Title
UNSUBTRACTED DISPERSION RELATIONS IN WEAK INTERACTIONS AND REGGEIZATION

Permalink
https://escholarship.org/uc/item/97q6p2cj

Author
Saito, Takesi.

Publication Date
1966-01-10
UNSUBTRACTED DISPERSION RELATIONS IN WEAK INTERACTIONS
AND REGGEIZATION

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

UNSUBTRACTED DISPERSION RELATIONS IN WEAK INTERACTIONS
AND REGGEIZATION

Takesi Saito

January 10, 1966
UNSUBTRACTED DISPERSION RELATIONS IN WEAK INTERACTIONS
AND REGGEIZATION

Takesi Saito

Lawrence Radiation Laboratory
University of California
Berkeley, California

January 10, 1966

ABSTRACT

In a previous paper it was shown that in field theory there are two possible conditions under which an elementary particle lies on a Regge trajectory, i.e., the first is that the proper vertex function vanishes and that the proper vertex poles are not the poles of scattering amplitudes, and the other, due to Kaus and Zachariasen, is that the form factor and Z_3 both vanish. In the present paper it is shown that under the latter condition the polology approach, due to Bernstein et al., and the original approach, due to Goldberger and Treiman, of obtaining the Goldberger-Treiman relation both fail. Therefore, this condition may be inadequate as the condition for Reggeization.
In a previous paper\(^1\) we explored the connections between the elementary pion and the Regge pion. We found that if in field theory the proper vertex function with the elementary pion off the mass shell vanishes and that the proper vertex poles are not the poles of scattering amplitudes, then the elementary pion disappears completely but the bootstrapped pion takes its place, lying on the Regge trajectory. However, we also found a different condition for Reggeization, namely, that the form factor \(K(s)\) with the pion off the mass shell and \(Z_3\) (the wave-function renormalization constant of the pion) should both vanish:

\[
K(s) \to 0, \text{ and } Z_3 \to 0. \tag{1.1}
\]

(When bound-state poles exist, the vanishing of the form factor does not always mean the vanishing of the coupling constant,\(^2\) as was shown in a previous paper.) This latter condition (1.1) is essentially the same one as that derived by Kaus and Zachariasen\(^3\) (see Sec. II in their paper).

In this paper we apply the condition (1.1) to the \(\pi-\mu\) decay process. It is then shown that the polology approach, due to Bernstein et al.,\(^4\) and the original approach, due to Goldberger and Treiman,\(^5\) of obtaining the Goldberger-Treiman relation both fail. These approaches are essentially based on the assumption that the divergence of the axial-vector current is a highly convergent
operator whose matrix elements satisfy unsubtracted dispersion relations in the momentum transfer squared. A validity of this assumption, known to a partially conserved axial-vector current, has been established by experiments. Therefore, the condition (1.1) may be inadequate as the condition for Reggeization.

II. UNSUBTRACTED DISPERSION RELATIONS IN WEAK INTERACTIONS

We assume that any matrix elements of the divergence of the axial-vector current satisfy unsubtracted dispersion relations (UDR). Let us define F, the invariant amplitude for the $\pi \rightarrow \mu$ decay, by

$$\frac{1}{(2q_0)^2} \left\langle \pi^+ | \bar{\alpha}_\mu A_\mu | 0 \right\rangle = q^2 F = \mu^2 F,$$ (2.1)

where A_μ denotes the axial-vector current, q is the four-momentum of the elementary pion, and μ is the pion rest mass.

From our assumption the off-shell amplitude $F(q^2 = s)$ satisfies UDR,

$$F(s) = \frac{1}{\pi} \int_0^\infty ds' \frac{\text{Abs} F(s')}{s' - s}.$$ (2.2)

The absorptive part of $F(s)$ is given by

$$s \text{ Abs } F(s) = \pi \sum_a \left\langle 0 | J_{\pi} | s, a \right\rangle \left\langle s, a | \bar{\alpha}_\mu A_\mu | 0 \right\rangle \delta^4 (q_a - q),$$ (2.3)

where J_{π} is the source of the pion field, and a denotes all the
variables other than \(s \). By summing up over spins and separating out kinematical factors, Eq. (2.3) can be written as

\[
s \, \text{Abs} \, F(s) = \pi \sum_{\beta} K_{\beta}^*(s) \, \rho_{\beta}(s) \, f_{\beta}(s)
\]

\[
= K^+(s) \, \rho(s) \, f(s)
\]

(2.4)

in matrix notation. Here the two invariant amplitudes, \(K(s) \) and \(f(s) \), represent virtual dissociation of the pion into intermediate states and their annihilation into a lepton pair, respectively; \(\rho(s) \) is a phase-space factor. Then Eq. (2.2) is written as

\[
F(s) = \int_{9\mu^2}^{\infty} \frac{ds'}{2\pi} \frac{K^+(s') \, \rho(s') \, f(s')}{s'(s' - s)}
\]

(2.5)

From our assumption, the amplitude \(f(s) \) also satisfies UDR,

\[
f(s) = \frac{\mu^2}{\mu^2 - s} \, F_{\text{U}} + \frac{1}{\gamma} \int_{9\mu^2}^{\infty} \frac{ds'}{2\pi} \frac{T^+_0(s') \, \rho(s') \, f(s')}{s' - s}
\]

(2.6)

where \(\gamma \) is a coupling strength between the pion and the channel which can be produced by the virtual pion, and \(T^+_0(s) \) is the scattering amplitude in the pseudoscalar sector. The "form factor" \(K(s) \) satisfies the unitarity relation

\[
\text{Im} \, K = T^+_0 \rho K = K \rho T^+_0
\]

(2.7)

above \(9\mu^2 \). Let us apply the usual N/D method to \(T^+_0 \).
\[T_0 = N_0 D_0^{-1}, \]
\[(2.8) \]

where \(N_0(s) \) is real in the physical region, and \(D_0(s) \) is given by

\[D_0(s) = \frac{1}{\mu^2} \int_0^s \frac{d s'}{s'(s' - s)} N_0(s). \]
\[(2.9) \]

Then Eq. (2.7) gives \(^7\)

\[K(s) = D_0^{-1}(s) D_0(\mu^2) g = D_0^{-1}(s) K(0). \]
\[(2.10) \]

The solution of Eq. (2.6) is \(^7\)

\[f(s) = \left[\frac{\mu^2/(\mu^2 - s)}{\mu^2} \right] F K(s) + \left[G(s) - F K(s) \right], \]
\[(2.11) \]

\[G(s) = D_0^{-1}(s) f(0). \]
\[(2.12) \]

Here the first term in Eq. (2.11) is a special solution of Eq. (2.6), while the second term is a solution of the homogeneous equation of Eq. (2.6), normalized at \(s = 0 \). If \(G(s) = F K(s) \) for all \(s \), Eq. (2.11) reduces to

\[f(s) = \left[\frac{\mu^2/(\mu^2 - s)}{\mu^2} \right] F K(s), \]
\[(2.13) \]

a result known to Gell-Mann and Lévy \(^8\), who conjectured the relation,
\[\mathcal{A}_\mu A^\mu = u^2 F^\mu, \] from which Eq. (2.13) immediately follows. But Eq. (2.13) contradicts Eq. (2.5), because, after inserting Eq. (2.13) into Eq. (2.5) and putting \(s = u^2 \), what we get is \(F = 0 \). Therefore, the second term in Eq. (2.11) is absolutely necessary. If the pole term dominates in Eq. (2.11) or in Eq. (2.6) for \(|s| < u^2 \), then we get the Goldberger-Treiman relation, \(f(0) \approx F K(0) \approx F g \). This is the poleology approach, due to Bernstein et al.

Now, let us consider the limits \((1,1) : K(s) \to 0, \) and \(Z_3 \to 0 \). The former limit, \(K(s) \to 0, \) gives \(D_0(u^2) g \to 0, \) and hence \(|D_0(u^2)| \to 0 \). Dynamical bound states occur when \(|D_0(s)| = 0 \). Hence, when \(|D_0(u^2)| \) is small, one can expect there to be a bound state\(^3\) at \(s = s_B \) near \(u^2 \). Let us suppose that this pole comes out of the second Riemann sheet as the coupling strength increases; then the integral paths in Eqs. (2.5) and (2.6) should be deformed, yielding the new pole terms. Dispersion relations of \(F(s), f(s), \) and \(K(s) \) now turn out to be of the forms

\[
F(s) = \frac{\mu^2}{s_B(s_B - s)} F_B \frac{\lambda}{s_B} + \int_0^\infty \frac{ds'}{9\mu^2} \frac{K^+(s')}{s'} \frac{\rho(s') f(s')}{s'(s' - s)}, \tag{2.14}
\]

\[
f(s) = \frac{\mu^2}{\mu^2 - s} F_B \frac{\lambda}{s_B - s} + \frac{\mu^2}{s_B - s} F_B g_B + \frac{1}{\pi} \int_0^\infty \frac{ds'}{9\mu^2} \frac{T^+(s')}{s' - s} \frac{\rho(s') f(s')}{s'(s' - s)}, \tag{2.15}
\]

\[
K(s) = \frac{\mu^2}{s - s_B} F_B \frac{\lambda}{s_B} + \frac{\mu^2}{s_B - \mu^2} g_B + \frac{1}{\pi} \int_0^\infty \frac{ds'}{9\mu^2} \frac{T^+(s')}{s' - s} \frac{\rho(s') K(s')}{(s' - \mu^2)(s' - s)}, \tag{2.16}
\]
where F_B is the decay constant of the bound state into the lepton pair, λ is the coupling strength between the pion and the bound state, and g_B is the coupling strength between the bound state and the channel which can be produced by the virtual pion. That the residues of the bound-state pole are factorized in the above forms will be shown in Appendix (see also Fig. 1). In spite of the appearance of the new pole terms, the solutions of Eqs. (2.15) and (2.16) are given by (2.11) and (2.10), respectively, where $|D_B(s_B)| = 0$. Here it should be noted that the second term in (2.11) does not contain the new pole because this term is the solution of the homogeneous equation. Then a relation

$$F_B g_B = F g_B \lambda/(\mu^2 - s_B)$$

(2.17)

should hold. In quite the same way, Z_3 is now

$$Z_3^{-1} = 1 + \left(\frac{\lambda}{s_B - \mu^2}\right)^2 + \int_0^\infty ds \sigma(s),$$

(2.18)

where $\sigma(s)$ is the Lehmann weight function, given by

$$\sigma(s) = K^+(s) \rho(s) K(s)/(s - \mu^2)^2.$$

(2.19)

In the first limit, $K(s) \rightarrow 0$, Eq. (2.16) tends to

$$0 = g - \lim_{s_B \rightarrow \mu^2} g_B \lambda/(s_B - \mu^2),$$

(2.20)
and hence Eq. (2.17) becomes

$$\lim_{s \to s_B} F_B(s_B) = -F \gamma.$$ \hspace{1cm} (2.21)

As already mentioned, the limit, \(K(s) \to 0 \), means \(|D_0(\mu^2)| \to 0 \). Therefore, the parameter \(\mu^2 \) must take the value, \(\mu^2 = s_B \), because \(|D_0(s_B)| = 0 \). Then the pole terms in Eq. (2.15) are canceled out. This can also be seen from the solution (2.11). Since the second term in (2.11) does not contain any poles, the residue \(\gamma \) of \(G(s) \) at \(s = s_B \) must equal to the residue of \(F K(s) \) at \(s = s_B \), i.e., \(\gamma = -\lambda g_F \). The equation (2.20) shows \(\lambda g_F \to 0 \) as \(\mu^2 \to s_B \), then \(\gamma \to 0 \). The solution of \(f(s) \) is now given by \(f(s) = G(s) \), and therefore there is no pole in \(f(s) \). This shows that in the limit, \(K(s) \to 0 \), the polology approach, due to Bernstein et al., fails.

Next let us turn our attention to \(F(s) \). When \(K(s) \neq 0 \), inserting Eq. (2.11) into Eq. (2.14) and putting \(s = \mu^2 \), we have

$$F \left[1 + \frac{\mu^2}{s_B} \left(\frac{\lambda}{\mu^2 - s_B} \right)^2 + \int_0^\infty \frac{ds}{9\mu^2} \sigma(s) \right] = \int_0^\infty \frac{ds}{9\mu^2} \frac{K^T \cdot G}{s(s-\mu^2)} \hspace{1cm} (2.22)$$

In the limits, \(K(s) \to 0 \), and \(z_3 \to 0 \), the above equation becomes

$$F \left[1 + \lim_{s_B \to \mu^2} \frac{\lambda^2}{(s_B - \mu^2)^2} \right] = 0, \hspace{1cm} (2.23)$$

where the bracket term tends to infinity, as is seen from Eq. (2.18).
Then what we get is \(F = 0 \). This shows that in the limits (1.1) the original approach, due to Goldberger and Treiman, fails. This failure can also be seen in the following way: In Eq. (2.14) let us put \(s = \mu^2 \). Then we have

\[
F = \frac{\mu^2}{s_B} \frac{\lambda F_B}{s_B - \mu^2} + \int_0^\infty \frac{d\mu}{9u^2} \frac{K(s) \rho(s) f(s)}{s(s - \mu^2)} . \tag{2.24}
\]

In the limits (1.1) the above equation tends to

\[
F = \lim \frac{\lambda F_B}{s_B - \mu} \tag{2.25}
\]

while Eq. (2.14) becomes

\[
F(s) = \lim \frac{\lambda F_B}{s_B - s} \tag{2.26}
\]

Both equations (2.25) and (2.26) are consistent with each other as long as \(F = 0 \). Note that this difficulty is independent of that of \(f(s) \).

III. ONCE-SUBTRACTED DISPERSION RELATIONS IN WEAK INTERACTIONS

If \(F(s) \) satisfies the once-subtracted dispersion relation (ODR)

\[
F(s) = \frac{\lambda F_B}{s - \mu} \frac{\lambda F_B}{s_B - \mu^2} + \frac{s - \mu^2}{s - s_B} \int_0^\infty \frac{d\mu}{9u^2} \frac{K(s') \rho(s') f(s')}{(s' - \mu^2)(s' - s)} \tag{3.1}
\]
and if \(f(s) \) satisfies UDR, then in the limits (1.1) the above equation tends to
\[
F(s) = F \left[1 + \lim \lambda^2/(s_B - \mu^2)^2 \right],
\]
(3.2)

owing to Eq.(2.17). The bracket term again tends to infinity, so that ODR for \(F(s) \) fails, too. Note that this difficulty is closely related with that of \(f(s) \).

If \(f(s) \) satisfies ODR
\[
f(s) = f(0) + \frac{s}{\mu^2 - s} Fg + \frac{s}{s_B - s} \mu^2 F_{B gB} + \frac{s}{\pi} \int \frac{T_0(s')}{s' (s' - s)} \, ds',
\]
(3.3)

then the solution of this equation is
\[
f(s) = G(s) - \left[s/(s - \mu^2) \right] F_{K(s)} + s x(s),
\]
(3.4)

where \(x(s) \) is the solution of the homogeneous equation, while \(G(s) = \left[s/(s - \mu^2) \right] F_{K(s)} \) is the special solution. In this case the relation (2.17) is no longer valid, but the different relation
\[
F_{B gB} = F_{gB} \lambda s_B/\mu^2 (s_B - \mu^2) - \gamma/\mu^2
\]
(3.5)

holds. In the limit, \(K(s) \rightarrow 0 \), this relation tends to
\[
\lim F_{B gB} = -F_{gB} - \gamma/s_B,
\]
(3.6)
owing to Eq (2.20), and hence no cancellation of the pole terms in $f(s)$ occurs. Therefore, there is no contradiction in ODR for $f(s)$, but one cannot get the Goldberger-Treiman relation.

If $F(s)$ and $f(s)$ both satisfy ODR, then in the limits (1.1) Eq. (3.1) becomes

$$F(s) = F - \lim F_B \left[\frac{\lambda}{(s_B - \mu^2)} \right],$$

(3.7)

because in this case Eq. (2.17) is no longer valid. Since $F(s = \mu^2) = F$, the above limit should tend to zero, i.e.,

$$\lim F_B \left[\frac{\lambda}{(s_B - \mu^2)} \right] = 0.$$

(3.8)

Therefore, it follows that $\lim F_B = 0$, because the bracket term goes to infinity. Since $g_B \to 0$ as $Z_3 \to 0$, we get from Eq. (3.6)

$$\gamma = -s_B F_g.$$

(3.9)

After all, there are no contradictions in ODR for $F(s)$ and $f(s)$, but one cannot again calculate the μ decay rate.

The unsubtracted dispersion relation for $F(s)$ fails even when $f(s)$ satisfies ODR, because, as was shown in Sec. II, this failure is independent of subtraction of $f(s)$.
ACKNOWLEDGMENTS

I am very grateful to Dr. William Harita for critical reading of the manuscript, and to Dr. David L. Judd for his hospitality at the Lawrence Radiation Laboratory.
APPENDIX

It is shown that the residues of the bound-state pole in $F(s)$, $f(s)$, and $K(s)$ are factorized in the forms (2.14), (2.15), and (2.16).

The form factor $K(s)$ can be continued into the second
Riemann sheet through the interval between $9\mu^2$ and the next threshold s_1, by the formula

$$K^{II}_\alpha = K_\alpha - 2i(T^{II}_0)_{al} \rho_1 K_1,$$ \hspace{1cm} (A.1)

where $(T^{II}_0)_{al}$ is the scattering amplitude continued into the second sheet, given by

$$(T^{II}_0)_{al} = (T_0')_{al} - 2i(T^{II}_0)_{al} \rho_1 (T_0')^{I1}$$

$$= (T_0')_{al} \left[1 + 2i \rho_1 (T_0')^{I1} \right]^{-1}.$$ \hspace{1cm} (A.2)

Since the pole s_B is not the pole of K_α, we have

$$R_{\alpha}/g_{B\alpha} = R_\alpha/g_{Ba} = -\lambda,$$ \hspace{1cm} (A.3)

from Eq. (A.1), where R_α is the residue of $K(s)$ at $s = s_B$. The equation (A.3) shows that R_α is factorized in the form $R = -\lambda g_{Ba}$.

In quite the same way, the residue β, of $f(s)$ at $s = s_B$ is factorized as $\beta = -\mu^2 F_{B\alpha} g_{B\alpha}$, by making use of the formula
\[f_a^{\text{II}} = f_a - 2i(T_0^{\text{II}})_{al} \rho_1 f_1. \] \hspace{1cm} (A.4)

The residue, \(\delta \), of \(F(s) \) at \(s = s_B \) is also factorized as
\[\delta = -\mu^2 \lambda F_B. \] This is easily shown by making use of the formula
\[F^{\text{II}} = F - 2i K_1^{\text{II}} \rho_1 f_1. \] \hspace{1cm} (A.5)

together with Eq. (A.1) and \(\beta = -\mu^2 F_B g_B. \)
FOOTNOTES AND REFERENCES

† Formerly Takesi Ogimoto. On leave of absence from Department of Physics, Osaka University, Osaka, Japan.

1. T. Saito, Connection between Regge Poles and Elementary Particle Poles, (Lawrence Radiation Laboratory Report UCRL-16544, November 1965), submitted to Physical Review.

2. The argument will be repeated later on. See the footnote 11.

7. S. W. MacDowell, Phys. Rev. Letters 6, 385 (1961). We ignore ambiguities similar to those of Castillejo, Dalitz, and Dyson, and adopt such solutions as vanish as $g \to 0$ and $f(0) \to 0$.

10. We assume $g \not\rightarrow 0$.

11. The limit, $K(s) \rightarrow 0$, does not always mean $g \rightarrow 0$, when the bound-state pole s_B exists. When $\mu^2 = s_B$, the solution $K(s) = D^{-1}_0(s) D_0(\mu^2) g$ is indefinite at $s = \mu^2 = s_B$. Therefore, the behavior of $K(s)$ near $s = \mu^2 = s_B$ needs a closer study. Let us suppose $K(s) \equiv 0$ except at $s = \mu^2$. Then we have Eq. (2.20).
Therefore, the first term g is cancelled by the second term, so that $K(s)$ is equal to zero even at $s = \mu^2$. The value of $K(s)$ at $s = \mu^2$ should be defined by $\lim_{s \to \mu^2} K(s) = K(\mu^2)$.
Fig. 1. Factorization of the residues of the pole in $F(s)$, $f(s)$, and $K(s)$ at $s = s_B$.
Fig. 1
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.