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ABSTRACT

We study the mid- to far-IR properties of a 24µm-selected flux-limited sample (S 24> 5 mJy) of 154 intermediate redshift (〈z〉 ∼ 0.15),
infrared luminous galaxies, drawn from the 5 Milli-Jansky Unbiased Spitzer Extragalactic Survey. By combining existing mid-IR
spectroscopy and newHerschel SPIRE submm photometry from the Herschel Multi-tiered Extragalactic Survey, we derived robust
total infrared luminosity (LIR) and dust mass (Mdust) estimates and infered the relative contribution of the AGNto the infrared energy
budget of the sources. We found that the total (8−1000µm) infrared emission of galaxies with weak 6.2µm PAH emission (EW6.2 ≤

0.2µm) is dominated by AGN activity, while for galaxies withEW6.2 > 0.2µm more than 50% of theLIR arises from star formation.
We also found that for galaxies detected in the 250-500µm Herschel bands an AGN has a statistically insignificant effect on the
temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-
forming galaxies we reveal an anti-correlation between theLIR-to-rest-frame 8µm luminosity ratio, IR8≡ LIR/L8 and the strength
of PAH features. We found that this anti-correlation is primarily driven by variations in the PAHs emission, and not by variations
in the 5−15µm mid-IR continuum emission. Using the [Neiii]/[Ne ii] line ratio as a tracer of the hardness of the radiation field,we
confirm that galaxies with harder radiation fields tend to exhibit weaker PAH features, and found that they have higher IR8values
and higher dust-mass-weighted luminosities (LIR/Mdust), the latter being a proxy for the dust temperature (Td). We argue that these
trends originate either from variations in the environmentof the star-forming regions or are caused by variations in the age of the
starburst. Finally, we provide scaling relations that willallow estimatingLIR, based on single-band observations with the mid-infrared
instrument, on board the upcoming James Webb space telescope.

Key words. galaxies: active – galaxies: evolution – galaxies: formation – galaxies: starburst – infrared:galaxies
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1. Introduction

One of the major advances in our understanding of galaxy evolu-
tion was the discovery of the cosmic infrared background (CIB),
first detected by Puget et al. (1996), which led to the realisation
that half of the energy produced by star formation and accretion
activity throughout the history of the Universe is emitted via the
infrared (8−1000µm) part of the spectrum (Dole et al. 2006).
Because in the local Universe the infrared output of galaxies is
only about a third of the emission at optical wavelengths (e.g.,
Soifer & Neugebauer 1991), this implies a strong evolution of
infrared galaxy populations, with an enhanced far-IR output in
the past, to account for the total measured CIB.

With the advent of infrared space telescopes, such as the In-
frared Space Observatory (Kessler et al. 2996, see Genzel &
Cesarsky 2000, for a summary), the Spitzer Space Telescope
(Spitzer, Werner et al. 2004), and more recently the Herschel
Space Observatory (Herschel, Pilbratt et al. 2010) we have been
able to resolve a considerable fraction of the CIB (e.g.∼74%
at 160µm, Berta et al. 2011) into individual sources and con-
struct and characterise large samples of infrared galaxies(for a
review see Lagache et al. 2005). These infrared campaigns have
revealed that the number density of luminous infrared galax-
ies (LIRGsLIR > 1011 L⊙) and ultra luminous infrared galaxies
(ULIRGs LIR > 1012 L⊙), which emit the bulk of their energy in
the infrared, increases by three orders of magnitude as we look
back in time and they also dominate the star formation density
of the Universe byz ∼ 1 (e.g. Le Floc’h et al. 2005).

Different parts of the IR spectrum of galaxies are dominated
by different physical processes. The mid-IR (5−25µm) emission
is dominated by warm dust emission, which originates from the
small dust grains that are heated by energetic photons produced
by young stars or through AGN accretion activity. Superim-
posed on this continuum emission is a large set of broad emis-
sion line features, centred at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7µm,
which are thought to originate from polycyclic aromatic hydro-
carbons (PAHs; Puget et al. 1985; Allamandola et al. 1989).
PAH emission predominantly originates from photodissociation
regions (PDRs) that are illuminated by UV-bright stars and can
contribute up to 10% of the total infrared luminosity (LIR) in
star-forming galaxies (e.g. Smith et al. 2007). PreviousSpitzer
studies using the Infrared Spectrograph (IRS, Houck et al. 2004)
have shown that PAH emission varies considerably between star-
forming and AGN-dominated galaxies and as a function of the
metal enrichment of the interstellar medium (ISM) of a galaxy.
In particular, PAHs are found to be prominent in star-forming
galaxies or weak AGNs both locally (Peeters et al. 2002, 2004;
Weedman et al. 2005; Armus et al. 2007) and at high−z (Pope et
al. 2008; Huang et al. 2009; Desai et al. 2009), while they tend
to be weaker or even absent in galaxies dominated by an AGN
(e.g. Kirkpatrick et al. 2012; Weedman et al. 2006). Hence, the
strength and the relative ratio of the PAHs, along with a plethora
of other atomic fine structure lines (e.g., Ne, S) and absorption
by amorphous silicates centred at 9.7µm, offer a unique diag-
nostic tool characterising the dominant mechanism that powers
the IR emission of the galaxies (e.g., Laurent et al. 2000; Lutz
et al. 1996; Genzel et al. 1998; Peeters et al. 2004; Spoon et al.
2007).

Mid-IR spectroscopic studies of local (Rigopoulou et al.
1999; Farrah et al. 2007; Desai et al. 2007) and distant (e.g.,
Yan et al. 2007; Dasyra et al. 2009; Hernan-Caballero et al.

⋆ Herschel is an ESA space observatory with science instruments pro-
vided by European-led Principal Investigator consortia and with impor-
tant participation from NASA.

2009) LIRGs and ULIRGs have revealed that while both AGN
and star formation activity is present, their IR emission ismostly
powered by star-formation. However, to properly measure the
bolometric output of the galaxies there is an imperative need
for far-IR (50-350µm) observations that trace the peak of the
spectral energy distribution (SED) of star-forming galaxies. Fur-
thermore, while recent studies of high−z galaxies have come to
suggest that the far-IR emission is primarily shaped by starfor-
mation activity (Hatziminaoglou et al. 2010; Kirkpatrick et al.
2012; Feltre et al. 2013), it is still unclear whether and howan
AGN could impact the far-IR colours and the dust temperature
of the large grains in the ISM of a galaxy (e.g. Haas et al. 2003;
Netzer et al. 2007).

With the advent ofHerschel we have now gained access to
the far-IR part of the spectrum of the galaxies up toz ∼ 2, and
it is now possible to bridge the warm and cold dust emission
and reveal the underlying heating mechanisms. In this direction,
it has recently been demonstrated that for the majority of star-
forming galaxies up toz ∼ 2, the ratio of total (LIR) to the mid-
IR luminosity, as traced by the rest-frame 8µm emission (L8),
obeys an almost linear relation, suggesting a very uniform mid-
to-far-IR SED shape for star-forming galaxies through cosmic
time (Elbaz et al. 2011). However, outliers to this relationdo
exist, with a small fraction of star-forming galaxies exhibiting
an enhanced IR8≡ LIR/L8 value. While this excess in IR8 is
found to anti-correlate with the IR surface brightness and hence
with the projected star formation density (Elbaz et al. 2011),
the true nature of these sources, the origin and the scatter of the
observedLIR−L8 relation among galaxies that fall in this “IR
main sequence”, and the connection of the mid- to the far-IR
properties of the galaxies are yet to be fully understood.

Another key question that still remains open is whether the
characteristics of the PAH features can be used to infer infor-
mation about the star formation properties of the galaxies.In
principle, PAHs could serve as a good tracer of star formation
activity, since they are stochastically heated mainly by UVpho-
tons produced by stars (PAHs can also be excited by visual pho-
tons, although the excitation is dominated by UV photons; e.g.,
Uchida et al. 1998; Li & Draine 2002). Under the assumption
of fixed emission and absorption properties and fixed PAH abun-
dance, the PAH emission is a measure of the amount of photons
available between 6 and 13.6 eV and hence of star formation.
This line of reasoning is supported by various studies that have
demonstrated an almost linear correlation between PAH emis-
sion andLIR (e.g. Soifer et al. 2002; Peeters et al. 2004;
Lutz et al. 2008), the latter thought to be an excellent tracer
of star-formation rate for dusty circumnuclear starbursts(Kenni-
cutt 1998). However, theLPAH/LIR ratio is known to vary as a
function of the environment in which star formation takes place
(e.g., Peeters et al. 2004) but also as a function of AGN activ-
ity (e.g. Siebenmorgen et al. 2004). This also applies to inte-
gratedLPAH and LIR measurements over the whole galaxy. In
particular, theLPAH/LIR ratio can vary up to a factor 10 between
sources where the environment of massive star formation resem-
bles PDRs (e.g. M82, Carral et al. 1994) and that of embedded
star formation (e.g. Arp220) that is more similar to the properties
of compact Hii regions (Rigopoulou et al. 1999). Interestingly,
a similar variation in the strength of far-IR fine structure lines
is observed among different star formation environments (e.g.
Gracia-Carpio et al. 2011). It could therefore be suggestedthat
the integrated PAH properties of distant galaxies, where the in-
dividual star-forming regions remain unresolved, can carry cru-
cial information about the averaged star formation activity on a
galaxy-wide scale.
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To address these questions, in this paper we exploit a 24µm-
flux-limited sample of intermediate redshift mid-IR-selected
galaxies that benefit from high-quality mid-IR IRS spectra ob-
tained as part of the 5 Milli-Jansky Unbiased Spitzer Extragalac-
tic Survey (5MUSES). By combining existing mid- and far-IR
data with new submm (250−500µm) Herschel-SPIRE observa-
tions drawn from the HerMES project, we attempt a full char-
acterisation of their IR properties and study the variationof the
PAH features among star-forming galaxies. A key aspect of our
sample is that it traces the epoch of the steep increase of thein-
frared luminosity density (0.0 ≤ z ≤ 1.0), providing a snapshot
of the evolution of the properties of star-forming galaxiesfrom
the present day to the peak of the star formation activity in the
Universe (z ∼ 1−2). In Section 2 we provide a description of
the sample, present ancillary IRS and newly obtainedHerschel
data and classify the dominant powering source of the galaxies.
In Section 3 we derive the far-IR properties of the sample, while
in Section 4 we investigate the impact of the AGN activity on
the far-IR properties of the galaxies and examine the variation of
the strength of PAH features as a function of IR8. In Section 6
we provide a discussion motivated by our results, and finallyin
Section 7 we summarise our findings. Throughout the paper we
adoptΩm = 0.3,H0 = 71 km s−1 Mpc−1 andΩΛ = 0.7.

2. Sample selection and observations

5MUSES is a 24µm flux-limited (5 mJy< S 24 < 100 mJy),
mid-IR spectroscopic survey of 330 galaxies selected from the
SWIRE fields (Lonsdale et al. 2003), including Elais-N1, Elais-
N2, Lockman Hole, and XMM-LSS, in addition to theSpitzer
Extragalactic First Look Survey (XFLS) field (Fadda et al.
2006). Out of this sample we focus on the 280 sources pre-
sented by Wu et al. (2010), for which we have secure spectro-
scopic redshifts. This simple selection criterion of the 5MUSES
survey provides an intermediate-redshift sample (〈z〉 = 0.144)
they bridges the gap between the bright, nearby star-forming
galaxies (e.g. Kennicutt et al. 2003; Smith et al. 2007; Dale
et al. 2009; Pereira-Santaella et al. 2010; Diaz-Santos et al.
2010), local (U)LIRGs (e.g. Armus et al. 2007; Desai et al.
2007; Imanishi et al. 2007; Farrah et al. 2007; Veilleux et al.
2009), and the more distant sources that have been followed up
with IRS spectroscopy (Houck et al. 2005; Sajina et al. 2007;
Yan et al. 2007; Farrah et al. 2008; Pope et al. 2008; De-
sai et al. 2009; Menéndez-Delmestre et al. 2009; Sargsyan et
al. 2011 ). Low-resolution mid-IR spectra (R = 64− 128) of all
galaxies in 5MUSES have been obtained with the short-low (SL:
5.5−14.5µm) and long-low (LL: 14−35µm) modules of the IRS
using the staring mode observations. A full description of the
IRS observations and data reduction are presented in Wu et al.
(2010). In brief, PAH luminosities and equivalent width (EW)
were measured using the PAHFIT software (Smith et al. 2007) as
well as a spline-fitting method. In the former, the PAH features
are fit with Drude profiles, which have extended wings that ac-
count for a significant fraction of the underlying plateau (Smith
et al. 2007), while in the spline or apparent PAH EW method, a
local continuum under the emission features is defined by fitting
a spline function to selected continuum points. While the PAH-
FIT method is known to give higher integrated PAH fluxes and
EWs due to the lower continuum adopted than the spline method,
the two methods provide consistent results on trends (Smithet
al. 2007; Galliano et al. 2008). Following Wu et al. (2010),
we adopt PAH EWs as measured by the spline-fitting method,
fixing the rest wavelength continuum pivots as in Peeters et al.
(2002), and 6.2-, 7.7-, and 11.3µm PAH-integrated fluxes as de-

rived from PAHFIT. This was done to be able to compare our
measurements with other samples reported in the literature, be-
cause the majority of these use the spline method when reporting
EW values. Finally, in addition to the 24µm photometry and IRS
spectroscopy, the whole sample benefits from 70-160µm MIPS
and IRAC 3.6−8.0µm observations, with 90% and 54% of the
sources being detected at 70 and 160µm, respectively.

2.1. Herschel observations

We usedHerschel SPIRE (Griffin et al. 2010) observations of
the fields ELAIS-N1, Lockman Hole, XMM, and XFLS, ob-
tained as part of the Herschel Multi-Tiered Extragalactic Sur-
vey1 (HerMES; Oliver et al. 2010, 2012). For these sources, we
employed the photometric catalogues at 250, 350, and 500µm
that were produced for each field by using a prior source ex-
traction, guided by the position of known 24µm sources. An
extensive description of the cross-identification prior source ex-
traction (XID) method is given in Roseboom et al. (2010, 2012).
The main advantage of this method is that reliable fluxes can
be extracted close to the formal≈ 4 − 5 mJy SPIRE confusion
noise (Nguyen et al. 2010) by estimating the flux contributions
from nearby sources within one beam. The 24µm prior posi-
tional information reduces the impact of confusion noise and so
the approximate 3σ limit for the SPIRE catalogue at 250µm is
≈ 9−15 mJy. The drawback of this technique is that the resulting
catalogues could be missing sources without a 24µm counter-
part, that is, 24µm drop-outs (e.g. Magdis et al. 2011). How-
ever, since all galaxies in the 5MUSES sample have a bright
24µm counterpart, we are not affected by this caveat.

Out of the 280 sources in the 5MUSES sample presented by
Wu et al. (2010), 188 galaxies are covered by HerMES observa-
tions. After applying a flux cut limit of 15 mJy to all three bands
of our SPIRE photometric catalogues, 154 sources are detected
at 250µm at a 3σ significance level, 108 at 350µm, and 50 at
500µm. All sources detected at 350 and 500µm are also de-
tected at 250µm. To assess the robustness of the detections we
also preformed a visual inspection of the sources in theHerschel
maps. The SPIRE photometry of the final sample, that is, sources
with at least one detection at one of theHerschel bands, is pre-
sented in Table 1. The spectroscopic redshifts of the sources
are drawn from Wu et al. (2010) and the median redshift of the
sample considered here is〈z〉 = 0.157. Finally, a K−S test re-
veals that theS 250 values of the whole population of galaxies
in our fields withS 24 > 5 mJy and that of the 5MUSES sample
are drawn from the same distribution. While this was expected
based on the simple selection criteria of the 5MUSES samples
(S 24 > 5 mJy), it also suggests that it is representative of the full
HerMES population at this 24µm flux limit.

2.2. Classification of AGN and star-formation-dominated
sources

The equivalent widths of PAH features can serve as indicators of
the AGN versus star formation activity in the galaxy (e.g. Lau-
rent et al. 2000, Brandl et al. 2006, Spoon et al. 2007). Here,
we used the 6.2µm equivalent width as measured by the spline-
fit method. We chose the 6.2 over the 11.3µm PAH band be-
cause the latter is located on the shoulder of the 9.7µm silicate
feature. Following previous studies (e.g., Armus et al. 2007;
Wu et al. 2010), we classified sources withEW6.2 ≤ 0.2µm as

1 For more information about the HerMES programme visit her-
mes.sussex.ac.uk
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Fig. 1Left: IRAC colour-colour diagram of the 5MUSES sample. The wedgeis the AGN selection region of Donley et al. (2012).
Red and black circles represent sources withEW6.2 ≤ 0.2µm andEW6.2 > 0.2µm respectively. Grey circles correspond to sources
for which the SED decomposition attributes more than 50% of their total infrared luminosity to AGN activity.Right: Fractional
contribution of an AGN component to the totalLIR as a function of the 6.2µm EW of the sources. The dashed grey line corresponds
to fAGN = 0.5.

AGN-dominated and sources withEW6.2 > 0.2µm as composite
and star-forming- dominated sources, with purely star-forming
galaxies havingEW6.2 > 0.5µm.

To validate the classification based on the 6.2µm PAH equiv-
alent width we used the revised IRAC colour selection of Donley
et al. (2012), which combines the AGN selection wedges (e.g.,
Lacy et al. 2004; Stern et al. 2005) with the infrared power-
law selection of AGN (Alonso-Herrero et al. 2006; Donley et al.
2007; Park et al. 2010). This AGN selection limits the contami-
nation by star-forming galaxies, and is also reliable for the iden-
tification of luminous AGNs (Mendez et al. 2013). We found
that all but one of the sources in our sample withEW6.2 > 0.2µm
fail to meet the Donley et al. (2012) criteria, while∼80% of the
sources withEW6.2 ≤ 0.2µm would be classified as AGN based
on their IRAC colours (Fig. 1 left).

The plethora of mid-to-far-IR data that are available for our
sample, and especially the IRS spectra, makes it possible touse
a third classification of the sources based on the relative con-
tribution of an AGN in the infrared output of our sample. For
this task we use the AGN-host-galaxy decomposition method of
Mullaney et al. (2011). This method employs a host-galaxy and
an intrinsic AGN template SED to measure the contribution to
the infrared output of these two components2. This technique
identifies the best-fitting model SED to the observed infrared
data (spectra and photometry) throughχ2 minimisation and by
varying the values of a set of free parameters. In brief, these free
parameters are: 1) the host-galaxy SED (a set of five templates);
2) the wavelength of the spectral break (if there is one) in the
mid-IR SED of an AGN (λbrk); 3) the spectral indices (α1 and
α2) below and aboveλbrk; 4) the wavelength at which the SED
of the AGN component peaks; 5) the dust extinction of the AGN
and host-galaxy component using a Draine et al. (2003) profile;
and 6) the relative normalisations of the two components. Ex-
amples of the best model SEDs are shown in Fig. 2.

2 We uses the DECOMPIR routine, available at
https://sites.google.com/site/decompir/

From the various output parameters here we focused on the
recoveredLIR and the contribution of an AGN in the total in-
frared output (fAGN). The SED decomposition can only trace
possible misidentifications of AGN as star-forming galaxies, but
not the other way round. Indeed, if our classification is cor-
rect, then the majority of the bolometric IR output of a star-
formation-dominated galaxy cannot be due to AGN activity. On
the other hand, a strong AGN that dominates the mid-IR spec-
trum does not necessarily also dominate the total energy output
of the source. With this in mind, we plot in Fig. 1 (right) the
AGN fraction that corresponds to the best fit as a function of
EW6.2. We found that sources withEW6.2 > 0.2µm tend to have,
on average, a lower contribution of an AGN to their IR output,
confirming the validity of our classification as star-forming dom-
inated sources. In contrast, all sources for which we inferred that
more than 50% of the totalLIR arises from dust heated by an
AGN haveEW6.2 ≤ 0.2µm and the majority of them are found
to meet the IRAC colour criteria of Donley et al. (2012) (Fig.
1 left). We also note that while for 60% of the sources with
EW6.2 > 0.2µm the best-fit yields a non-zero AGN contribution,
based on the Akaike information criterion (Akaike 1974), a solu-
tion without the need of an AGN component is equally probable
within a 68% confidence interval for 80% of them. On the other
hand, for almost all sources (95%) withEW6.2 < 0.2µm, the ex-
istence of an AGN is favoured at a>5σ confidence level.

Given the very good agreement between the three indepen-
dent indicators, we conclude that the EW of the 6.2µm feature is
a reliable tool, at least for our sample, for identifying AGNver-
sus star-formation-dominated sources. Based on theEW6.2 clas-
sification, our sample consists of 116 SF and composite galaxies
(70%), and 50 AGN-dominated sources (30%). While we did
not find a trend betweenfAGN andEW6.2 in theEW6.2 > 0.2µm
regime, for consistency with previous works in the literature we
will refer to galaxies with 0.2µm< EW6.2 ≤ 0.5µm as composite
and to galaxies withEW6.2 > 0.5µm as star-forming.
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G. E. Magdis et al.: Mid to Far IR properties of star-forming galaxies and AGN

Fig. 2 Examples of SED fitting using the AGN/host-star-forming galaxy decomposition technique of Mullaney et al. (2011). Green
circles are the observed points, overlaid with the best-fit total model (black line). The AGN and host galaxy components are shown
as red and blue dashed lines, respectively.

3. Analysis

Several key physical properties of distant galaxies, such as in-
frared luminosities (LIR), dust temperatures (Td) and dust masses
(Mdust), can be estimated by fitting their mid-to-far-IR SEDs with
various models and templates. However, the lack of sufficient
data for a proper characterisation of the SED has often limited
this kind of analysis to models suffering from over-simplified
assumptions and broad generalisations. TheSpitzer and Her-
schel data available for the galaxies in our sample provide thor-
ough photometric sampling of their SEDs, allowing the use of
more realistic models of the sort that have previously been ap-
plied mainly in the analysis of nearby galaxies. Here, we consid-
ered both the physically motivated Draine & Li (2007, hereafter
DL07) models for non-AGN-dominated sources and the more
simplistic, but widely used, modified blackbody model (MBB)
for the whole sample.

3.1. Draine & Li 2007 model

We employed the dust models of DL07, which constitute an up-
date of the models developed by Weingartner & Draine (2001)
and Li & Draine (2001). These models describe the interstel-
lar dust as a mixture of carbonaceous and amorphous silicate
grains, whose size distributions are chosen to mimic the ob-
served extinction law in the Milky Way (MW), the Large Mag-
ellanic Cloud (LMC), and the Small Magellanic Cloud (SMC)
bar region. The properties of these grains are parameterised by
the PAH index,qPAH, defined as the fraction of the dust mass in

the form of PAH grains. The majority of the dust is heated by
a radiation field with a constant intensityUmin, while a smaller
fractionγ of the dust is exposed to a power-law distribution of
star light intensities extending fromUmin to Umax. TheU = Umin
component can be interpreted as the dust in the general diffuse
ISM, while the power-law starlight distribution allows fordust
heated by more intense starlight, such as in the intense PDRsin
star-forming regions. For simplicity, emission from dust heated
by U > Umin is referred to as the PDR, or the warm dust compo-
nent, and the emission from dust heated byU = Umin is referred
to as the diffuse ISM or the cold dust component. Although the
PDR component contains only a small fraction of the total dust
mass, in some galaxies it contributes a substantial fraction of the
total power radiated by the dust. Then, according to DL07, the
amount of dust,dMdust, exposed to radiation intensities between
U andU+dU, can be expressed as a combination of aδ-function
and a power law:

dMdust

dU
= {(1− γ)Mdustδ(U − U.min) + γMdust

α − 1

U1−α
min − U1−α

max
U−α,

(1)

with Umin ≤ Umax, α , 1). Here,U is normalised to the lo-
cal Galactic interstellar radiation field,Mdust the total dust mass,
α the power-law index,γ the fraction of the dust mass that is
associated with the power-law part of the starlight intensity dis-
tribution, andUmin, Umax andα characterise the distribution of
starlight intensities in the high-intensity regions.
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Fig. 3 Examples of SED fitting. Red squares are observed points, overlaid with the best-fit DL07 model (black line). The PDRand
diffuse ISM components are shown in purple. The yellow line is thestellar component and the dashed blue line the best-fit modified
blackbody model withβ = 1.5. The green line in the mid-IR is the actual IRS spectrum of each source. We convolved the observed
IRS spectrum with the IRS 16µm peak-up imaging filter and a 2µm-wide top-hat filter centred at observed 30µm to enhance our
fit with two more points in the observed mid-IR part of the spectrum. The rest of the data are taken from IRAC, MIPS, and SPIRE.

Following DL07, the spectrum of a galaxy can be described
by a linear combination of one stellar component approximated
by a blackbody with colour temperatureT∗ = 5000K, and two
dust components, one arising from dust in the diffuse ISM,
heated by a minimum radiation fieldUmin (diffuse ISM compo-
nent), and one from dust heated by a power-law distribution of
starlight, associated with the intense photodissociationregions
(PDR component). Then, the model emission spectrum of a
galaxy at distanceD is:

f model
ν = Ω∗Bν(T∗) +

Mdust

4πD2
×[(1 − γ)p(0)

ν (qPAH,Umin)+

γpν(qPAH,Umin,Umax, α)], (2)

whereΩ∗ is the solid angle subtended by stellar photospheres,
p(0)
ν (qPAH,Umin), and pν(qPAH ,Umin,Umax, α) are the emitted

power per unit frequency per unit dust mass for dust heated by
a single starlight intensityUmin, and dust heated by a power-law
distribution of starlight intensities fordM/dU ∝ U−α extending
from Umin to Umax.

In principle, the dust models in their most general form
are dictated by seven free parameters, (Ω∗, qPAH,Umin,Umax, α, γ

andMd). However, Draine et al. (2007) showed that the overall
fit is insensitive to the details of the adopted dust model (MW,

LMC, and SMC) and the precise values ofα andUmax. These
authors showed that fixed values ofα = 2 andUmax = 106 suc-
cessfully describe the SEDs of galaxies with a wide range of
properties. Draine et al. 2007 also favour the choice of MW
dust properties for which a set of models withqPAH ranging from
0.4% to 4.6% is available. Furthermore, because lowUmin val-
ues correspond to dust temperatures below∼ 15 K that cannot
be constrained by far-IR photometry alone, in the absence of
rest-frame (sub)mm data (λrest= 850µm), the authors using 0.7
≤ Umin ≤ 25. While this lower cutoff for Umin prevents the
fit from converging to erroneously large amounts of cold dust
heated by weak starlight (Umin < 0.7), the caveat is a possible
underestimate of the total dust mass if large amounts of colddust
are indeed present. However, Draine et al. (2007) concludedthat
omitting rest-frame (sub)mm data from the fit increases the scat-
ter of the derived masses to up to 50% but does not introduce a
systematic bias in the derived total dust masses.

Under these assumptions, we fit the broadbandSpitzer and
Herschel data of each galaxy withEW6.2 > 0.2µm in our sam-
ple, searching for the best-fit model byχ2 minimisation and
parametrising the goodness of fit by the value of the reducedχ2,
χ2
ν ≡ χ

2/Ndof (whereNdof is the number of degrees of freedom).
To further exploit the available information provided by the IRS
spectra, for each source we estimated the observed flux density
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at 16µm as it would be measured with the 16µm IRS peak-up
image, and at 30µm assuming a 2µm wide top-hat filter3

The best-fit model yields a total dust mass (Mdust), Umin, as
well asγ andqPAH, while to deriveLIR

4 estimates we integrated
the emerging SEDs from 8 to 1000µm:

LIR =

∫ 1000µm

8 µm
Lν(λ) ×

c
λ2

dλ. (3)

A by-product of the best-fit model is also the dust-weighted
mean starlight intensity scale factor,〈U〉, defined as

〈U〉 =
Ldust

P0Mdust
, (4)

whereP0 is the power absorbed per unit dust mass in a radia-
tion field with U = 1. Note that〈U〉 is essentially proportional
to LIR/Mdust, and for the definition ofLIR adopted here, that is,
L8−1000, Magdis et al. (2012b) have shown thatP0 ≈125.

Uncertainties inLIR andMdust were quantified using Monte
Carlo simulations. To summarise, for each galaxy a Gaussian
random number generator was used to create 1000 artificial flux
sets from the original fluxes and measurement errors. These new
data sets were then fitted in the same way, and the standard de-
viation in the new parameters was taken to represent the uncer-
tainty in the parameters found from the real data set. Examples
of the best-fit DL07 models along with the observed photometric
points are shown in Fig. 3, while the set of best-fit parameters
for each source are given in Table 2. We note that the DL07
models are representative of star-formation-dominated galaxies
or equally for sources that do not harbour a strong AGN. As a
consequence, our analysis was restricted to star-formation domi-
nated galaxies. For AGN-dominated sources in our sample (i.e.,
EW6.2 ≤ 0.2µm) we adopted theLIR measurements derived by
the SED decomposition described in the previous section.

3.2. Comparison with modified blackbody fits

Another method for deriving estimates of the dust properties is
to fit the far-IR to submm SED of the galaxies with a single-
temperature modified blackbody (MBB), expressed as

fν ∝
ν3+β

e
hν
kT − 1

, (5)

whereT is the effective dust temperature (Td) andβ is the ef-
fective dust emissivity index. Then, from the best-fit model, one
can estimateMdust from the relation

Mdust =
S νD2

L

(1+ z)κrestBν(λrest, Td)
, with κrest= κ0(

λo

λrest
)β , (6)

whereS ν is the observed flux density,DL is the luminosity dis-
tance, andκrest is the rest-frame dust mass absorption coefficient
at the observed wavelength. While this is a simplistic approach,
mainly adopted due to the lack of sufficient sampling of the SED
of distant galaxies, it has been one of the most widely used meth-
ods in the literature. Therefore, an analysis based on MBB-
models provides both estimates of the effective dust temperature
of the galaxies in our sample, a quantity that is not directlymea-
sured from the DL07 model, and a valuable comparison between

3 We chose to measure the flux density at 30µm since beyond that
wavelength the IRS spectra become progressively more noisy, as a result
of the delimitation of the first-order long-low module filter.
4 Ldust quoted below is similar toLIR, but integrated from 0 to∞

Fig. 4 Comparison between dust masses derived based on a
single-temperature modified blackbody (MBB) and masses de-
rived using the Draine & Li (2007) models. For the MBB derived
Mdust we assumeβ = 1.5. The purple solid line corresponds to
unity and the two purple dashed lines to its offset by a factor of
2 and 0.5.

dust masses inferred with the MBB and DL07 methods. We note
that unlike the DL07 analysis, which is restricted to non-AGN
sources, the MBB technique and the derivedTd measurements,
are also valid for AGN-dominated sources.

We fit the standard form of a modified blackbody consider-
ing observed data points withλrest > 60µm, to avoid emission
from very small grains, and used a fixed value ofβ = 1.5, typical
of star-forming galaxies (Hildebrand 1983; Gordon et al. 2010;
Magdis et al. 2011b; Dale et al. 2012). From the best fit model,
we then estimated the totalMdust with equation 6, considering
all sources, including AGN, with at least three available photo-
metric points atλrest > 60µm. For consistency with the DL07
models we adopted a value ofκ250 = 5.1 cm2 g−1 (Li & Draine
2001). To obtain the best-fit models and the corresponding un-
certainties of the parameters, we followed the same procedure as
for the DL07 models. The derived parameters are summarised
in Table 2 and the best-fit models are shown in Fig. 3

A comparison between dust masses derived by DL07 and
MBB is shown in Fig. 4. We see that the modified black-
body technique yields dust masses that are lower than those
derived based on DL07 models on average by a factor of∼ 2
(〈MDL07

dust /M
MBB
dust 〉 = 2.13±0.36)5. This result agrees with Magdis

et al. (2012b) for a sample of z∼ 1−2 star-forming galaxies
and Dale et al. (2012), who found that the discrepancy between
the two dust mass estimates increases for sources with lower
S 70/S 160 ratios that correspond to colder dust temperatures. This
is caused by the inability of the single-temperature modelsto ac-
count for the wide range in the temperature of dust grains that
are exposed to different intensities of the interstellar radiation
field. Fitting simultaneously both the Wien side of the modified
black-body (which is dominated by warm dust), as well as the
Rayleigh-Jeans tail (sensitive to colder dust emission) drives the
derived temperatures to higher values and consequently to lower
dust mass estimates (e.g. Dunne et al. 2000). On the other hand,

5 Fixing β = 2, returns dust masses that are larger than those inferred
whenβ = 1.5, by a factor of∼ 1.2 but still lower by a factor of∼ 1.8
than the masses derived by DL07
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a more physically motivated two-temperature blackbody fit re-
turns dust masses that are larger by a factor of∼ 2 compared
with those derived based on a singleTd MBB (Dunne & Eales
2001), in agreement with those inferred by the DL07 technique.
For the rest of our analysis we only considerMdust estimates de-
rived based on the DL07 model.

3.3. Comparison with Spitzer LIR measurements

In the pre-Herschel era the infrared properties of the 5MUSES
sample were constrained based onSpitzer IRAC, IRS, and MIPS
data. In particular, for the redshift range of the majority of the
sources, the 70µm and 160µm MIPS bands traced the emission
of the galaxies on both sides of the peak of the SED, providinga
first insight into the overall shape of their SEDs in the far-IR and
their LIR values. However, only half of the sample is detected
at 160µm. Furthermore, in the absence of the sub-mm data, the
shape of the Rayleigh-Jeans tail of the galaxies in the 5MUSES
sample was largely unconstrained.

Here, we examined the impact of addingHerschel data to
the derivedLIR estimates of the sample. In Fig. 5 we com-
pare theLIR measurements by Wu et al. (2010) based solely on
Spitzer data (i.e., IRS and MIPS) with those derived in our study.
The two estimates are in excellent agreement, with a mean ratio
(LHerschel

IR /LSpritzer
IR ) of 0.98 and a standard deviation of 0.22. This

is in line with various studies that have shown that mid-IR ex-
trapolations of the totalLIR are correct for star-forming galaxies
at z < 1.5 (e.g., Elbaz et al. 2010; Rodighiero e al. 2010). We
stress that only nine sources in our sample lie atz > 1.5, while
∼ 90% of the 5MUSES sample considered here are atz < 0.5.
The very good agreement between the two estimates also holds
when we consider the three different classes of sources individ-
ually (starbursts, composite and AGN-dominated) although, we
notice a somewhat larger discrepancy for the AGN-dominated
sources, with (LHerschel

IR /LSpritzer
IR ) = 0.90± 0.35, compared with

1.01± 0.16 and 0.99± 0.16 for composite and starburst galax-
ies, respectively. Finally, we note that the addition ofHerschel
submm data has a noticeable impact on the corresponding un-
certainties of the measuredLIR, which are reduced by a factor of
about 3.

4. Mid- to far-IR properties of AGN and star-forming
galaxies

The detailed mid-to-far-IR SEDs of our sample, as traced both
by IRS spectroscopy andSpitzer andHerschel broadband pho-
tometry, allows for an in-depth investigation of the total infrared
spectra for our sample. In this section we study possible correla-
tions between mid-IR spectral features, and warm and cold dust
components as well as variations of the PAH features between
star-forming and AGN-dominated galaxies.

4.1. Warm and cold dust

The wide range in the 6.2µm EWs in our sample reveals a vari-
ety of mechanisms that power the warm dust emission, ranging
from purely star-forming galaxies to AGN-dominated sources.
The impact of an AGN on the broadband mid-IR photometry
is known to be prominent, with AGN-dominated sources ex-
hibiting shallower mid-IR spectral slopes. For example, Wuet
al. (2010) reported that while composite and SF sources share
very similar S 30/S 15 (and S 70/S 24) flux density ratios, AGN-
dominated sources are clearly separated from the rest with con-

Fig. 5 Ratio of the total IR luminosity (LIR) estimated using both
Herschel andSpitzer data (LH+S

IR ) over the one using onlySpitzer
(LS

IR, see Wu et al. 2010) as a function of theEW6.2. (see Section
3.3). The solid purple line corresponds to the 1−to−1 relation
between the twoLIR estimates.

siderably lowerS 30/S 15 (andS 70/S 24) values. With the addi-
tion of theHerschel data we are now in a position to advance
this investigation by studying variations of the warm to cold dust
emission among the different classes, and to infer the impact of
an AGN on the total infrared emission of the galaxies.

We first investigated theL24/LIR ratio of our sources, where
L24 is the rest-frame 24µm luminosity as measured from the
rest-frame IRS spectra of the galaxies. This ratio can serveas
an indicator of the contribution of the warm emission to the total
IR output of a galaxy, or equally to the relative amount of warm
(L24) to total (LIR) dust mass. As shown in Fig. 6 (left), AGN
tend to exhibit an enhancedL24/LIR ratio compared with that
of star-forming galaxies. We notice, however, that within each
group (AGN, composites and star-forming galaxies) we find no
correlation betweenL24/LIR andEW6.2. Instead, theL24/LIR re-
mains roughly constant within each group, albeit with a con-
siderable scatter. In particular, we found a mean value and a
standard deviation of〈L24/LIR〉 = 0.14± 0.04 for star-forming
galaxies, 0.17± 0.08 for composites, and 0.32± 0.09 for AGN-
dominated sources. Evidently, the relative amount of warm dust
in AGN as traced by theL24/LIR ratio is higher than that found in
star-forming galaxies, revealing an additional mechanism, to the
energetic photons produced by young stars, which heats the dust
and boosts the mid-IR emission. Because the relative amountof
warm dust in AGN-dominated sources is boosted by a factor of
∼3 (for this redshift range), it is natural to expect that a consid-
erable fraction of the bolometric infrared luminosity would arise
from AGN activity in these systems. Indeed, based on the SED
decomposition presented in the previous section, we found that
for 75% of the AGN withL24/LIR > 0.3, more than half of the
emergingLIR is powered by the AGN (see Fig. 6 left) .

With the Herschel data in hand, we are also in a position
to investigate whether the dominant powering mechanism, as
traced by the spectral features in the mid-IR, has an impact on
the cold dust emission. In Fig. 6 (middle), we plot the derivedTd
measurements of the cold dust (λrest > 60µm), as derived from
the MBB fit, versus the 6.2µm EW of the sources in our sample.
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Fig. 6 Left: L24 / LIR ratio as a function of the 6.2µm PAH feature EW. Purple squares correspond to sources for which the
SED decomposition suggests that the AGN contribution to thetotal LIR is > 50%. Leftward arrows denote upper limits inEW6.2
measurements.Middle: Td versusEW6.2. Td estimates are derived based on a modified blackbody model for79 sources (out of
the total 154 sources shown in the left panel), which are detected in at least three bands atλrest> 60 µm, . Right: Td versus
fraction ofLIR arising from AGN activity, as derived based on SED decomposition.

Fig. 7 Left: Fraction ofMdust heated by radiation fields stronger than that of the diffuse ISM (or equivalently byU > Umin) as
a function of theL24 / LIR ratio for star-formation-dominated sources withEW6.2 > 0.5µm (black circles) and 0.2µm < EW6.2 ≤

0.5µm (purple circles). The orange line depicts the best fit to thedata.Right: Dust mass heated byU > Umin versusLPAH
TOT. Both

quantities are normalised byLIR. The purple lines donate the best fit to the data and a scatter of 0.2dex.

It appears that the cold dust temperature remains roughly con-
stant for the whole range of EWs, with only a small, statistically
insignificant, increase inTd as we move into the AGN regime.
Indeed, composite and star-forming galaxies share similardust
temperatures with〈 Td 〉 = (31± 3) K, while AGN-dominated
sources are marginally, although consistent within the uncertain-
ties, warmer with〈 Td 〉 = (34± 4) K. The same trend is seen
when we plot the dust temperature versus the fraction ofLIR
that arises from AGN activity within the galaxy (Fig. 6 right).
Sources for which the SED decomposition suggests that more
than half of the totalLIR originates from AGN activity have〈 Td
〉 = (34± 3) K, while for the rest we found〈 Td 〉 = (31± 3)
K. Hence, our analysis suggests that the far-IR part of the SED,
as traced by the SPIRE bands in our sample, is predominantly
shaped by, and directly linked to star formation and does not
carry any measurable signature of AGN activity. This is in agree-
ment with the findings of Hatziminaoglou et al. (2010), who
reported that SPIRE colours, which are a good proxy of cold
dustTd, are almost indistinguishable between star-forming and

AGN-dominated sources. We stress though that this applies to
AGN-dominated sources in our sample for which it was feasible
to derive aTd estimate, that is, those that are luminous enough in
the submm to be detected in the SPIRE bands. With this in mind,
we conclude that while the cold dust emission as traced by the
SPIRE bands does not reveal the presence of an AGN, there is a
marked difference in the mid- to far-IR colours of star-forming
and AGN dominated sources, yielding larger amounts of warm
dust in the latter. We note that similar results were reachedby
Kirkpatrick et al. (2012b) and Sajina et al. 2012, based on sam-
ples ofz = 0.4− 5 galaxies.

As we have seen, the bolometric infrared output of galax-
ies with EW6.2 > 0.2µm in our sample is dominated by star
formation activity. Therefore, the derived parameters from the
DL07 models provide meaningful constraints on the warm and
cold dust emission. In Fig. 7(left) we explore the contribution
of a PDR component to the infrared output, or in other words
the fraction of dust heated by PDRs (γ), as a function of the
warm to total dust emission ratio as traced byL24/LIR. We recall
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that the “PDR” component in the DL07 models describes the
amount of dust exposed to starlight with intensities higherthan
Umin, which is the radiation field of the diffuse ISM. Both for the
composite and for the star-forming galaxies, we found a corre-
lation between the two quantities, with the fraction ofLIR that
arises from PDRs increasing for galaxies with higherL24/LIR ra-
tios, or equally for a larger portion of warm dust. Composite
and star-forming galaxies follow the same trend and span the
sameL24/LIR range, pointing to a similar mechanism heating
their dust.

In Fig. 7(right) we also investigate the variations of the rela-
tive contribution of the PAH features to the totalLIR, as a func-
tion of the dust heated by radiation fields stronger thanUmin, that
is, γ × Mdust. Instead of looking at a particular PAH emission
feature we chose to consider the total PAH emission (LPAH

TOT) as in-
ferred by the sum of the fluxes of the 6.2, 7.7, and 11.3µm spec-
tral features of our sources. We found for fixedLIR, a weak anti-
correlation (ρ = −0.38) with PAH emission that decreases with
increasing amount of dust heated by stronger radiation fields.
While this trend could serve as evidence for PAH destructionin
sources with a larger portion of their total dust mass exposed
to stronger radiation fields, enhanced extinction or highercon-
tinuum levels cannot be ruled out by this analysis. In the next
subsection we attempt to tackle this question.

4.2. LIR/L8 versus PAH emission in star-forming galaxies

Recent studies based onHerschel data have revealed a scaling
law for star-forming galaxies, relating the total IR luminosity,
LIR, to the broadband (as traced by the IRAC 8µm filter) rest-
frame 8µm luminosity,L8. In particular, Elbaz et al. (2011),
showed that the 8µm bolometric correction factor,IR8 ≡ LIR/L8,
does not vary as a function ofLIR or redshift. Instead, IR8 ex-
hibits a Gaussian distribution containing the vast majority of
star-forming galaxies both locally and up toz ∼ 2.5, centred
on IR8 ≈ 4.9 and with a scatter ofσ ≈ 2.5. However, since
L8 probes emission both from the 7.7µm complex and from the
underlying continuum, it has been unclear whether the observed
spread in theLIR−L8 plane is mainly driven by PAH or mid-IR
continuum variations. Furthermore, the determination ofL8 in
these studies has primarily been based on K-corrected broadband
photometry obtained by using template SEDs. Here, given the
available IRS spectra, we can directly measureL8, and in com-
bination with the accurateLIR estimates offered by theHerschel
data, we can investigate theLIR−L8 relation among star-forming
galaxies as well as for sources ranging from purely star-forming
to AGN-dominated.

To estimateL8 for each source in our sample we convolved
its rest-frame IRS spectrum with the IRAC 8µm filter. To ac-
count for possible flux losses due to the narrow IRS short-low
slit we applied a correction factor estimated from the the ratio of
the photometric (broad-band) over the synthetic (IRS) observed
8µm (for sources withz < 0.75) and 24µm (for z > 0.75) flux
density. The overall correction is found to be on average< 20%.
The derivedL8 andLIR measurements are shown in Fig. 8 (left).
For star-forming and composite galaxies (EW6.2 > 0.2µm), the
two luminosities are found to correlate almost linearly (slope of
∼ 0.97) with a median equal to IR8= 6.0 [-2.5,2.9] in the whole
range ofLIR (i.e. 109-1012 L⊙). Interestingly, most of the AGN-
dominated sources withLIR < 1011.5 L⊙ also lie within the 68%
scatter of the relation, in agreement with previous studies(e.g.
Elbaz et al. 2011; Mullaney et al. 2012a; Kirkpatrick et al.
2012b). However, at higher luminosities (that also correspond to

higher-redshift sources), the majority of AGN appear to deviate
from the linear relation and exhibit an enhancedL8 for their LIR.

In Fig. 8, we explore the variation of IR8 as a function of
the 6.2µm equivalent width. We identified two trends: a mild
increase in the IR8 as we move from purely star-forming to com-
posite sources, and a dramatic drop when we enter the AGN
regime (EW6.2 < 0.2µm). In theEW6.2 ≥ 0.4µm regime a Spear-
man test yields a statistically significant (p = 2.8 × 10−5) anti-
correlation (ρ = −0.41) between IR8 andEW6.2. To examine
whether this correlation is robust against the uncertainties asso-
ciated with theEW6.2 and IR8 values, we created 1000 realisa-
tions by allowing the data to take values selected from Gaussians
(given the measured values and errors) and repeated the correla-
tion ranking test. The mean and standard deviation of the derived
correlations areρ = −0.39± 0.09, suggesting a weak but statis-
tically significant anti-correlation between the two parameters.

Interestingly, this trend is not driven byLIR because in this
regime (EW6.2 > 0.2µm), we found that IR8 andEW6.2 do not
correlate withLIR. Since theEW6.2 is an indicator of the strength
of the 6.2µm line relative to the underlying continuum, we ex-
amined whether this behaviour could be driven by variationsof
the 6.2µm PAH features or by variations of the mid-IR contin-
uum level. For a fixedLIR, L8 would increase if the drop in
the EW6.2 had been caused due to an elevated continuum, and
hence IR8 would remain constant or even drop. Therefore, the
decrease inEW6.2 for star-forming galaxies is more likely to be
due to lower PAH emission relative toLIR, rather than an ele-
vated 8µm continuum emission. On the other hand, the sharp
decrease of IR8 atEW6.2 < 0.2µm, can be understood as an in-
crease in the mid-IR continuum that results in both higherL8 and
lower EW6.2 for a givenLIR.

To explore this scenario we split the sources into two bins
of EW6.2, 0.4µm ≤ EW6.2 ≤ 0.6µm andEW6.2 > 0.7µm. We
then constructed a median IRS spectrum for each bin by stack-
ing the individual spectra normalised toLIR = 1 L⊙. To ensure
that the rest-frame 5µm emission was traced by the IRS spectra
we placed a lower limit ofz = 0.07 on the redshift of the sources
that enter the stack. For each spectrum we also define a local
continuum or plateau below the PAH features by fitting the PAH
features with Drude profiles using PAHFIT as described in Smith
et al. (2007). The resulting spectra in the rest-frame 5−11µm
wavelength range and the corresponding continuum levels are
shown in Fig. 9 (left). The two spectra exhibit almost identical
continua at 6.2µm with a noticeable difference in the emission
of the PAH feature. This implies that for fixedLIR, a decrease
in the EW6.2 of star−forming galaxies is primarily caused by a
decrease in the emission of the 6.2µm PAH feature and not by
dilution from an elevated continuum emission in the 5−15µm
regime. On the other hand, the mean IRS spectrum of AGN
dominated sources (EW6.2 ≤ 0.2µm) normalised toLIR= 1 L⊙
exhibits a mid-IR continuum about 10 times higher than that of
the star-forming galaxies, suggesting that the decrease inIR8
is due to PAH destruction or smearing from the strong contin-
uum emission. We note that repeating the analysis using a spline
function does not change our result.

The mean spectra in variousEW6.2 bins also provide clues
about the apparent increase of IR8 with decreasingEW6.2 among
star-forming galaxies. As shown in Fig. 9 (left),L8 probes both
the 7.7µm PAH complex and the continuum emission arising
from hot dust. Since the presented spectra are normalised tothe
sameLIR we can directly infer that at fixedLIR, sources with
higher EW6.2 have higherL8 and hence, lower IR8. Indeed,
measuringL8 directly from the spectra yields an IR8 value for
the sources in the 0.4µm ≤ EW6.2 ≤ 0.6µm bin higher by a fac-
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Fig. 8Left: LIR versusL8 for the whole 5MUSES sample. Black circles correspond to purely star-forming and composite sources,
while red triangles correspond to AGN. The solid grey line depicts the median and 68% dispersion of composite and star-forming
galaxies.Right: LIR/L8 versus EW of 6.2µm. The horizontal lines enclose the values ofLIR/L8 within the 68% dispersion from
the median. The orange lines depict the best-fit linear regression and its scatter in theEW6.2 ≥ 0.4µm regime. Purple squares
correspond to sources withfAGN > 0.5.

Fig. 9Left: Average spectra in variousEW6.2 bins in the 4−10µm range. The dashed lines correspond to the underlying continuum
emission as inferred by PAHFIT. The grey shadowed area depicts the 8.0µm IRAC filter. Right: Average (dashed lines), and average
continuum subtracted (solid lines) spectra of of all galaxies withEW6.2 ≥ 0.4µm grouped in those with IR8> 6 (orange lines), and
IR8< 6 (black lines)

tor of ∼1.4 than to those withEW6.2 ≥ 0.7µm. The variation
of the PAH features as a function of IR8 is more directly seen
when we split our sample of star-forming galaxies into two IR8
bins, above and below IR8= 6.0. The continuum-subtracted av-
erage IRS spectra of the two sub-samples are presented in Fig.
9 (right), clearly demonstrating a decrease of the PAHs emis-
sion for sources in the high IR8 bin. Indeed, the emission from
the PAH features measured directly from the stacked spectrais
higher by a factor of∼1.5 in the low IR8 bin than that in the high
IR8 bin.

We also investigated whether this result could be an arte-
fact because different galactic scales are probed by the IRS at
different redshifts. The low-z cutoff that we introduced in the

stack ensures that the smallest galaxy scale traced by IRS is∼6
kpc. Therefore, because we only probe a fraction of the disk for
the low−z sample, we could indeed be missing extended PAH
emission (e.g. Pereira-Santaella et al. 2010; Diaz-Santoset al.
2010b). An indication for the maximum of the PAH emission
that we might be missing is given by the ratio of the broad-band
(which traces the whole galaxy) to spectral flux ratio. As dis-
cussed above, this is only at a∼15% level and therefore, our
result would still hold because the observed PAH variation is of
a factor of∼1.5. We note though that this extreme scenario is un-
likely to be the case because we would also see a correlation be-
tween the 6.2µm EW (or IR8) and redshift. The absence of this
correlation (as indicated from our data), suggests that themissed
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flux cannot originate solely from PAHs. Furthermore, Elbaz et
al. (2011) and Diaz-Santos (2011) have shown that sources with
higher IR8 exhibit more extended 11.3µm PAH emission. Ac-
cordingly, one would expect that PAH emission is more likelyto
be missed for sources with lower IR8 values, which would ad-
ditionally strengthen our result. Finally, repeating the analysis
without applying any correction toL8 yields the same results,
albeit with an increase of the mean IR8 from 6.0 to 6.2. In sum-
mary, we have provided evidence that the spread in IR8 values
of star-forming galaxies mirrors variations in their PAH emis-
sion. In the next section we discuss possible explanations for the
origin of this observation.

5. Discussion

We have seen that the dispersion in theLIR−L8 relation defined
by star-forming galaxies traces variations in the PAHs emission
with respect toLIR. Because theLIR/L8 and LIR/LPAH do not
appear to correlate withLIR (see also Wu et al. 2010), other
physical parameters must drive this variation.

A possible explanation could be a varying level of AGN ac-
tivity. However, there are several arguments against this sce-
nario. First, for almost all sources withEW6.2 ≥ 0.4µm the SED
decomposition allocates the bulk ofLIR to star-formation activity
and none of them meet the power-law AGN criterion of Donley
et al. (2012), known to be a reliable selection of AGN (Mendez
et al. 2013). A prominent AGN activity would also boostL8 and
therefore decrease IR8 for a givenLIR. This becomes clear in the
EW6.2 < 0.2µm regime, where almost all sources are selected as
power-law AGNs and, as stated above, lie in the lower regime
of the IR8 main sequence or fall below it. Finally, as shown in
Fig. 1(right), we do not observe any correlation betweenEW6.2
and contribution of an AGN to the totalLIR. This means that
the observed increase of IR8 with decreasingEW6.2 cannot be
explained by an increasing AGN activity.

An alternative scenario that could explain the variation of
the PAH strength among star-forming galaxies is a variationin
the hardness of the interstellar radiation field (U). As argued
by Abel et al. (2009), under the assumption of a constant gas
density, an increase inU and therefore of the number of ion-
ising photons (hν > 13.6eV) produced by young, massive, OB
stars, would lead to an increase of the ratio of ionised to atomic
hydrogen and consequently to a reduced gas opacity. AsU in-
creases, the Hii regions extend to higher AV into the cloud, and a
larger portion of the UV photons are absorbed by the dust in the
ionised region and are re-emitted in the form of IR emission.The
net effect is that the fraction of UV photons available to ionise
or excite the PAH molecules in the surrounding PAH-rich PDRs
or in the neutral ISM is reduced for higherU values, resulting in
lower PAH emission for a fixedLIR (e.g. Peeters et al 2004). In
this scenario one would expect an anti-correlation betweenthe
strength of the PAHs relative to the continuum emission and the
hardness of the radiation field. This has already been shown to
be the case in various samples of local galaxies and star-forming
regions in the local Universe (e.g. Peeters et al. 2002, Madden
et al. 2006, Wu et al. 2006).

To test this scenario we considered the ratio of [Neiii]
λ15.56µm and the [Neiii] λ12.81µm lines, which is a common
tracer of the hardness of the radiation field (e.g. Genzel et al.
1998; Madden et al. 2006; Farrah et al. 2007). The diagnostic
value of this ratio is based on 1) the large difference in the ion-
isation potential of the Ne++(41 eV) and Ne+(21.6 eV), 2) the
fact that this ratio is independent of the neon abundances, and
3) does not suffer from differential extinction due to the proxim-

ity of the wavelength of the two emitted lines. In Fig. 10 (left)
we plot theLPAH

TOT/L15 as a function of [Neiii]/[Ne ii] for galaxies
in our sample withEW6.2 ≥ 0.4µm and for which the two lines
have been detected. The anti-correlation between the strength of
the radiation field and the relative strength of the PAH seen in
previous studies of local galaxies appears to hold for our sam-
ple, too, suggesting that galaxies with harder radiation fields,
as traced by the [Neiii]/[Ne ii] line ratio, tend to exhibit weaker
PAH emission than the underlying continuum. In this scenario
the PAH deficit could originate from PAH destruction from en-
ergetic photons produced by young and massive stars.

We also measured the [Neiii]/[Ne ii] ratio from the stacked
spectra in the two IR8 bins (IR8< 6.0 and 6.0< IR8 < 9.0)
and found that galaxies with higher IR8 values have a mean
[Ne iii]/[Ne ii] (and LPAH

TOT/L15) ratio that is approximately a fac-
tor of ∼2 higher than that of galaxies with IR8< 6.0. We note,
however, that there is only a very weak trend between IR8 and
[Ne iii]/[Ne ii] in individual detections. To explain this lack of a
clear correlation between IR8 and [Neiii]/[Ne ii] we recall that
[Ne iii]/[Ne ii] might mirror variations in the age of the starburst
(e.g. Thornley et al. 2000). It is possible that galaxies with
higher [Neiii]/[Ne ii] ratios have experienced a more recent (up
to 2Myrs) starburst event with a larger fraction of young and
massive OB stars than older starbursts. Therefore, the mid-IR
fine structures lines (those of neon in our case) predominantly
trace the youngest stellar populations (∼ few Myr). On the other
hand, the total infrared luminosity (the one of the two param-
eters that shape IR8) traces emission by dust heated by stellar
population up to∼ 100 Myr. As a consequence, changes in the
line ratios can occur on much shorter timescales than changes in
IR8, if the starburst has been occurring for more than 10 Myr.
That could also offer an alternative explanation for the variation
of IR8 as a function ofEW6.2; IR8 variations could result from
a mechanism that affectsLIR, but not the PAH emission, such as
a contribution of an old stellar population toLIR. That would
suggest that galaxies with higher IR8 values are galaxies that
have experienced an older starburst event and their bolometric
infrared output,LIR, significant contributes by dust heated by old
stellar populations. However, as shown by Elbaz et al. (2011),
high IR8 values in the local Universe, but also at high-z, are pre-
dominantly found among galaxies that are experiencing a recent
star-burst event with high specific star formation rates (such as
local ULIRGs and SMGs). In the above framework, a harder ra-
diation field would also result in a larger number of UV photons
per dust particle, or equally in a higher dust-mass-weighted lu-
minosity,LIR/Mdust. Indeed, this quantity reflects the amount of
available energy per dust mass unit, under the assumption that
the majority of the UV photons are eventually absorbed by dust
and are re-emitted in the IR. We note that in the DL07 models the
dust-mass-weighted luminosity is proportional to the meanradi-
ation field (〈U〉) and is a good proxy of the dust temperature of
the ISM of the galaxy (Magdis et al. 2012b). As shown in Fig.
10 (right), LIR/Mdust correlates with [Neiii]/[Ne ii], albeit with
a considerable scatter, suggesting that the dust-mass-weighted
luminosity (orTd) traces the hardness of the radiation field in
star-forming galaxies.

Differential line extinction due to gas density variations can
also cause a decrease in the observed [Neiii]/[Ne ii] ratio. For ex-
ample, Farrah et al. (2007) argued for an increased density of gas
in local ULIRGs based on their lower [Neiii]/[Ne ii] ratios (for
a given [Siv]/[S iii]) compared with those of systems with lower
infrared luminosities. However, a sole increase in gas density
cannot explain the observedLIR/Mdust−[Ne iii]/[Ne ii] correlation
in our sample. Finally, metallicity effects could also play a role.
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Fig. 10Left: LPAH
TOT/L15 versus [Neiii]/[Ne ii], as measured from the IRS spectra of the sources in our sample with EW6.2 ≥ 0.4µm.

The orange and blue stars correspond to the average spectra of galaxies with IR8≤ 6.0 and 6.0< IR8< 9.0, respectively. Leftward
arrows denote upper limits of the [Neiii]/[Ne ii] ratio for sources with only a [Neii] detectionRight: Dust-mass-weighted luminosity
(LIR/Mdust) as a function of the hardness of the radiation field traced bythe [Neiii]/[Ne ii] line ratio.

Fig. 11 Correlation betweenLIR and rest-frame luminosities at observed 10, 18, 21-, and 25.5µm. The choice of the rest-frame
luminosity wavelengths corresponds to the central wavelengths of the JWST-MIRI filters. Each IRS spectrum was shifted to the
rest-frame and convolved with MIRI filters. The best-fit regression line and the associated plot are shown in each panel and are
summarised in Table 3.

Galaxies with lower IR8 or PAH emission could simply be more
metal-rich and therefore have more PAHs, resulting in higher
L8 for a givenLIR. While [Neiii]/[Ne ii] is not expected to be
directly affected by metallicity variations, various studies have
shown that the [Neiii]/[Ne ii] ratios in low-metallicity galaxies
are very high (>3), often one to two orders of magnitude greater
than in more metal-rich starburst galaxies (e.g., Rigby & Rieke
2004, Madden et al. 2006, Wu et al. 2006). Metal poor galax-
ies also tend to exhibit lower (by a factor of 10)LPAH

TOT/L15 ratios
than metal-rich starbursts (Madden et al. 2006). While not con-
clusive, the fact that our sample exhibits only a narrow range

in the [Neiii]/[Ne ii] (0.1<[Ne iii]/[Ne ii]<0.8) andLTOT
PAH values,

and does not extend to values similar to those of local metal
poor dwarfs suggests that metallicity is not the main driverof
the observed dispersion.

While a firm conclusion cannot be reached, it appears that
the PAH deficit with respect toLIR in star-forming galaxies
with higher IR8 values is caused by PAH destruction due to
harder radiation fields that also result in higher dust tempera-
tures. These characteristics could be indicative of a more com-
pact star-formation geometry, which is in line with the recently
proposed correlation between IR8, compactness of the projected
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star-formation density, and excess in the specific star formation
rate (e.g., Diaz Santos et al. 2011; Elbaz et al. 2011). However,
a proper study of the spatial extent of the PAH emission and
of the star-forming regions in distant galaxies as traced bythe
mid-IR emission will have to wait for the launch of the James
Webb Space Telescope (JWST). Given that a large number of
distant galaxies that will be detected with MIRI onboard JWST
will lack detection in longer wavelengths it will be extremely
useful to have scaling relations between the mid-IR and total in-
frared luminosity. Using the observed IRS spectra of the galax-
ies and the total infrared luminosity as inferred from the addi-
tion of theHerschel data, we provide total luminosity calibra-
tions based on monochromatic luminosities at 10-, 18-, 21- and
25.5-µm as they will be traced by MIRI for AGN-dominated and
star-forming galaxies (Fig. 11 and Table 3).

6. Conclusions

We have used a 24µm-selected flux-limited sample of 154z ∼
0.15 galaxies all chosen to benefit from ancillary IRS spectra
and newHerschel SPIRE photometry as part of the HerMES
programme to construct their full IR SEDs. Based on SED de-
composition, on the relative strength of the 6.2µm PAH feature
with respect to the mid-IR continuum, and on the IRAC colours
of the sources, we have identified the dominant mechanism that
powers their infrared emission, classified them as AGN and star-
forming-dominated galaxies and investigated in detail their mid-
to-far-IR properties. Our main findings are summarised as fol-
lows:

– We found a statistically insignificant effect of the presence
of an AGN on the temperature of the cold dust of the host
galaxy. AGN-dominated sources exhibit a marginally higher
cold dust temperature, suggesting that the far-IR colours are
mainly shaped by star formation activity.

– Star-forming galaxies show an anti-correlation between the
IR8=LIR/L8and the 6.2µm PAH featureEW6.2. Our analysis
suggests that for galaxies withEW6.2 ≥ 0.4µm (i.e. star-
forming galaxies), differences in theEW6.2, for fixed LIR,
are driven by variations in the PAH emission and not by a
varying 5−15µm underlying continuum.

– For star-formation-dominated sources we confirm that the
strength of the PAH emission anti-correlates with the hard-
ness of the radiation field as traced by the [Neiii]/[Ne ii] ratio.

– The dust-mass-weighted luminosityLIR / Mdust, correlates
with the [Neiii]/[Ne ii] ratio, suggesting that sources with
harder interstellar radiation fields are characterised by higher
dust temperatures.

Overall, it appears that the decrease in the PAH strength, for
fixed LIR, is caused by harder radiation fields that are charac-
terised by high dust-mass-weighted luminosities and dust tem-
peratures. While this is in line with recent evidence that link
the IR8 with the compactness of the star-forming regions, the
upcoming JWST mission will allow for a more detailed investi-
gation both in local and in distant galaxies.
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Table 1. Herschel SPIRE Photometry of the 5MUSES sample

Name zspec S 24 S 250 S 350 S 500
[mJy] [mJy] [mJy] [mJy]

J021503.52-042421.6 0.137 5.2±0.3 19.4±2.4 - -
J021557.11-033729.0 0.032 8.8±0.4 123.5±2.4 58.2±2.6 21.0±3.4
J021649.71-042554.8 0.143 10.1±0.5 33.5±2.5 - -
J021743.82-051751.7 0.031 17.1±0.9 190.9±2.4 89.9±2.6 44.9±3.0
J021754.88-035826.4 0.226 10.3±0.5 138.2±2.3 83.2±2.5 41.1±3.1
J021849.76-052158.2 0.292 5.3±0.3 61.7±2.4 20.7±2.5 -
J021859.74-040237.2 0.199 15.9±0.8 34.5±2.4 19.0±2.4 -
J021916.05-055726.9 0.103 11.0±0.6 45.7±2.8 25.3±3.0 20.2±3.4
J021928.33-042239.8 0.042 17.3±0.9 43.9±2.5 21.7±2.4 -
J021939.08-051133.8 0.151 32.5±1.6 60.6±2.1 25.8±2.2 -
J021953.04-051824.1 0.072 30.3±1.5 157.6±2.2 72.9±2.2 27.8±2.8
J021956.96-052440.4 0.081 5.6±0.3 70.8±2.5 38.0±2.3 -
J022005.93-031545.7 1.560 6.9±0.3 37.5±2.4 38.5±4.7 -
J022145.09-053207.4 0.008 6.2±0.3 36.5±2.1 22.0±2.2 -
J022147.82-025730.7 0.068 21.0±1.1 218.2±2.4 96.0±2.9 27.0±4.4
J022147.87-044613.5 0.025 5.1±0.3 20.3±2.5 - -
J022151.54-032911.8 0.164 6.9±0.3 51.1±2.5 27.6±2.8 -
J022205.03-050537.0 0.258 6.3±0.3 96.5±2.4 47.1±2.7 22.5±4.7
J022223.26-044319.8 0.073 5.1±0.3 40.3±2.4 - -
J022224.06-050550.3 0.149 5.7±0.3 33.5±2.5 - 30.8±2.8
J022241.34-045652.0 0.139 5.1±0.3 30.6±2.4 - -
J022257.96-041840.8 0.239 5.3±0.3 48.5±2.3 23.6±2.5 -
J022301.97-052335.8 0.708 6.8±0.3 141.8±2.4 73.3±2.4 39.1±3.1
J022315.58-040606.0 0.199 9.4±0.5 76.3±2.1 38.4±2.5 24.4±2.6
J022329.13-043209.5 0.144 7.6±0.4 50.0±2.5 - -
J022334.65-035229.4 0.176 7.6±0.4 25.8±2.3 - -
J022345.04-054234.4 0.143 9.1±0.5 58.7±2.3 22.7±2.2 -
J022413.64-042227.8 0.116 9.2±0.5 55.3±2.3 25.8±2.6 -
J022422.48-040230.5 0.171 7.5±0.4 31.4±2.4 - -
J022431.58-052818.8 2.068 9.4±0.5 45.7±2.4 42.0±2.3 28.1±3.5
J022434.28-041531.2 0.259 6.3±0.3 73.1±2.4 21.8±3.5 -
J022438.97-042706.3 0.252 6.6±0.3 31.4±2.4 27.8±2.4 24.6±3.0
J022446.99-040851.3 0.096 5.3±0.3 131.8±2.4 41.5±3.9 -
J022457.64-041417.9 0.063 11.9±0.6 166.6±2.3 91.5±2.5 33.3±6.1
J022507.43-041835.7 0.105 6.8±0.3 66.1±2.2 31.4±2.3 20.4±2.6
J022522.59-045452.2 0.144 10.1±0.5 115.1±2.4 53.1±3.7 -
J022536.44-050011.5 0.053 13.7±0.7 474.6±2.5 205.1±2.6 75.1±3.6
J022548.21-050051.5 0.150 8.0±0.4 59.1±2.3 - -
J022549.78-040024.6 0.044 58.5±2.9 186.1±2.5 73.5±2.7 30.0±3.2
J022559.99-050145.3 0.205 5.7±0.3 68.4±2.6 30.3±2.3 -
J022602.92-045306.8 0.056 6.4±0.3 59.3±2.4 31.4±2.5 24.8±2.7
J022603.61-045903.8 0.055 31.4±1.6 167.6±2.5 75.7±2.4 30.2±3.1
J022617.43-050443.4 0.057 48.7±2.4 79.9±2.5 35.5±2.5 -
J022637.79-035841.6 0.070 13.5±0.7 28.4±2.5 18.4±4.0 -
J022655.87-040302.2 0.135 6.9±0.3 16.1±2.4 - -
J022720.68-044537.1 0.055 73.1±3.7 329.5±2.5 140.4±2.4 52.0±3.5
J022738.53-044702.7 0.173 7.1±0.4 25.6±2.4 - -
J022741.64-045650.5 0.055 11.4±0.6 126.1±2.5 56.6±2.6 31.8±3.0
J103237.44+580845.9 0.251 6.1±0.3 169.7±8.0 62.3±3.5 -
J103450.50+584418.2 0.091 20.1±1.0 99.0±6.4 44.2±9.5 -
J103513.72+573444.6 1.537 5.5±0.3 69.5±4.3 45.3±3.6 33.0±5.4
J103527.20+583711.9 0.885 6.9±0.3 52.8±4.1 42.5±4.1 21.3±6.6
J103531.46+581234.2 0.176 5.0±0.3 108.6±5.1 43.5±4.8 -
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Table 1 (cont’d)

Name zspec S 24 S 250 S 350 S 500
[mJy] [mJy] [mJy] [mJy]

J103542.76+583313.1 0.087 6.6±0.3 27.7±4.4 - -
J103601.81+581836.2 0.100 6.0±0.3 53.3±3.9 21.3±4.5 -
J103646.42+584330.6 0.140 6.8±0.3 60.2±3.9 18.0±4.2 -
J103803.35+572701.5 1.285 15.4±0.8 70.5±4.3 37.8±4.3 -
J103813.90+580047.3 0.205 6.2±0.3 30.8±4.4 17.0±4.4 -
J103856.16+570333.9 0.178 5.7±0.3 16.6±4.3 - -
J104016.32+570846.0 0.118 5.2±0.3 63.6±5.6 - -
J104058.79+581703.3 0.072 10.4±0.5 16.8±4.1 - -
J104131.79+592258.4 0.925 7.0±0.4 41.0±4.3 - -
J104132.49+565953.0 0.346 8.3±0.4 21.0±4.0 - -
J104159.83+585856.4 0.360 21.7±1.1 31.5±4.9 17.7±5.3 -
J104255.66+575549.7 1.468 6.4±0.3 23.3±4.1 - -
J104432.94+564041.6 0.067 28.7±1.4 286.5±5.1 114.4±4.4 31.8±6.9
J104438.21+562210.7 0.025 80.6±4.0 590.6±7.4 231.0±5.3 84.6±5.6
J104454.08+574425.7 0.118 6.5±0.3 165.3±4.9 77.3±4.7 -
J104516.02+592304.7 0.322 5.1±0.3 19.4±4.1 - -
J104643.26+584715.1 0.140 5.4±0.3 102.4±4.5 42.1±5.6 -
J104705.07+590728.4 0.391 7.0±0.4 16.1±4.3 - -
J104729.89+572842.9 0.230 6.2±0.3 136.0±4.8 72.8±4.5 26.6±7.5
J104837.81+582642.1 0.232 7.6±0.4 114.0±4.3 46.5±4.8 -
J104843.90+580341.2 0.162 7.1±0.4 36.8±6.5 - -
J104907.15+565715.3 0.072 9.7±0.5 106.9±4.1 31.8±4.4 -
J105005.97+561500.0 0.119 14.8±0.7 106.9±3.7 44.0±3.8 27.9±7.4
J105047.83+590348.3 0.131 5.2±0.3 75.1±5.4 32.4±4.1 -
J105106.12+591625.3 0.768 5.4±0.3 29.8±6.5 - -
J105128.05+573502.4 0.073 10.0±0.5 54.6±4.4 24.4±4.4 -
J105158.53+590652.0 1.814 5.4±0.3 48.7±5.2 40.7±8.4 -
J105200.29+591933.7 0.115 11.4±0.6 31.3±5.1 - -
J105206.56+580947.1 0.117 16.7±0.8 247.5±6.0 97.7±5.8 -
J105336.87+580350.7 0.460 5.9±0.3 33.3±4.7 - -
J105404.11+574019.7 1.101 8.5±0.4 15.5±4.2 - -
J105421.65+582344.6 0.205 16.8±0.8 114.7±4.1 39.9±3.8 -
J105604.84+574229.9 1.211 11.2±0.6 36.6±6.9 28.5±8.7 -
J105636.95+573449.3 0.047 6.4±0.3 109.9±4.5 35.6±5.6 -
J105641.81+580046.0 0.130 7.5±0.4 104.9±4.2 34.1±4.0 -
J105705.43+580437.4 0.140 16.5±0.8 129.1±4.6 47.4±4.7 -
J105733.53+565737.4 0.086 5.6±0.3 26.1±5.3 - -
J105740.55+570616.4 0.073 6.1±0.3 34.7±3.9 - -
J105903.47+572155.1 0.119 13.8±0.7 60.9±4.5 - -
J105951.71+581802.9 2.335 5.3±0.3 29.7±4.6 41.8±4.8 27.0±8.8
J105959.95+574848.1 0.453 9.1±0.5 37.8±5.2 - -
J110002.06+573142.1 0.387 8.3±0.4 64.0±4.3 - -
J110124.97+574315.8 0.243 6.1±0.3 47.1±4.1 25.2±4.7 -
J110133.80+575206.6 0.277 6.4±0.3 136.3±5.2 58.2±4.5 30.6±6.5
J110223.58+574436.2 0.226 10.2±0.5 27.0±5.1 17.4±5.5 -
J110235.02+574655.7 0.226 6.2±0.3 44.2±4.3 - -
J160408.18+542531.2 0.260 5.0±0.3 62.4±1.5 33.1±1.6 -
J160655.35+534016.9 0.214 14.6±0.7 30.1±1.6 23.1±1.5 -
J160803.71+545301.9 0.053 5.1±0.3 180.7±1.5 76.2±1.6 25.8±2.6
J160832.59+552926.9 0.065 5.9±0.3 102.9±1.8 50.6±1.6 -
J160858.38+553010.2 0.066 8.8±0.4 101.7±1.3 37.2±1.2 -
J160907.56+552428.4 0.065 7.7±0.4 128.1±1.5 57.9±1.5 19.1±2.0
J160908.28+552241.4 0.084 6.6±0.3 110.9±1.5 42.5±1.7 -

Article number, page 17 of 22



Table 1 (cont’d)

Name zspec S 24 S 250 S 350 S 500
[mJy] [mJy] [mJy] [mJy]

J160926.69+551642.3 0.068 6.8±0.3 81.7±1.5 35.8±1.9 -
J160931.55+541827.3 0.082 5.6±0.3 105.1±1.5 35.0±1.5 -
J160937.48+541259.2 0.086 5.7±0.3 129.7±1.5 58.0±1.5 22.1±2.0
J161103.73+544322.0 0.063 6.6±0.3 71.4±1.5 29.4±3.3 -
J161123.44+545158.2 0.078 5.5±0.3 56.2±1.6 21.4±1.5 -
J161223.39+540339.2 0.138 13.0±0.6 70.5±1.6 28.1±1.9 -
J161233.43+545630.4 0.083 8.3±0.4 185.3±1.5 87.0±1.8 38.3±3.5
J161241.05+543956.8 0.035 5.7±0.3 22.0±1.5 - -
J161250.85+532304.9 0.048 17.9±0.9 114.6±1.6 46.3±1.2 18.6±1.9
J161254.17+545525.4 0.065 8.0±0.4 257.0±1.6 123.6±1.5 49.4±1.8
J161357.01+534105.3 0.180 6.5±0.3 45.9±1.6 32.9±1.8 22.9±2.1
J161411.52+540554.3 0.305 5.9±0.3 47.7±1.6 28.5±1.8 19.2±1.9
J161521.78+543148.3 0.474 5.1±0.3 21.7±1.5 - -
J161551.45+541535.9 0.215 6.3±0.3 98.7±1.5 42.0±1.5 -
J161645.92+542554.4 0.223 12.4±0.6 31.4±1.6 - -
J161759.22+541501.3 0.135 22.7±1.1 35.8±2.4 16.5±3.1 -
J161819.31+541859.0 0.083 28.3±1.4 378.9±1.7 153.5±1.9 51.4±3.1
J171033.21+584456.8 0.281 6.1±0.3 43.7±2.8 - -
J171232.34+592125.9 0.210 8.7±0.4 138.9±3.0 85.3±3.2 36.9±4.2
J171233.38+583610.5 1.663 5.1±0.3 20.7±2.5 - -
J171233.77+594026.4 0.217 5.1±0.3 36.4±3.4 - -
J171316.50+583234.9 0.079 6.7±0.3 139.5±3.1 60.7±3.0 21.5±3.6
J171414.81+585221.5 0.167 9.0±0.5 38.5±2.5 - -
J171419.98+602724.6 2.990 5.6±0.3 17.9±2.5 - -
J171446.47+593400.1 0.129 7.5±0.4 96.9±2.8 34.3±3.1 -
J171447.31+583805.9 0.257 5.4±0.3 61.3±2.7 27.5±2.3 -
J171513.88+594638.1 0.248 5.1±0.3 60.6±2.6 25.1±2.8 -
J171550.50+593548.8 0.066 9.1±0.5 123.7±2.8 63.2±2.7 25.5±3.6
J171614.48+595423.8 0.153 8.6±0.4 107.5±2.9 45.6±2.8 -
J171630.23+601422.7 0.107 8.6±0.4 41.7±2.5 - -
J171650.58+595751.4 0.182 6.8±0.3 17.0±3.2 - -
J171711.11+602710.0 0.110 9.5±0.5 58.7±2.4 20.0±2.6 -
J171747.51+593258.1 0.248 5.3±0.3 22.3±2.4 - -
J171852.71+591432.0 0.322 14.0±0.7 51.4±2.6 24.7±2.8 -
J171933.37+592742.8 0.139 7.6±0.4 128.3±2.8 45.4±2.7 -
J171944.91+595707.7 0.069 14.4±0.7 135.3±3.2 50.4±3.1 -
J172043.28+584026.6 0.125 9.7±0.5 144.8±2.8 50.8±2.6 -
J172044.86+582924.0 1.697 5.3±0.3 24.1±2.7 - -
J172159.43+595034.3 0.028 9.7±0.5 146.5±2.7 62.2±2.9 -
J172219.58+594506.9 0.272 7.8±0.4 25.2±3.2 19.0±3.3 -
J172228.04+601526.0 0.742 7.2±0.4 40.1±3.0 18.3±3.8 -
J172238.73+585107.0 1.624 6.7±0.3 54.1±2.5 42.8±2.9 29.0±3.4
J172313.06+590533.1 0.108 6.2±0.3 61.1±2.4 24.4±2.8 -
J172355.58+601301.7 0.175 5.4±0.3 89.4±2.6 36.8±2.7 19.3±3.4
J172355.97+594047.6 0.030 5.2±0.3 27.2±2.4 - -
J172402.11+600601.4 0.156 8.0±0.4 70.7±5.0 - -
J172546.80+593655.3 0.035 26.0±1.3 461.0±4.5 201.7±2.9 83.6±3.9
J172551.35+601138.9 0.029 27.3±1.4 266.7±3.4 115.8±3.0 44.0±2.9
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Table 2. Physical Properties of the 5MUSES sample as derivedbased on the DL07 and MBB models

Name zspec logLIR logMdust
a γ Umin Td

b AGN c

[L⊙] [ M⊙] - - [K] frac.

J021503.52-042421.6 0.137 10.86±0.04 8.01±0.07 1.0 5 - 0.06
J021557.11-033729.0 0.032 9.83±0.02 7.18±0.09 1.5 3 26±1 0.00
J021638.21-042250.8 0.143 10.99±0.01 - - - - 0.58
J021640.72-044405.1 0.031 10.11±0.01 7.29±0.07 0.7 5 28±1 0.08
J021649.71-042554.8 0.226 11.67±0.01 8.76±0.03 3.0 5 31±2 0.36
J021657.77-032459.7 0.292 11.64±0.03 8.35±0.02 0.7 12 35±1 0.16
J021729.06-041937.8 0.199 11.13±0.01 - - - - 0.12
J021743.01-043625.1 0.103 10.66±0.01 - - - 30±1 0.74
J021743.82-051751.7 0.042 9.98±0.01 6.50±0.06 10.0 10 35±7 0.29
J021754.88-035826.4 0.151 11.36±0.01 - - - 36±1 0.58
J021808.22-045845.3 0.072 10.86±0.04 7.75±0.03 3.0 8 32±1 0.12
J021830.57-045622.9 0.081 10.46±0.01 7.65±0.04 0.7 5 29±1 0.08
J021849.76-052158.2 1.560 13.07±0.01 - - - - 0.52
J021859.74-040237.2 0.008 8.18±0.01 5.43±0.02 3.5 3 27±1 0.38
J021909.60-052512.9 0.068 10.96±0.04 8.09±0.03 1.5 5 29±1 0.10
J021912.71-050541.8 0.025 9.23±0.02 6.52±0.07 2.5 3 - 0.30
J021916.05-055726.9 0.164 11.10±0.02 7.91±0.08 5.0 8 33±1 0.00
J021928.33-042239.8 0.258 11.67±0.03 8.50±0.09 0.1 10 33±2 0.18
J021938.70-032508.2 0.073 10.26±0.02 7.33±0.07 3.5 5 30±1 0.00
J021939.08-051133.8 0.149 10.93±0.01 7.55±0.04 3.0 12 35±1 0.16
J021953.04-051824.1 0.139 10.51±0.01 7.83±0.10 8.0 2 - 0.55
J021956.96-052440.4 0.239 11.25±0.02 8.32±0.04 4.0 5 31±1 0.40
J022000.22-043947.6 0.708 12.67±0.01 - - - 43±1 0.40
J022005.93-031545.7 0.199 11.31±0.02 8.33±0.07 4.5 5 32±1 0.01
J022012.21-034111.8 0.144 11.00±0.01 7.87±0.03 4.5 7 33±1 0.04
J022145.09-053207.4 0.176 11.02±0.01 7.43±0.07 5.5 15 - 0.02
J022147.82-025730.7 0.143 11.08±0.03 7.88±0.07 1.0 10 - 0.19
J022147.87-044613.5 0.116 10.90±0.02 7.77±0.06 3.5 8 31±1 0.14
J022151.54-032911.8 0.171 11.09±0.01 7.58±0.04 6.5 12 - 0.23
J022205.03-050537.0 2.068 13.35±0.01 - - - 30±2 0.54
J022223.26-044319.8 0.259 11.57±0.02 8.29±0.07 3.0 10 34±7 0.18
J022224.06-050550.3 0.252 11.21±0.02 - - - 32±1 0.19
J022241.34-045652.0 0.096 10.89±0.02 8.10±0.05 0.0 5 29±1 0.00
J022257.96-041840.8 0.063 10.69±0.04 7.80±0.03 2.0 5 29±1 0.06
J022301.97-052335.8 0.105 10.61±0.02 7.97±0.06 6.0 2 28±1 0.09
J022309.31-052316.1 0.144 11.27±0.01 8.22±0.07 2.5 7 31±1 0.00
J022315.58-040606.0 0.053 11.02±0.05 8.00±0.05 0.4 8 31±1 0.08
J022329.13-043209.5 0.150 11.15±0.01 7.72±0.07 0.5 15 36±1 0.12
J022334.65-035229.4 0.044 10.62±0.01 7.39±0.02 6.5 8 32±1 0.23
J022345.04-054234.4 0.205 11.28±0.03 8.27±0.06 2.0 7 32±6 0.17
J022356.49-025431.1 0.056 10.13±0.02 7.25±0.10 2.0 5 29±1 0.09
J022413.64-042227.8 0.055 10.59±0.03 7.68±0.05 2.5 5 29±6 0.10
J022422.48-040230.5 0.057 10.72±0.01 - - - 38±1 0.68
J022431.58-052818.8 0.070 10.42±0.03 7.26±0.07 4.0 8 - 0.11
J022434.28-041531.2 0.135 10.66±0.01 - - - - 0.26
J022438.97-042706.3 0.055 11.02±0.01 7.86±0.03 4.0 8 32±1 0.16
J022446.99-040851.3 0.173 11.07±0.01 7.51±0.03 2.0 20 - 0.21
J022457.64-041417.9 0.055 10.51±0.02 7.79±0.07 0.7 4 27±1 0.10
J022507.43-041835.7 0.251 11.80±0.01 8.82±0.09 0.7 7 31±1 0.00
J022508.33-053917.7 0.091 10.85±0.01 7.86±0.07 5.5 5 31±1 0.14
J022522.59-045452.2 1.537 13.13±0.01 - - - 46±2 0.74
J022536.44-050011.5 0.885 12.57±0.01 - - - 35±1 0.42
J022548.21-050051.5 0.176 11.27±0.01 8.27±0.05 1.5 7 31±1 0.01

Article number, page 19 of 22



Table 2 (cont’d)

Name zspec logLIR logMdust
a γ Umin Td

b AGN c

[L⊙] [ M⊙] - - [K] frac.

J022549.78-040024.6 0.087 10.48±0.01 7.12±0.08 2.5 12 - 0.00
J022559.99-050145.3 0.100 10.54±0.02 7.86±0.07 2.5 3 28±2 0.13
J022602.92-045306.8 0.140 10.94±0.01 7.88±0.05 3.0 7 32±1 0.00
J022603.61-045903.8 1.285 13.20±0.01 - - - 54±1 0.78
J022617.43-050443.4 0.205 11.12±0.01 7.83±0.03 8.0 8 - 0.36
J022637.79-035841.6 0.178 10.74±0.02 6.56±3.71 90.0 10 - 0.24
J022655.87-040302.2 0.118 10.80±0.01 7.73±0.04 2.0 8 - 0.08
J022720.68-044537.1 0.072 9.91±0.01 - - - - 0.56
J022738.53-044702.7 0.925 12.32±0.01 - - - - 0.66
J022741.64-045650.5 0.346 11.75±0.01 7.94±0.03 10.0 20 - 0.13
J103237.44+580845.9 0.360 11.91±0.01 - - - - 0.52
J103450.50+584418.2 1.468 12.81±0.01 - - - - 0.64
J103513.72+573444.6 0.067 10.94±0.02 8.04±0.06 2.0 5 30±7 0.00
J103527.20+583711.9 0.025 10.44±0.04 7.46±0.04 1.0 7 30±6 0.11
J103531.46+581234.2 0.118 11.00±0.07 8.39±0.10 0.9 3 26±1 0.14
J103542.76+583313.1 0.322 11.44±0.01 - - - - 0.42
J103601.81+581836.2 0.140 10.90±0.02 8.37±0.07 3.0 2 27±1 0.15
J103606.45+581829.7 0.391 11.58±0.01 - - - - 0.95
J103646.42+584330.6 0.230 11.54±0.02 8.75±0.06 0.4 5 29±1 0.11
J103701.99+574414.8 0.232 11.66±0.02 8.66±0.08 1.5 7 - 0.10
J103724.74+580512.9 0.162 11.02±0.01 7.68±0.05 5.0 10 - 0.00
J103803.35+572701.5 0.072 10.62±0.01 7.60±0.07 0.9 8 - 0.07
J103813.90+580047.3 0.119 11.13±0.03 7.77±0.06 5.0 10 34±1 0.09
J103818.19+583556.5 0.131 10.86±0.04 8.12±0.05 0.9 4 29±1 0.00
J103856.16+570333.9 0.768 12.23±0.01 - - - - 0.39
J104016.32+570846.0 0.073 10.40±0.01 7.06±0.06 4.5 10 34±1 0.00
J104058.79+581703.3 1.814 13.16±0.01 - - - - 0.51
J104131.79+592258.4 0.115 10.78±0.01 7.28±0.08 6.5 12 36±1 0.13
J104132.49+565953.0 0.117 11.31±0.01 8.49±0.06 0.7 5 29±1 0.12
J104159.83+585856.4 0.460 11.92±0.01 8.99±0.21 20.0 2 - 0.08
J104255.66+575549.7 1.101 12.50±0.02 - - - - 0.83
J104303.50+585718.1 0.205 11.47±0.01 - - - 32±1 0.37
J104432.94+564041.6 1.211 12.98±0.02 - - - 49±1 0.78
J104438.21+562210.7 0.047 10.22±0.01 7.25±0.09 0.4 7 31±1 0.00
J104454.08+574425.7 0.130 11.00±0.02 7.98±0.09 2.0 7 30±6 0.00
J104501.73+571111.3 0.140 11.19±0.02 - - - 30±1 0.58
J104516.02+592304.7 0.086 10.32±0.01 6.83±0.07 2.5 15 - 0.08
J104643.26+584715.1 0.073 10.26±0.01 7.31±0.07 4.0 5 - 0.00
J104705.07+590728.4 0.119 10.87±0.02 7.54±0.09 10.0 8 33±1 0.31
J104729.89+572842.9 2.335 13.40±0.02 - - - 30±1 0.62
J104837.81+582642.1 0.453 11.78±0.01 - - - - 0.38
J104839.73+555356.4 0.387 12.02±0.01 8.26±0.02 8.0 20 - 0.07
J104843.90+580341.2 0.243 11.26±0.01 8.22±0.06 6.5 5 33±1 0.08
J104907.15+565715.3 0.277 11.81±0.01 8.75±0.04 1.5 8 33±2 0.00
J104918.33+562512.9 0.226 11.25±0.01 - - - 29±1 0.36
J105005.97+561500.0 0.226 11.46±0.01 7.83±0.02 3.5 20 - 0.08
J105047.83+590348.3 0.260 11.52±0.02 8.29±0.04 1.5 10 34±2 0.07
J105058.76+560550.0 0.214 11.26±0.02 - - - 34±1 0.20
J105106.12+591625.3 0.053 10.35±0.04 7.78±0.05 0.0 3 26±1 0.00
J105128.05+573502.4 0.065 10.27±0.02 7.58±0.03 3.0 3 28±3 0.01
J105158.53+590652.0 0.066 10.34±0.01 7.52±0.02 2.5 4 29±1 0.00
J105200.29+591933.7 0.065 10.56±0.03 7.76±0.03 0.2 5 29±2 0.00
J105206.56+580947.1 0.084 10.62±0.01 7.80±0.03 1.0 5 28±1 0.00
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Table 2 (cont’d)

Name zspec logLIR logMdust
a γ Umin Td

b AGN c

[L⊙] [ M⊙] - - [K] frac.

J105336.87+580350.7 0.068 10.30±0.02 7.53±0.04 1.5 4 29±1 0.00
J105404.11+574019.7 0.082 10.61±0.04 7.81±0.05 0.2 5 - 0.00
J105421.65+582344.6 0.086 10.68±0.03 7.96±0.04 0.6 4 28±1 0.00
J105604.84+574229.9 0.063 10.20±0.02 7.56±0.03 1.5 3 - 0.16
J105636.95+573449.3 0.078 10.40±0.02 7.36±0.05 1.0 8 31±1 0.00
J105641.81+580046.0 0.138 11.05±0.01 7.78±0.03 10.0 7 34±3 0.24
J105705.43+580437.4 0.083 10.72±0.03 8.22±0.02 2.0 2 26±1 0.00
J105733.53+565737.4 0.035 9.54±0.01 6.44±0.04 2.5 8 31±1 0.00
J105740.55+570616.4 0.048 10.40±0.02 7.20±0.02 0.9 10 33±1 0.00
J105829.28+580439.2 0.065 10.59±0.03 8.17±0.06 0.6 2 - 0.00
J105854.08+574130.0 0.180 10.86±0.01 - - - 27±1 0.17
J105903.47+572155.1 0.305 11.73±0.03 8.30±0.06 4.0 12 36±1 0.22
J105951.71+581802.9 0.474 11.59±0.01 - - - - 0.43
J105959.95+574848.1 0.215 11.49±0.01 8.36±0.03 3.0 8 - 0.00
J110002.06+573142.1 0.223 11.28±0.01 - - - - 0.51
J110124.97+574315.8 0.135 11.15±0.01 - - - 38±2 0.67
J110133.80+575206.6 0.083 11.16±0.04 8.31±0.03 0.9 5 29±1 0.00
J110223.58+574436.2 0.281 11.42±0.01 8.22±0.02 6.5 8 - 0.21
J110235.02+574655.7 0.210 11.63±0.01 8.55±0.03 1.5 8 32±2 0.00
J160408.18+542531.2 1.663 12.88±0.01 - - - - 0.76
J160630.59+542007.4 0.217 11.26±0.01 7.68±0.05 2.5 20 - 0.23
J160655.35+534016.9 0.079 10.59±0.01 7.98±0.00 1.0 3 27±1 0.00
J160803.71+545301.9 0.167 11.19±0.01 7.56±0.00 4.0 20 - 0.25
J160832.59+552926.9 2.990 13.14±0.02 - - - - 0.00
J160839.73+552330.6 0.129 11.11±0.01 8.05±0.07 2.0 8 32±1 0.00
J160858.38+553010.2 0.257 11.57±0.01 8.18±0.01 3.0 12 - 0.34
J160907.56+552428.4 0.248 11.28±0.01 8.45±0.07 3.5 4 31±9 0.04
J160908.28+552241.4 0.066 10.25±0.02 - - - 24±1 0.83
J160926.69+551642.3 0.153 11.25±0.02 8.25±0.07 1.5 7 31±1 0.00
J160931.55+541827.3 0.107 10.62±0.05 7.45±0.09 5.0 8 - 0.22
J160937.48+541259.2 0.182 10.81±0.01 8.04±0.09 60.0 0 - 0.20
J161103.73+544322.0 0.110 10.82±0.01 7.74±0.07 3.5 7 31±1 0.00
J161123.44+545158.2 0.248 10.84±0.01 - - - - 0.56
J161223.39+540339.2 0.322 11.90±0.01 - - - - 0.58
J161233.43+545630.4 0.139 11.22±0.02 8.03±0.09 0.4 10 33±1 0.22
J161241.05+543956.8 0.069 10.73±0.01 7.52±0.10 1.0 10 - 0.00
J161250.85+532304.9 0.125 11.11±0.02 8.13±0.11 1.0 7 30±1 0.00
J161254.17+545525.4 1.697 12.91±0.01 - - - - 0.56
J161357.01+534105.3 0.028 9.76±0.01 7.07±0.07 0.4 4 27±1 0.00
J161411.52+540554.3 0.272 11.22±0.01 - - - - 0.30
J161521.78+543148.3 0.742 12.34±0.01 - - - - 0.55
J161551.45+541535.9 1.624 13.08±0.01 - - - - 0.43
J161645.92+542554.4 0.108 10.74±0.02 7.52±0.19 1.5 10 32±1 0.20
J161759.22+541501.3 0.175 11.15±0.01 8.28±0.05 2.0 5 30±1 0.11
J161819.31+541859.0 0.030 9.33±0.01 6.24±0.03 4.0 7 - 0.29
J171033.21+584456.8 0.156 11.10±0.01 7.97±0.01 3.5 8 - 0.00
J171124.22+593121.4 0.035 10.47±0.02 7.79±0.08 0.0 4 27±1 0.05
J171232.34+592125.9 0.029 10.25±0.01 7.22±0.04 0.7 8 30±1 0.05

Notes:
a: Derived based on the DL07 model.

b: Derived based on MBB.
c: The uncertainties of the fractions as derived by the SED decomposition using DECOMPIR, are≥10%.
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Table 3. Scaling relations betweenLIR and various MIRI broad-band luminosities. y=α+β × x, where y= logLIR and x the
corresponding MIRI luminosities.

y/x log(L10/L⊙) log(L18/L⊙) log(L21/L⊙) log(L25.5/L⊙)

log(LIR/L⊙) (SF) α = 1.33±0.32,β = 0.98±0.03 1.52±0.22, 0.95±0.02 1.98±0.27, 0.90±0.03 1.69±0.28, 0.91±0.03
log(LIR/L⊙) (AGN) α = 2.34±0.72,β = 0.84±0.06 1.55±0.65, 0.90±0.06 1.46±0.64, 0.91±0.06 1.39±0.69, 0.91±0.06
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