nuclei in different host metals with theory, one would like to know the susceptibilities of the rhodium atoms alone in the host metal: these cannot be obtained with existing experimental techniques. The limiting impurity susceptibility \(\chi_i \) obtained from Eq. (18) is the susceptibility contributed by the impurity to the matrix. Here in extrapolating to \(C_i = 0 \), the impurity-impurity interactions are eliminated and the impurity atoms are assumed to contribute linearly to the bulk susceptibility \(\chi_{\text{alloy}} \) calculated
from the experimental bulk susceptibility data which contain the polarization of the Pd lattice by the rhodium atom. The Knight shifts provide, by contrast, a microscopic measurement of the electron polarization experienced by the rhodium nuclei alone.

The variations of the impurity susceptibility χ_i and the impurity Knight shift K_i with temperature are shown in Fig. 9. For comparison, the susceptibility and the Knight shift for pure palladium according to Ref. 10 are shown in the insert. Two facts should be noticed: (a) there is a striking difference, between host and impurity, of the low temperature behavior of the Knight shift and the susceptibility; and (b) the proportionality between K and χ, observed in the host, does not hold for the impurity. The Knight shift for pure rhodium metal was found to vary almost linearly with temperature, decreasing by about 0.008% for an increase in temperature by about 100°K. The Knight shifts on palladium nuclei in palladium metal follow the familiar susceptibility curve, with a broad maximum around 85°K. The decrease in the Knight shift immediately above 85°K is roughly 0.7% for an increase of 100°K. The impurity Knight shift (K_i) for rhodium in palladium plotted in Fig. 9 has a much stronger temperature dependence. The impurity Knight shift of rhodium in palladium does not follow the host lattice. We interpret this fact together with the Curie-Weiss behavior of the Knight shift as arising from the formation of localized moments on the impurity rhodium atom in the host matrix of palladium. It was suggested by Jaccarino, Walker and Wertheim that localized magnetic moments of impurities in ferromagnetic transition series hosts may sometimes be recognized by a departure of the temperature dependence of H_{nf} for the impurity from that
of the host. Experimental NMR data for Mn in Fe22 and PAC data for 99Ru in Ni23 support this result. The present work is an example of the analogous situation in a non-ferromagnetic host. There are several such examples, although all, to our knowledge, involve "magnetic" solutes.

The experimental values of the impurity Knight shifts \(- K_i \%\) plotted against the limiting impurity susceptibility \(\chi_i\), with temperature as the implicit parameter, are given in Fig. 10. The data show a striking break about the \(\chi_i\)-value corresponding to a temperature of about 400\(^\circ\)K. The break indicates the occurrence of two very different core-d hyperfine fields below and above this temperature. A fit of all points with \(- K_i > 5\%\) corresponding to temperatures \(T \leq 400\,^\circ\)C yields a value of \(H_{hf}^{(d)} = -43\pm1\) kG. There are not enough high temperature data available to permit a reliable fit to a straight line. The dashed line corresponds to a core-d hyperfine field of \(H_{hf}^{(d)} = -700\) kG; it approximates the high-temperature slope fairly well.

A summary of core-d hyperfine fields for rhodium and palladium is given in Table IV. Seitchik et al.4 measured the temperature dependence of the Knight shift for pure rhodium metal using conventional NMR. From \(\frac{\partial K(T)}{\partial X(T)}\) they obtain the average core polarization hyperfine field \(H_{hf}^{(d)} = -323\) kG/spin for rhodium nuclei in pure rhodium metal. Similar studies10 by the same group gave the average core polarization hyperfine field \(H_{hf}^{(d)} = -689 \pm 20\) kG/spin for palladium nuclei in palladium metal. Using the exchange-polarized Hartree-Fock (EPHF) method, Freeman24 calculated the core polarization hyperfine fields in 4d ions. His values for Pd2+(4d)8 and Pd3+(4d)7 are \(-749\) kG/spin and \(-726\) kG/spin, respectively. Freeman's calculations also show that in 4d ions there is no conspicuous variation in the average core polarization hyperfine fields with atomic number. The core polarization hyperfine
field experimentally obtained for palladium nuclei in palladium metal10 is in good agreement with the theoretical calculations of Freeman. The large variation in the core polarization hyperfine fields from rhodium to palladium obtained by the Bell Laboratories group is rather unexpected. However, there are no exhaustive experimental studies of the average core polarization hyperfine fields in 4d transition metals as a function of the atomic number. 3-d shell paramagnetic ions in non-metallic crystals do not show abrupt variations in the measured core polarization hyperfine fields as a function of atomic number.

From Fig. 10 we must conclude that the localized moment at the rhodium atom changes its character at about 400\textdegree{}K. Above this temperature, a core polarization hyperfine field of about -700 kG/spin is present, in agreement with theoretical predictions24 and other results.10 Below this temperature, the value of $H_{hf}^{(d)}$ drops sharply and we find that only a small fraction of the total electron polarization arising from the rhodium solute atom is concentrated on that atom. If we compare the result of $H_{hf}^{(d)} = -43$ kG with the result of Seitchick \textit{et al.}4 for rhodium metal, we find that less than 13\% of the polarization is concentrated on the rhodium nucleus and the remaining 87\% of the polarization is elsewhere in the matrix. This conclusion is only strengthened if it is referred to a core polarization hyperfine field of about -700 kG/spin24 in the 4d ions. In either case we conclude that the polarization of the matrix from the impurity rhodium atom below 400\textdegree{}K is comparatively long-range, extending over at least several neighbors.
It is difficult to assess the accuracy of \(\chi_1 \); for this reason and because of the lack of other data on the Rh-Pd system we are reluctant to make an extensive interpretation of these results. It seems clear, however, that localized moments are formed on Rh atoms in Pd. At low temperatures a quasi-bound (Kondo) state seems to be formed between the local moment and conduction electrons. Klein has shown,\(^{25}\) using the theory of Takano and Ogawa,\(^{26}\) that s-d interaction in a Kondo state below the transition temperature \(T_K \) should give a positive contribution to the Knight shift at an impurity. Both this effect and an increase below \(T_K \) of the total spin polarization of the lattice induced by the local moment would lead to the behavior illustrated in Fig. 10. While this is an attractive interpretation, further supporting evidence will be required before it can be regarded as firm.

ACKNOWLEDGMENTS

One of us (GNR) is grateful to Professor John O. Rasmussen for his kind interest and encouragement. We are thankful to Dr. Albert Narath and Professor S. Foner for sending their susceptibility data prior to publication. Professor Alan P. Klein is acknowledged for communicating his calculations prior to publication. We also express our sincere thanks to Mrs. Wini Heppler for numerous skillful and dependable radioactive chemical separations.
FOOTNOTES AND REFERENCES

A preliminary report of this was reported at the Solid State Physics section of the American Physical Society Meeting at Berkeley. (Bull. Am. Phys. Soc. Series II 13, (1968)). This work was done under the auspices of the U.S. Atomic Energy Commission.

1. For a recent comprehensive review on "Localized Magnetic Impurity States in Metals" see M. D. Daybell and W. A. Steyert, Rev. Mod. Phys. 40, 380 (1968).

 D. Budworth, F. E. Hoare, and J. Preston, ibid. A257, 250 (1960);

Table I. Knight shift data for dilute Rh-Pd alloys obtained at various temperatures. The values given represent weighted averages over several individual runs.

<table>
<thead>
<tr>
<th>T(°K)</th>
<th>g(l+K)</th>
<th>-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>1.835 (7)</td>
<td>0.147 (3)</td>
</tr>
<tr>
<td>77</td>
<td>1.914 (7)</td>
<td>0.120 (4)</td>
</tr>
<tr>
<td>195</td>
<td>2.006 (6)</td>
<td>0.067 (3)</td>
</tr>
<tr>
<td>295</td>
<td>2.014 (2)</td>
<td>0.064 (2)</td>
</tr>
<tr>
<td>373</td>
<td>2.033 (4)</td>
<td>0.055 (3)</td>
</tr>
<tr>
<td>503</td>
<td>2.070 (4)</td>
<td>0.038 (3)</td>
</tr>
<tr>
<td>803</td>
<td>2.132 (5)</td>
<td>0.009 (3)</td>
</tr>
<tr>
<td>1053</td>
<td>2.121 (7)</td>
<td>0.014 (4)</td>
</tr>
</tbody>
</table>
Table II. Knight shift measurements in 100Rh in silver and platinum host metals.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Temp (°K)</th>
<th>g-factor g(1+K)</th>
<th>Knight shift (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag-Rh</td>
<td>300</td>
<td>2.171 (2)</td>
<td>+0.009 (2)</td>
</tr>
<tr>
<td>Ag-Rh</td>
<td>77</td>
<td>2.177 (3)</td>
<td>+0.012 (3)</td>
</tr>
<tr>
<td>Ag-Rh</td>
<td>4.2</td>
<td>2.165 (3)</td>
<td>+0.007 (3)</td>
</tr>
<tr>
<td>Pt-Rh</td>
<td>300</td>
<td>2.070 (2)</td>
<td>-0.038 (2)</td>
</tr>
</tbody>
</table>
Table III. Typical errors involved in three runs for 100Rh in silver at room temperature.

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Magn. Field Gauss</th>
<th>Frequency MHz</th>
<th>$g(1+K)$</th>
<th>Knight shift K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6122 (3)</td>
<td>20.27 (3)</td>
<td>2.172 (3)</td>
<td>+0.010 (2)</td>
</tr>
<tr>
<td>2</td>
<td>6250 (3)</td>
<td>20.67 (5)</td>
<td>2.169 (5)</td>
<td>+0.008 (3)</td>
</tr>
<tr>
<td>3</td>
<td>6250 (3)</td>
<td>20.70 (5)</td>
<td>2.172 (5)</td>
<td>+0.010 (3)</td>
</tr>
<tr>
<td>Weighted average</td>
<td>2.171 (2)</td>
<td></td>
<td></td>
<td>+0.009 (1)</td>
</tr>
</tbody>
</table>
Table IV. Comparison of the core polarization hyperfine fields.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Details</th>
<th>Core-polarization hyperfine field per d-spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. J. Freeman24</td>
<td>Exchange-polarized</td>
<td>Pd$^{2+}$(4d)(^8)</td>
<td>$H_{hf}^{(d)} = -726$ KG/spin</td>
</tr>
<tr>
<td></td>
<td>Hartree-Fock</td>
<td>Pd$^{3+}$(4d)(^7)</td>
<td>$H_{hf}^{(d)} = -749$ KG/spin</td>
</tr>
<tr>
<td></td>
<td>Calculations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(EPHF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. A. Seitchik,</td>
<td>Temperature</td>
<td>rhodium in</td>
<td>$H_{hf}^{(d)} = -323$ KG/spin</td>
</tr>
<tr>
<td>V. Jaccarino and</td>
<td>dependence of</td>
<td>rhodium</td>
<td></td>
</tr>
<tr>
<td>J. H. Wernick14</td>
<td>the Knight shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>using NMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. A. Seitchik</td>
<td>Temperature</td>
<td>palladium in</td>
<td>$H_{hf}^{(d)} = -689$ (20) KG/spin</td>
</tr>
<tr>
<td>A. C. Gossard and V. Jaccarino10</td>
<td>dependence of</td>
<td>palladium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Knight shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>using NMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>Temperature</td>
<td>dilute</td>
<td>for $T < 400^\circ$K:</td>
</tr>
<tr>
<td>measurements</td>
<td>dependence of</td>
<td>rhodium in</td>
<td>$H_{cp} = -43$ KG/spin</td>
</tr>
<tr>
<td></td>
<td>the Knight shift</td>
<td>palladium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>using DA/PAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for $T > 400^\circ$K:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$H_{cp} \approx -700$ KG/spin</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1. Multichannel time spectrum of 100Rh in silver at room temperature in an external magnetic field of 6250 G. The data have not been corrected for background.

Fig. 2. Decay scheme of 100Pd.

Fig. 3. Block diagram of the electronics.

Fig. 4. Sine, cosine and absolute transforms of the time spectrum for 100Rh in silver at room temperature in a magnetic field of 6122 G. The data were recorded with the digital THC.

Fig. 5. Fourier transforms (upper part) and autocorrelation function (lower part) of the time spectrum for 100Rh in silver at 4.2°K in a magnetic field of 5603 G. Data taken with a multichannel analyzer were used for the analysis.

Fig. 6. Fourier transforms (upper part) and autocorrelation function (lower part) of the time spectrum for 100Rh in palladium at room temperature in a magnetic field of 5555 G. Multichannel data were used for the analysis.

Fig. 7. Curie-Weiss behavior of the impurity Knight shift, K_i. The line represents the least squares fit which gives $C = 321 \pm 24°K$.

Fig. 8. Inverse of the impurity susceptibility $1/\chi_i$ plotted as a function of temperature for different concentrations of rhodium. The impurity susceptibility values were calculated from the experimental data of Manuel and Quinton.\(^5\) Curve (g) was obtained by extrapolation to zero concentration.
Fig. 9. The impurity Knight shift \((K_i)\) and the impurity susceptibility \(X_i\) for zero concentration of rhodium plotted against temperature. The impurity susceptibility values were calculated by extrapolating the data of Manuel and Quinton\(^5\) and Vogt et al.\(^6\) For comparison the Knight shift and susceptibility versus temperature for pure palladium\(^10\) is shown in the insert.

Fig. 10. Impurity Knight shifts plotted versus zero concentration impurity susceptibility with temperature as an implicit parameter. The solid line represents the fit to all points with \(T \leq 400^\circ\)K. The dashed line indicates the slope that would correspond to a core-d hyperfine field of \(H_{hf}^{(d)} = -700\) kG/spin.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

F(ω), B(ω), A(ω)

6122 G
Ag - Rh
300 °K
20.25 Mc
Fig. 5.

Ag - Rh
4.2 °K
5603 G

18.49 MHz

Autocorrelation function

x 10^4

2.18

1.09

-1.09

-2.18

4.78

-4.78

0.57

-1.27

-3.27

-21.97

-43.37

3.22 7.41 11.60 15.79 19.98 24.17

Frequency (MHz)
Fig. 6.
Fig. 7.
Fig. 8.

(a) 9.97% Rh + Pd
(b) 7.13% " " "
(c) 5.96% " "
(d) 3.80% " " "
(e) 2.05% " " "
(f) 1.04% " " "
(g) 0% " " "

\[
\left(\frac{1}{X_i} \right) \times 10^{-26}
\]

\(T \) (°K)

- UCRL-18326
- XBL687-3252
Fig. 9.
Fig. 10.
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.