Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
The Direct Observation of Secondary Radical Chain Chemistry in the Heterogeneous Reaction of Chlorine Atoms with Submicron Squalane Droplets

Permalink
https://escholarship.org/uc/item/98x0g18t

Author
Liu, Chen-Lin

Publication Date
2012-11-09
The Direct Observation of Secondary Radical Chain Chemistry in the Heterogeneous Reaction of Chlorine Atoms with Submicron Squalane Droplets

Chen-Lin Liu,1,2,# Jared D. Smith,1 Dung L. Che,1,2 Musahid Ahmed,1 Stephen R. Leone,1,2,3 and Kevin R. Wilson1,*

1 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2 Department of Chemistry, University of California, Berkeley, CA 94720
3 Department of Physics, University of California, Berkeley, CA 94720
current address: National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan

*Correspondence to: K. R. Wilson (krwilson@lbl.gov)

Abstract
The reaction of Cl atoms, in the presence of Cl2 and O2, with sub-micron squalane particles is used as a model system to explore how surface hydrogen abstraction reactions initiate chain reactions that rapidly transform the chemical composition of an organic particle. The heterogeneous reaction is measured in a photothermal flow tube reactor in which chlorine atoms are produced by the photolysis of Cl2 at 365 nm. By monitoring the heterogeneous reaction, using a vacuum ultraviolet photoionization aerosol mass spectrometer, the effective reactive uptake coefficient and the distributions of both oxygenated and chlorinated reaction products are measured and found to depend sensitively upon O2, Cl2, and Cl concentrations in the flow reactor. In the absence of O2, the effective reactive uptake coefficient monotonically increases with Cl2 concentration to a value of ~3, clearly indicating the presence of secondary chain chemistry occurring in the condensed phase. The effective uptake coefficient decreases with increasing O2 approaching a diffusion corrected value of 0.65 ± 0.07, when 20% of the total nitrogen flow rate in the reactor is replaced with O2. Using a kinetic model it is found that the amount of secondary chemistry and the product distributions in the aerosol phase are controlled by the competitive reaction rates of O2 and Cl2 with alkyl radicals. The role that a heterogeneous pathway might play in the reaction of alkyl radicals with O2 and Cl2 is investigated within a reasonable range of reaction parameters. These results show, more generally, that for heterogeneous reactions involving secondary chain chemistry, time and radical concentration are not interchangeable kinetic quantities, but rather the observed reaction rate and product formation chemistry depends sensitively upon the concentrations and time evolution of radical initiators and those species that propagate or terminate free radical chain reactions.
I. Introduction

Chemical reactions occurring at interfaces govern a wide array of environmentally and technologically important processes ranging from soot formation and oxidation, aerosol aging, lipid peroxidation, corrosion, hydrocarbon cracking, and heterogeneous catalysis. In many of these systems free radicals play key chemical roles as initiators or propagators of surface reactions or as reactive intermediates. One of the first steps in hydrocarbon free radical chemistry is hydrogen abstraction that forms alkyl radicals whose subsequent reactions are key steps in radical chain reactions in combustion chemistry. In the atmosphere, the oxidation of alkyl radicals to alkylperoxy species form radical intermediates and stable reaction products, which are important steps in the photochemical production of smog and the formation and heterogeneous aging of organic aerosol.

While many aspects of homogeneous gas and liquid phase chemistry of free radicals are fairly well understood, there remains significant uncertainty about the heterogeneous reactivity of free radicals, such as OH and Cl, with organic surfaces composed of long chain hydrocarbons; these hydrocarbons are models for important chemical constituents of organic aerosols or biofuel droplets. A class of radical reactions in the gas phase that are particularly well characterized are hydrogen abstraction reactions of the general form shown in R1. The overall rate and mechanism of the reaction depends upon the molecular structure of RH as well as the abstracting species X.

\[RH + X \cdot \rightarrow R \cdot + HX \] (R1)

For example, the rate coefficient for hydrogen abstraction of ethane by Cl is 200 times faster than by OH. This difference decreases with normal alkane chain length. For decane the Cl reaction is only 40 times faster than that of OH. Different transition states and activation barriers are responsible for the large differences in hydrogen abstraction reaction rate coefficients. The large number of gas phase reactions measured for both Cl and OH has enabled the formulation of general rules for predicting rate coefficients based upon structure-reactivity
relationships. However, it remains unclear whether rate coefficient predictions based upon gas phase structure-reactivity relationships can be applied to heterogeneous reactions of Cl and OH with large hydrocarbons at the surface of a liquid droplet. Although radical chain reactions have been observed in many gas phase reactions, the high molecular density in an organic aerosol or fuel droplet might be expected to enhance radical chain cycling mechanisms.

Although the main focus of this study is fundamental radical-particle reaction mechanisms, there is some evidence in the literature that Cl atom chemistry could play a role in certain regions of the troposphere. Although the global concentration of Cl is much lower than OH, recent work has shown that Cl-initiated oxidation might be comparable to OH in coastal and industrialized areas. Chlorine atoms can be formed by the solar photolysis of reactive chlorine species (e.g. ClNO₂, Cl₂, etc.), which in turn could be emitted from industrial sources or produced via heterogeneous reactions.

The rate of a heterogeneous reaction with a gas phase free radical (X) is expressed as a reaction probability or uptake coefficient (γₓ), which is defined as the fraction of collisions with a surface that results in a reaction. An uptake coefficient is directly obtained by measuring the loss of a gas phase species (X) exposed to a hydrocarbon surface; in this case by definition γₓ ≤ 1. Rather than directly measuring the gas phase radicals that are often in very low concentrations and hard to detect, an alternative approach is to monitor the reaction via the condensed phase loss of the hydrocarbon (RH) to obtain an effective heterogeneous reaction probability (γₓRH). Reactions on submicron organic aerosols are now commonly measured in this way due in part to the wide availability of aerosol mass spectrometers that measure changes in particle composition in real time.

If the loss of particle phase hydrocarbon (RH) is entirely due to reaction with the gas phase radical (X) then the effective uptake coefficient is again by definition equal to γₓ and less than or equal to 1 (i.e. γₓRH = γₓ ≤ 1). Alternatively, if there are additional loss channels (e.g. radical chain reactions) that consume RH in the condensed phase, then the effective uptake
coefficient (γ^R_X) is no longer equivalent to γ_X, measured via the gas phase loss of the radical, but rather $\gamma^R_X > \gamma_X$. Clear evidence for secondary chemistry is observed for specific cases where γ^R_X exceeds unity. However, the magnitude of secondary chemistry cannot be ascertained merely by the absolute value of γ^R_X but only in its relationship to γ_X.

Effective uptake coefficients larger than one have been observed by a number of groups measuring the radical-initiated oxidation of organic particles. Smith and coworkers measured effective uptake coefficients of 2.0 and 1.7 for the reaction of OH6 and Cl7 with diocyl sebacate (DOS) particles in the presence of oxygen, respectively. McNeil et al. reported evidence for secondary chemistry in the OH oxidation of solid palmitic acid particles.8 Although the uptake coefficient was found to be between 0.8 – 1, the presence of secondary chemistry was inferred using a kinetic model of their data. Another study by George et al.,9 using DOS particles, reported an OH uptake coefficient larger than one (1.3 ± 0.4), but concluded, within experimental error, that there was no strong indication of secondary chemistry. In a smog chamber study of the OH oxidation of motor oil aerosol,10 Weikamp and coworkers measured a wide range of effective uptake coefficients for a set of target compounds in the multi-component oil aerosol (e.g. hopanes and steranes). They measured uptake coefficients that ranged from 0.1 to 8. Lambe et al.11 measured effective OH uptake coefficients for a variety of n-alkane, hopane and sterane marker molecules in motor oil and diesel aerosol. In this study, effective uptake coefficients between 1 and 40 were measured, with the higher volatility compounds exhibiting the largest reaction rates. The large effective coefficients were attributed to significant contributions of gas phase oxidation to the heterogeneous reaction rate.

For many of these systems the reaction pathway responsible for secondary chemistry currently remains unclear, but it has been proposed that radical intermediates, such as alkoxy radicals, could propagate chain reactions.7 Once initiated by a hydrogen abstraction reaction at a surface, secondary chemistry can accelerate the overall rate of particle transformation, thus reducing chemical lifetime of an organic aerosol in the atmosphere.
The heterogeneous reaction of Cl atoms with submicron organic droplets composed of a branched alkane, squalane (C\textsubscript{30}H\textsubscript{62}), will be used to examine how (i) the heterogeneous reaction rate of Cl atoms compares with previous measurements of OH and (ii) how radical chain cycling mechanisms are manifested in measurements of effective uptake coefficients and reaction product distributions. The generalized reaction scheme considered here is,

\begin{align}
RH + Cl\textsubscript{g} &\rightleftharpoons RH + Cl\textsubscript{p} + \text{Cl.} & (R2) \\
R \cdot + Cl\textsubscript{2p} &\rightarrow RCl + Cl\textsubscript{p} \cdot & (R3a) \\
R \cdot + Cl\textsubscript{2g} &\rightarrow RCl + Cl\textsubscript{p} \cdot & (R3b) \\
RH + Cl\textsubscript{p} &\rightarrow RH + Cl\textsubscript{p} + \text{Cl.} & (R4) \\
R \cdot + O_2\textsubscript{p} &\rightarrow RO_2 \cdot & (R5a) \\
R \cdot + O_2\textsubscript{g} &\rightarrow RO_2 \cdot & (R5b) \\
RO_2 \cdot + RO_2 \cdot &\rightarrow Alcohol + Ketone + O_2 & (R6) \\
RO_2 \cdot + RH &\rightarrow ROOH + RH \cdot & (R7)
\end{align}

where the subscripts p and g denote condensed (particle) and gas phase species, respectively. In this respect a number of the reaction pathways (e.g. R3a vs. R3b) can occur either at the surface of the particle or within the liquid as shown schematically in Fig. 1. For example, the alkyl radical, R ·, initially formed by gas phase hydrogen abstraction reaction by Cl · (R2), could react in the liquid phase (i.e. homogeneously) with Cl\textsubscript{2}/O\textsubscript{2} dissolved in the particle as shown by R3a and R5a and schematically in Fig. 1. For this case the rates of R3a and R5a are proportional to the total concentration of Cl\textsubscript{2} and O\textsubscript{2} within the particle, which in turn is determined by the Henry’s Law constant for these species in squalane. Alternatively, the R · + Cl\textsubscript{2} (and O\textsubscript{2}) reaction(s) could occur heterogeneously by the gas phase collision of Cl\textsubscript{2} (O\textsubscript{2}) with an alkyl radical at the particle surface as illustrated by R3b and R5b and schematically in Fig. 1.
For this case, the reaction rates depend upon the reactive collision frequency of gas phase Cl₂/O₂ with the particle surface. The relative importance of these parallel reaction pathways (termed homogeneous and heterogeneous) will be considered later using the kinetic model described in Sec. III.C.

R2 is the heterogeneous reaction of gas phase chlorine atoms (Clₐ) that initiates the chemistry in the organic particle (Fig. 1). Based upon gas phase structure-reactivity relationships, the predicted rate coefficient for the Cl reaction will be ~32 times larger for squalane than OH.¹ Although there remains some controversy about the exact magnitude of the OH reactive uptake coefficient onto organic surfaces, since values between 0.1 and 8 have been reported, there is definitely not a 32 times enhancement of the reaction probability of Cl over OH. This then suggests that the reactivity of organic surfaces towards gas phase radicals is not merely determined by gas phase structure-reactivity relationships, but rather by more subtle features at the organic interface.

For the mechanism (R2-R7) shown schematically in Fig. 1, chain propagation occurs via R3 and R4, since Cl₂, the radical precursor, can react with R· regenerating a Cl atom in the particle phase (denoted Clₚ·), which participates in further hydrogen abstraction reactions (R4). In the presence of O₂, R5 competes with R3 by forming an alkyl peroxy radical instead of a chlorinated alkane and Clₚ·. The alkyl peroxy self-reaction (R6) is the dominant loss channel for this species in a particle exposed to high radical concentrations (>10⁹ molec cm⁻³), detailed in our previous study.¹² In the condensed phase, R6 is generally thought to produce stable reaction products, such as alcohols and ketones, which terminate the radical chain reaction. For small molecules in the gas phase, the alkyl peroxy self-reaction can also form two alkoxy radicals.¹³⁻¹⁴ These radical intermediates if formed in the particle could play a role in chain propagation chemistry. Since there remains little direct evidence that alkoxy radicals are formed in the condensed phase¹⁵⁻¹⁸ this reaction is not explicitly considered here. The condensed phase rate constant for hydrogen abstraction by RO₂· (i.e. another channel of
secondary reaction) is small \((R7)\).\(^{19}\) Therefore the amount of secondary chemistry occurring in the organic particle is controlled mainly by the relative reaction rates of \(R3\) and \(R5\), which can be experimentally investigated by changing the amount of oxygen available in the reaction.

There are a few experimental measurements of the reaction probability of gas-phase Cl radicals with condensed-phase organic compounds. Moise and Rudich measured the first order loss of Cl above alkane and alkene monolayers and determined that the reactive uptake coefficient was near the collision limit \((0.1 < \gamma_{\text{Cl}} < 1)\).\(^{20}\) Hearn et al.\(^{7}\) observed the Cl effective uptake coefficient on organic particles to be 1.7 and 0.9-1.7, with and without \(O_2\) present, respectively. Although Hearn and coworkers acknowledge the importance of \(R3\) for chain cycling reactions in the absence of \(O_2\), they do not report the presence of chlorinated reaction products or explicitly show how chlorine chain chemistry influences their reported effective uptake coefficients or the evolution of reaction products as a function of \(O_2\) concentration.

The heterogeneous reaction of Cl atoms with submicron squalane droplets is measured in a photochemical aerosol flow reactor using a vacuum ultraviolet photoionization time-of-flight aerosol mass spectrometer (VUV-AMS). Aerosol mass spectrometry is used to measure heterogeneous reaction rates and product distributions needed to formulate a detailed reaction mechanism that includes secondary chemistry. In Section III.A, the competition between the \(R3\) and \(R5\) reaction channels will be explored by measuring effective uptake coefficients as a function of \([O_2]\) in the flow reactor. In Section III.B, measurements of how \([Cl_2]\) and \([Cl]\) influence the heterogeneous reaction are presented. In Section III.C, a kinetic model is formulated to explain the overall reaction mechanism and product distribution. The kinetic model will be used to explore where key propagation and termination reactions (e.g. \(R3a\) and \(R5a\) vs. \(R3b\) and \(R5b\)) occur: either as a homogeneous reactions in the interior of the particle or via heterogeneous reactions at the aerosol surface. Finally, the chemical evolution of the chlorinated reaction products is presented (Section III.D) and compared with detailed predictions using the kinetic model.
II. Experimental

Since a detailed description of the experiment setup has been given in a previous study, only a brief update is indicated here. An atmospheric pressure flow tube reactor, shown in Fig. 2, is used to investigate the heterogeneous reaction of squalane particles. Aerosol is formed by homogeneous nucleation of the organic vapor in a N$_2$ stream flowing through an ~45 cm long Pyrex tube containing liquid squalane. The Pyrex tube is heated in a tube furnace to ~130 °C producing a log-normal particle size distribution with a mean surface-weighted diameter of ~180 nm and a geometric standard deviation of ~1.3. Cl$_2$, O$_2$, and the trace reference compounds (acetone or 2-butanone) are mixed with the aerosol stream in a balance of N$_2$ prior to entering the flow tube reactor. The concentrations of Cl$_2$ and O$_2$ are reported here as flow ratios, i.e. the volume concentration. For example, 20% O$_2$ is obtained when 0.22 L/min of the total 1.1 L/min flow is O$_2$. For the experiments without O$_2$, a scrubber (0.75 L Supelpure-O trap) is placed in the nitrogen lines to reduce residual oxygen levels to less than 0.05%. The mixed gases and particles are then introduced into a 130 cm long, 2.5 cm inner diameter type 219 quartz reaction cell. Cl atoms are generated along the length of the reaction cell using one to four continuous output 130 cm long black light ($\lambda = 365$ nm) lamps (UVP, LLC.), which surround the flow tube reactor. The total flow rate through the flow tube is 1.1 L/min, which corresponds to a reaction time of ~33.5 s. The Cl concentration is controlled by adjusting the molecular chlorine (Cl$_2$) concentration (5-40 ppm) and/or the photon flux in the flow tube reactor.

A fraction of the flow exiting the reactor is sent to a gas chromatograph (GC) equipped with a flame ionization detector (SRI Instruments) to monitor the decay of the gas phase reference compounds. The Cl exposure in the flow tube is determined via the removal of the gas phase reference compounds by reaction with Cl. The reference compounds used in these experiments are acetone (C$_3$H$_6$O) and 2-butanone (C$_4$H$_8$O), which react with Cl radicals with rate constants of 2.09×10^{-12} cm3·molec$^{-1}$·s$^{-1}$ and 3.66×10^{-11} cm3·molec$^{-1}$·s$^{-1}$, respectively.
The concentration of acetone or 2-butane entering the reactor is 130 ppb – 230 ppb. The flow sampled by the GC is filtered to remove particles and passed through a small column packed with potassium carbonate to remove Cl. To detect ppb levels of the reference compounds, the flow is pre-concentrated for 3 minutes in a Tenax-GR absorbent trap before GC analysis.

The chemical composition of the aerosol is monitored with a custom-built vacuum ultraviolet aerosol mass spectrometer (VUV-AMS). This instrument measures aerosol composition by thermally vaporizing the aerosol (100 °C) followed by VUV photoionization (10 eV) as described by Gloaguen et al. Tunable VUV radiation is produced by the Chemical Dynamics Beamline at the Advanced Light Source. The particle size distribution and number concentration are measured simultaneously using a scanning mobility particle sizer (SMPS, TSI model 3936).

The rate constant \(k_{Sq} \) for the Cl reaction with squalane aerosol is determined using a standard relative rate approach using the formalism described by Smith et al. The normalized decay of squalane in the particle phase is,

\[
\frac{[Sq]}{[Sq]_0} = \exp(-k_{Sq}\langle Cl \rangle_t \cdot t) \tag{8}
\]

where \([Sq] \) and \([Sq]_0 \) are the final and initial concentrations of squalane, respectively. \(\langle Cl \rangle_t \) is the time (t) average concentration of Cl atoms in the flow reactor. The chlorine atom exposure \(\langle Cl \rangle_t \cdot t \) is obtained from the concentration of the reference compounds (e.g. [Acetone]) measured before and after the reaction and is expressed as,

\[
\langle Cl \rangle_t \cdot t = \int_0^t [Cl]dt = \frac{\ln([Acetone]/[Acetone]_0)}{-k_{Acetone}} \tag{9}
\]

Assuming that \(k_{Sq} \) is independent of [Cl], \([Sq]/[Sq]_0 \) is plotted versus \(\langle Cl \rangle_t \cdot t \) and fit to an exponential function to determine \(k_{Sq} \). For many of the kinetic measurements described below the Cl exposure is changed by keeping the flow rate (i.e. reaction time) constant and varying the average Cl concentration in the flow tube by changing the black light flux and therefore the
photolysis rate of Cl$_2$.

For other experiments conducted in the absence of O$_2$, the reaction rate is observed to depend upon absolute Cl atom concentrations in the flow tube reactor, as will be discussed in Sec. III.B. To isolate this dependence, the chlorine atom exposure is changed by modifying the reaction time rather than the chlorine atom concentration as described above. This is done by fixing the flow rate and moving an opaque curtain along the flow tube to change the length of the illuminated reaction zone and therefore the reaction time. If there is a uniform concentration of chlorine atoms along the length of the flow tube, then the resulting exposure is linearly proportional to the residence time of the aerosol in the portion of the flow reactor exposed to the black lights. This assumes that the Cl$_2$ photolysis rate is the same at all points along the length of the flow reactor. Shown in Fig. 3 are measurements of Cl exposure as a function of illuminated reactor length. For regions of the flow tube reactor near the end of the flow tube where the lamp terminals are located, it is found that the chlorine exposure is not a linear function of illumination length. However, more uniform illumination, and therefore more uniform [Cl], is observed when the illumination length is greater than 33 cm and the chlorine exposure becomes a linear function of illumination length (i.e. reaction time). For the experiments reported here all measurements are recorded over a series of lengths where the chlorine exposure is found to be a linear function of illumination length.

Heterogeneous kinetics is quantified by monitoring the decay of squalane in the organic particle as a function of chlorine exposure. An exponential fit to such decay data yields, k_{Sqp}, the second order rate constant for the reaction. An effective reactive uptake coefficient (γ_{Cl}^{Sq}) can be defined as the fraction of chlorine atom collisions with squalane in the particle phase that yield a reaction. Using a formalism, originally developed by Smith et al.12 for the OH + squalane reaction, the reaction probability can be written as,
where D_{surf} is the mean surface-weighted particle diameter, ρ_0 is the initial squalane density (0.8 g·cm$^{-3}$), N_A is Avogadro’s number, \bar{c} is the mean speed of gas phase Cl, and M_{Sq} is the molar mass of squalane (422 g/mole).

For a fast surface reaction on a particle that is well-mixed on the timescale of the reaction, it can be assumed that the squalane decay rate ($d[Sq]/dt$) is directly proportional to the concentration of squalane in the particle as shown by Smith et al.12 for the squalane + OH reaction. Since both the average chlorine atom concentration ($\langle Cl \rangle_t$ in Eq. (9)) and reaction time are very similar to those used in the OH study, the use of Eq. (10) is expected to be a valid method for analyzing the results presented here.

This particular formulation of the uptake coefficient is narrow, assumes a well mixed particle, and isolates the reaction probability of a single species from the reactivity of the entire particle itself. As the reaction progresses the particle composition evolves from pure squalane to chlorinated and/or oxygenated reaction products. In this case, a direct comparison of the squalane reaction probability (γ_{Cl}^Sq) with that of subsequent reaction products (e.g. $\gamma_{Cl}^{SqCl_{1n}}$) is done in a systematic way to draw more general conclusions about how the effective uptake changes as the reaction proceeds and the aerosol is chemically transformed.

III. Results and discussion

The 10 eV photoionization mass spectra of squalane before and after reaction are shown in Figures 4(a) and (b), respectively. Before the reaction, the mass spectrum consists of two main peaks: the squalane molecular ion ($m/z = 422$) and a fragment peak located at $m/z = 238$. These two peaks are used to monitor the heterogeneous reaction. After reaction these peaks decrease and the formation of new reaction products are clearly observed. Once formed by the initial hydrogen abstraction by Cl-, the resulting R· radical can then in turn react with either O$_2$ or Cl$_2$.
or both as illustrated by R3 and R5, forming a mixture of both the oxygenated and chlorinated reaction products. This is shown in Fig. 4(c), where there are two distinct groups of reaction products. The products containing oxygen functional groups are separated by 14 mass units as was observed previously12, 23 for the OH + squalane reaction. In contrast, chlorinated reaction products are separated by an average of 34 amu, due to the addition of Cl and the loss of H, which is discussed below. In addition to the reaction products containing purely oxygen or chlorine functional groups, there is clear evidence for a significant number of reaction products that contain a mixture of both of these species as will be discussed below. The exact populations of the various products are a sensitive function of reaction conditions and are found to depend mainly upon the relative concentration of Cl\textsubscript{2} and O\textsubscript{2} in the flow reactor.

Shown in Fig. 5 are 10 eV photoionization mass spectra of the particle phase reaction products as a function of O\textsubscript{2} concentration. For each mass spectrum, the Cl\textsubscript{2} concentration is fixed at 32.7 ppm. At \textasciitilde 0\% O\textsubscript{2}, the mass spectrum (Fig. 5(a)) is dominated by chlorinated products denoted as SqCl\textsubscript{n} as well as a peak located at two mass units smaller than squalane. The “prime” is used here to identify the ions (SqCl\textsubscript{n} and Sq-2) observed in the mass spectrum. These ions are formed via dissociative photoionization through the elimination of HCl. For example, the peak at \textit{m/z} = 454 denoted SqCl’ does not correspond directly to the neutral SqCl molecular product (molecular weight = 456) but rather corresponds to the SqCl\textsubscript{2} molecule which undergoes dissociative photoionization by losing HCl.

As [O\textsubscript{2}] is increased, new peaks appear corresponding to the formation of oxygenated reaction products (denoted SqO\textsubscript{n}). At [O\textsubscript{2}] \textasciitilde 0.3\% the intensities of SqO\textsubscript{n} and SqCl\textsubscript{n} products are nearly equal, and by [O\textsubscript{2}] = 5\% the SqCl\textsubscript{n} products are no longer visible and the mass spectrum is dominated by the oxygenated species. This sequence of mass spectra shows that, as expected, there are competing pathways for the formation of chlorinated and oxygenated reaction products that are sensitive to the amount of O\textsubscript{2} in the flow reactor. This competition naturally arises since both Cl\textsubscript{2} and O\textsubscript{2} can react with the alkyl radical that is formed by the
initial hydrogen abstraction reaction.

To investigate a highly coupled reaction mechanism that forms both chlorinated and oxygenated reaction products (shown in Fig. 5), we first present effective uptake coefficient measurements as a function of [O2] (Sec. III.A). The reaction kinetics and product distributions at 20% [O2] are then directly compared with the OH + squalane reaction.12 The role that [Cl2] and [Cl] play in the heterogeneous reaction will then be considered in Section III.B. In Section III.C a kinetic model with a global reaction mechanism is presented that explores how the reaction probability and the product formation kinetics depend upon Cl2, O2 and Cl. The kinetic model is parameterized to explore whether the overall mechanism (e.g. \(R \cdot + Cl2/O2 \)) occurs as either a homogeneous reaction within the bulk particle or a heterogeneous reaction at the surface. The more complex chemical evolution of the purely chlorinated products when O2 is absent is presented in Sec. III.D.

A. Effective Uptake Coefficient vs. [O2]

The normalized decay of squalane ([Sq]/[Sq]0), as a function of Cl exposure in the presence of large and small O2 concentrations, is shown in Fig. 6. The decay constant, \(k_{Sq} \) is obtained from an exponential fit to the decay traces shown in Fig. 6. The effective uptake coefficient is then computed using Eq. (10). Effective uptake coefficients are plotted as a function of [O2] for two different Cl2 concentrations (14.5 and 32.7 ppm) in Fig. 7. For each Cl2 concentration the effective uptake coefficient is a strong function of [O2] and increases rapidly when the oxygen concentration in the flow tube is reduced to less than 1%. For these reaction conditions, the products, shown in Figures 5(a) and 5(b), are dominated by chlorinated functional groups. The absolute magnitude of the effective uptake coefficient, at low [O2], depends upon the Cl2 concentration, reaching a value larger than 3 for the 32.7 ppm case. Uptake coefficients larger than one provide clear evidence of chain cycling chemistry in the particle phase.

For both chlorine concentrations (14.5 and 32.7 ppm) the effective uptake coefficient
decreases rapidly with increasing \([O_2]\) and then plateaus at ~0.57 for \([O_2] > 2\%\). In this region
(2\% < \([O_2] < 20\%\)), the effective uptake coefficient no longer depends upon the amount of \(Cl_2\)
in the flow reactor and the reaction products in the particle are composed exclusively of
oxygenated species as shown in Fig. 5(d). In the conditions of high \([O_2]\) (e.g. \([O_2] > 5\%\)), R5
becomes the dominant reaction pathway for \(R_*\), effectively shutting down \(R_3\), the Cl chain
reaction that produces chlorinated reaction products. At 20\% \(O_2\), only a small fraction (< 4\%)
of the measured effective uptake coefficient, \(\gamma_{Cl}^{Sq} = 0.57\), is due to chlorine secondary
chemical reactions, as will be described in Section III.C. \(\gamma_{Cl}^{Sq}\) is corrected for gas phase
diffusion using the Fuchs and Sutugin formulation. Here the gas phase diffusion coefficient
of \(Cl_g\) in Ar (\(D_{Cl-Ar} = 0.19 \text{ cm}^2 \text{s}^{-1}\)) is used for the correction instead of \(Cl_g\) in nitrogen, which
to our knowledge has not been measured. Recently, very good agreement between
measured and calculated diffusion coefficients for OH radicals was published, and by using
the same formula we obtained the same value of diffusion coefficient (0.19 \(\text{ cm}^2 \text{s}^{-1}\)) for \(Cl_g\) in
\(N_2\). The effective uptake coefficient at 20\% \(O_2\), corrected for the gas phase diffusion, is
\(\gamma_{Cl}^{Sq} = 0.65 \pm 0.07\).

In previous work, the uptake coefficient for the OH + squalane reaction was measured to
be \(\gamma_{OH}^{Sq} = 0.30 \pm 0.07\) at an average \([OH] = 1 \times 10^{10} \text{ molec cm}^{-3}\), which is comparable to the
average chlorine atom concentrations (1.5 \(\times 10^{10}\) molec \(\text{cm}^{-3}\)) used here. At lower OH
concentrations ([OH] = 1-7 \(\times 10^{8}\) molec \(\text{cm}^{-3}\)) a larger effective uptake coefficient (\(\gamma = 0.51 \pm
0.10\)) was measured by us, suggesting an additional loss channel for squalane in the particle
phase that appears to compete with OH at low oxidant concentrations and longer reaction
times. The molecular origin of the chain chemistry in the OH + squalane reaction is still under
investigation by us.

From simple gas phase structure reactivity relationships, it is expected that Cl atoms, in
the absence of secondary chain chemistry that is effectively suppressed at 20\% \(O_2\), would react
~32 times faster with squalane compared to OH. However, we observe that the Cl
heterogeneous reactive uptake is only ~2.2 times larger than the reactive uptake of OH, suggesting that more subtle features of the organic interface, such as the formation of a long-lived surface complex, might be controlling heterogeneous reactivity. In fact it has been noted by various authors that surface reactions by small radicals or atoms can be enhanced by several orders of magnitude over analogous bimolecular reactions in the gas phase. Moise and Rudich measured the largest surface enhancement factors for gas phase reactions that are slow \((k < 10^{-15} \text{ cm}^3\text{-molec}^{-1}\text{-s}^{-1})\) due to high activation energies, in contrast with fast reactions \((k \sim 10^{-12} \text{ cm}^3\text{-molec}^{-1}\text{-s}^{-1})\), which exhibit minimal surface enhancement. For example, the surface reactions of Br and O\(^{3}\text{P}\) atoms with an aliphatic monolayer were found to be enhanced by \(10^4\) to \(10^3\), respectively, over the analogous reactions in the gas phase. The mechanism for this surface enhancement is currently unclear, but may originate, in part, from multiple scattering, or trapping of reactant species at the interface, thus increasing the overall chance of a reactive encounter. Within this context, it seems likely that the OH reaction is more enhanced at the squalane interface than Cl.

The kinetic evolution of squalane and its first three generations of oxidation products (SqO, SqO\(_2\) and SqO\(_3\)) as a function of chlorine exposure, at 20% O\(_2\), are shown in Fig. 8. The first three oxidation products are denoted generally as SqO\(_n\), where \(n\) corresponds to the number of oxygenated functional groups added to the squalane molecule. As discussed in our previous publication on OH, these species (denoted generally as SqO\(_n\)) correspond to the formation of closed shell molecules containing alcohol and ketone functional groups as shown in R6.\(^{12,23}\) Here \(n\) designates the number of these oxygenated functional groups added to the squalane molecule. However, quantifying the absolute abundance of these individual molecular species (ketones vs. alcohols) in the particle requires VUV photoionization cross sections and fragmentation patterns, which are currently not known.

Nevertheless in our previous studies,\(^{12,23}\) it was found that the reaction products evolve sequentially via a statistical oxidation mechanism in which 1 oxygenated functional group is
added per reactive collision. For the Cl reaction at 20% O₂, the reaction products are entirely composed of molecules with oxygenated functional groups (SqOn) similar to those observed in the OH + squalane reaction. Under these reaction conditions it is expected that these stable oxidation products will evolve via the same sequential oxidation mechanism, which can be written overall as,

\[\text{SqO}_n + \text{Cl} + \frac{1}{2} \text{O}_2 \xrightarrow{k_{Sq}} \text{SqO}_{n+1} + \text{HCl} \]

(11)

where \(k_{Sq} \) is the second order rate constant and \(n \) denotes the product generation. For squalane itself, \(n = 0 \). Previously, it was found that this simple reaction sequence, in which squalane and its oxidation products are assumed to react with the same rate coefficient (\(k_{Sq} \)), could account for the overall chemical transformation of squalane aerosol when exposed to OH.\(^{12,23}\) For the Cl reaction, the integrated equation corresponding to Eq. (11) is,

\[\frac{[\text{SqO}_n]}{[\text{Sq}_0]} = B_n \frac{(k_{Sq}(\text{Cl}_{t \cdot t})^n}{n!} \exp(-k_{Sq} \cdot (\text{Cl})_{t \cdot t}) \]

(12)

where \(B_n \) is an adjustable parameter to account for differences in isotope abundance, VUV photoionization efficiency, and fragmentation patterns of the oxidation products and squalane. To fit the experimental data, \(k_{Sq} \) in Eq. (12) is first fixed to the value obtained from an exponential fit to the squalane decay curve shown in Fig. 8(a). The kinetic evolution of the oxidation products (SqO, SqO₂, and SqO₃) are then modeled, using Eq. (12), by adjusting a single parameter, \(B_n \). Model fits to the experimental data are shown as solid lines in Fig. 8. As with the OH + squalane reaction, the sequential oxidation model captures, within experimental error, the overall kinetic evolution of the first three generations of products using a single rate constant. This then indicates that for the Cl + squalane reaction, at 20% O₂, \(\gamma_{Cl}^{Sq} = 0.65 \pm 0.07 \approx \gamma_{Cl}^{SqO} \approx \gamma_{Cl}^{SqO_2} \approx \gamma_{Cl}^{SqO_3} \). Although the Cl effective uptake coefficient is ~2.2 times larger than that for OH, the kinetic evolution of the particle is consistent with that reported by us for the OH + squalane reaction.\(^{12,23}\)

Shown in Fig. 8 are arrows indicating the chorine exposures that correspond to 1, 2, and 3
squalane lifetimes ($\tau = 1/k_{Sq}$). At one lifetime $[Sq]/[Sq]_0 = 1/e$ and the first oxidation product
(SqO) has reached its maximum value. This is also the point in the reaction when the number of
reactive collisions is equivalent to the total number of molecules in the particle. The SqO₂
product peaks at 2 lifetimes ($[Sq]/[Sq]_0 = 1/e^2$), etc. Under these conditions, there is a simple
relationship between the squalane lifetime and the point in the reaction where each oxidation
product reaches its maximum value. This is a natural consequence of sequential oxidation in
which each component in the particle (Sq, SqO, SqO₂, SqO₃) can be described using the same
rate coefficient as shown in Eq. (12). As will be shown below, a more complex relationship
between squalane lifetime and the kinetic evolution of the products is observed at low [O₂]
where the chlorinated reaction products are formed and secondary radical chain chemistry
controls the rate of the reaction.

B. Effective uptake coefficient vs. [Cl₂] and [Cl]

As shown in Fig. 7, the uptake coefficient increases steeply when [O₂] is reduced to <1%.
In the absence of oxygen, the squalane radical can react with Cl₂ to generate a chlorinated
product and a Cl atom, which is assumed to remain solvated in the particle (Clₚ⁻) to participate
in further secondary reactions. If alternatively the Clₚ⁻ escapes from the particle back into the
gas phase it would be detected as a primary Clg⁻ by the gas phase tracer compound (i.e. acetone).
Under these conditions no secondary chain reactions (i.e. effective uptake coefficient larger
than one) would be observed. However, in the particle this radical intermediate (Clₚ⁻) can react
with Sq, SqClₙ, and SqOₙ (when O₂ is present), thus accelerating the rate at which the particle is
chemically transformed. From R3a and R3b, it is expected that this rate would be proportional
to the gas phase Cl₂ concentration in the flow reactor since the condensed phase chlorine (Cl₂ₚ)
concentration or reactive collision frequency is proportional to the gas phase Cl₂ concentration.
To examine this dependence, effective uptake coefficients are measured as a function of Cl
exposure. For this set of measurements the reaction time and Cl₂ concentration are fixed and
the chlorine atom concentration is changed by varying the photon flux (i.e. the voltage supplied
to the black lights) in the reaction volume.

A typical decay trace of squalane, at low \([O_2]\), is shown in Fig. 6. Under these reaction conditions it was found that the decay of squalane is slightly non-exponential (i.e. biexponential). This is because, in addition to \([Cl_2]\), the secondary chain reaction also depends upon the absolute Cl atom concentration in the flow tube, as will be detailed below. For simplicity, single exponential fits are used to extract the uptake coefficients shown in Fig. 9. Approximating the decay traces as single exponential functions leads to an overall error in the computed uptake coefficients of 6 - 9\%, which is not expected to change the overall results presented here. Shown in Figure 9 are measurements of the effective uptake coefficients as a function of \([Cl_2]\). At low \(Cl_2\) concentrations (8 ppm) \(\gamma_{Cl}^{Sq}\) is less than 1 and monotonically increases to a value of ~3 at \([Cl_2] = 32.7\) ppm.

In order to better isolate how the effective uptake coefficient depends explicitly upon absolute \([Cl]\), it is necessary to measure the reaction at a fixed \([Cl_2]\) and \([Cl]\) in the flow reactor. This is done by changing the reaction time, and therefore Cl exposure, using an opaque curtain as described above in Section II. A series of \([Cl]\) dependent effective uptake coefficients, at \([Cl_2] = 14.5\) ppm, are shown in Fig. 10. The effective uptake coefficient is observed to be inversely proportional to the absolute Cl atom concentration in the flow reactor. At \([Cl] = 2.67 \times 10^9\) molec/cm\(^3\), \(\gamma_{Cl}^{Sq}\) is determined to be 2.5 and decreases to 1.4 when the concentration is increased to \(2.2 \times 10^{10}\) molec/cm\(^3\).

A radical termination step is proposed to explain this inverse dependence of \(\gamma_{Cl}^{Sq}\) on Cl atom concentration, shown in Fig. 10. For example, there is some probability that two Cl\(_p\)-atoms in the particle phase collide and recombine via the following reaction,

\[
Cl_p \cdot + Cl_p \cdot + M \xrightarrow{k_{13}} Cl_{2p} + M. \quad (R13a)
\]

where \(Cl_p \cdot\), \(Cl_{2p}\), and \(M\) are the Cl atom, \(Cl_2\), and third body collision partner (i.e. squalane and its products), respectively. Without R13a, the effective uptake coefficient, under oxygen
free conditions, would become exceedingly large (e.g. $\gamma_{Cl}^{\text{eff}} > 7$). Alternatively, with R13a, the chain reaction is arrested since there is a natural competition between the production of the Cl$_p^-$ atoms, which propagate the chain reaction via R3 and the terminating Cl$_p^-$ atom recombination step (R13a).

By using the steady state approximation to calculate the concentrations of Cl$_p^-$ and R$^-$ relative to Cl$_g^-$ when O$_2$ is absent, the recombination rate of R13a (i.e. the termination reaction) is found to be proportional to $[\text{Cl}_p^-]^2 \propto [\text{Cl}_g^-]$. The propagation reaction rate is directly proportional to the Cl concentration in particle, i.e. $[\text{Cl}_p^-] \propto [\text{Cl}_g^-]^{0.5}$. The ratio of propagation to termination reaction rates should therefore scale as $\sim 1/[\text{Cl}_g^-]^{0.5}$. From this rough qualitative analysis it is expected that increasing the Cl atom concentration in the gas phase should lead to a decrease in the probability of a secondary chemical reaction in the particle phase. This simple analysis provides a qualitative explanation of the trend shown in Fig. 10, which will be tested quantitatively using the kinetic models described below.

It is also possible that the termination reaction shown in 13a could alternatively occur heterogeneously via the collision of a gas phase Cl$_g^-$ atom with a Cl$_p^-$ species solvated at particle surface as shown in R13b,

$$\text{Cl}_p^- + \text{Cl}_g^- + \text{M} \xrightarrow{Y_{12}} \text{Cl}_2\text{p} + \text{M.} \quad (13\text{b})$$

For this case, the termination rate should depend upon the reactive collision frequency of Cl$_g^-$ with a Cl$_p^-$.

In addition to R13, there are two other types of possible termination reactions,

$$R^- + R^- \xrightarrow{k_{14}} R_2^- \quad (\text{R14})$$

$$R^- + \text{Cl}_p^- \xrightarrow{k_{15}} \text{RCl.} \quad (\text{R15a})$$

It is difficult to quantify the possible influence of R14 and R15 on the total reaction mechanism, since it would require controlling the concentration of the R$^-$ radical experimentally and in a systematic way. In addition, we find no evidence in the mass spectra for the formation of R$_2$.
species (e.g. Sq₂) as a reaction product, suggesting that R14 is a minor radical termination channel and therefore neglected in our subsequent analysis. The rate of R15 is roughly proportional to \([\text{Cl}_{\text{r}}]^2\), which is the same dependence observed for R13.

As show schematically in Fig. 1, R15 could also occur as a heterogeneous reaction,

\[
R \cdot + \text{Cl}_g \rightarrow Y_{15} \rightarrow \text{RCI},
\]

where a surface alkyl radical reacts with a gas phase chlorine atom, thus terminating the radical chain reaction.

C. Kinetic model

Single particle kinetic models that include both heterogeneous and homogeneous reactions are constructed from the set of coupled differential equations corresponding to reactions R2-R7, R13 and R15. Two models, termed “homogeneous” and “heterogeneous” are used, to represent two limiting cases. The first model assumes that the propagation (R3a) and termination pathways (R5a, R13a, and R15a) occur homogeneously inside the particle as shown in Fig. 1. In the second model, the propagation (R3b) and termination (R5b, R13b, and R15b) steps are assumed to proceed heterogeneously at the surface of the particle. The results of the two models are used to predict the measurements of the effective uptake coefficient vs. [O₂], [Cl₂] and [Cl] shown in Figs. 7, 9 and 10.

In both models, a single particle size is used to approximate the average diameter of the particle distribution used in each experiment. For the experiments reported here the average diameter is 165-185 nm. The model includes multiple generations of reactions, since Cl atoms can react with both squalane and its various reaction products. RH in R2 represents all closed shell species in the system (e.g. Sq, SqClₙ, SqOₙ, etc). These species are each allowed to react via the same mechanisms as shown for squalane (R2-R7, R13 and R15). This set of coupled differential equations is solved numerically using an adaptive time step algorithm in Mathematica. Although physically unnecessary, 50 generations of products are included in the
model for numerical stability. In this system, there are pure oxygenated and chlorinated products as well as mixed species, making the model extremely complex unless a few simplifying assumptions are made.

First, it is assumed that the primary (i.e. no secondary chemistry) Cl uptake coefficient (γ_{Cl} in R2) is the same for all generations of reaction products (i.e. $\gamma_{Cl}^{Sq} \approx \gamma_{Cl}^{SqCl} \approx \gamma_{Cl}^{SqCl_2} \approx \gamma_{Cl}^{SqCl_3} \approx \gamma_{Cl}^{sq} \approx \gamma_{Cl}^{sqO} \approx \gamma_{Cl}^{sqO_2} \approx \gamma_{Cl}^{sqO_3}$). This was found to be the case for OH + squalane12 and the Cl + squalane reaction at 20% O$_2$, as described above. This assumption appears reasonable over the first few generations of reaction products since the addition of only 1-3 functional groups to a C$_{30}$ molecule should not appreciably diminish its overall reactivity toward Cl. Furthermore, this assumption will be verified later when the modeled evolution of the reaction products are directly compared with experiment.

In a similar way, it is also assumed that the rate (R3a) and uptake (R3b) coefficients for Cl$_2$ reacting with all the alkyl radicals (R-) is the same. The same assumption is made for the rate (R5a) and uptake (R5b) coefficients for the reaction of O$_2$ with all the various alkyl radicals. The validity of these assumptions will be tested against the observed chlorinated product evolution shown below.

There are few direct measurements of many of the homogenous or heterogeneous reactions rates for squalane or even long chain hydrocarbons needed to constrain the model using solely previously measured literature values. Therefore, reasonable order of magnitude estimates for the liquid phase rate coefficients can be obtained by estimating the value of a rate coefficient that is limited solely by diffusion in squalane (i.e. zero Arrhenius activation energy). A rate coefficient for a fast reaction, which is only limited by the encounter frequency of two reactants in the liquid (neglecting steric factors) is given by,32

$$k_{diff} = 4\pi(D_A + D_B)R$$ \hspace{1cm} (16)$$

where R is the critical radius for reaction and D_A and D_B are the diffusion coefficients for reactants A and B. For spherical particles, the diffusion coefficient is related to viscosity via the
Einstein-Stokes relationship,

\[D = \frac{k_B T}{6 \pi r \eta} \] \hspace{1cm} (17)

where \(k_B \) is Boltzmann’s constant, \(T \) temperature, \(r \) molecular radii and \(\eta \), viscosity. For low molecular weight organic solvents such as hexane (\(\eta = 0.294 \) cP),\(^\text{33} \) diffusion coefficients are \(\sim 10^{-5} \) cm\(^2\) s\(^{-1}\). Assuming a critical reaction radius of 0.4 nm and a diffusion coefficient of \(1 \times 10^{-5} \) cm\(^2\) s\(^{-1}\), liquid phase diffusion limited rate coefficients are on the order of \(\sim 1 \times 10^{-11} \) cm\(^3\) molec\(^{-1}\) s\(^{-1}\). This rate coefficient is about 50 times smaller than the binary collision limited reaction rate constant in the gas phase (\(\sim 5 \times 10^{-10} \) cm\(^3\) molec\(^{-1}\) s\(^{-1}\)).

Squalane, however, has a viscosity of 17.9 cP,\(^\text{34} \) which is 60 times larger than that of hexane. Assuming, a molecular radius of 1 nm (approximated from molecular density of liquid squalane) the diffusion coefficient for squalane is computed to be \(1 \times 10^{-7} \) cm\(^2\) s\(^{-1}\), which is reasonably consistent with the range of diffusion coefficients of various solutes\(^\text{35-36} \) (0.25-1.4 \(\times 10^{-6} \) cm\(^2\) s\(^{-1}\)) in squalane as well as triacontane\(^\text{37} \) (7.5 \(\times 10^{-7} \) cm\(^2\) s\(^{-1}\))—the solid straight chain isomer of squalane. Using Eq. (16) the diffusion limited rate coefficient for a reaction occurring in liquid squalane, assuming a critical reaction radius of 0.4 nm, is estimated to be \(k_{\text{diff}} \approx 10^{-13} \) cm\(^3\) molec\(^{-1}\) s\(^{-1}\), which is a factor of \(\sim 4000 \) times slower than the gas phase binary collision limit. Given the approximations used above (e.g. a spherical particle in the Einstein-Stokes equation and the molecular radii of squalane) this value serves only as a rough order of magnitude estimate for a diffusion limited rate coefficient in squalane as well as physical basis for the range of condensed phase rate coefficients that will ultimately be used to parameterize the kinetic models.

The homogeneous model is first initialized using estimates of the condensed phase rate coefficients for R3a, R4, R5a, R13a and R15a, which is done by slowing down analogous gas phase reactions by the factor of 4000 as described above. For example, the gas phase rate coefficient for the abstraction of a hydrogen atom by Cl from a small alkane is of the order of
10^{-10} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1} (\text{e.g. Cl + hexane}),^{38} \text{ which if slowed by a factor of 4000 yields a rough estimate of the condensed phase Cl}_p + \text{RH (R3a) rate coefficient of } \sim 10^{-14} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}.

Similarly, the rate coefficient for the reaction of small alkyl radicals (R-) with Cl$_2$ and O$_2$ is on the order of 10^{-11} and $10^{-12} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ respectively.39 In liquid squalane these rate coefficients are expected to be slowed to $\sim 10^{-15}$ (R3a) and $10^{-16} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ (R5a), respectively. The radical termination reactions, Cl$_p + $ Cl$_p$ (R13a) and R- + Cl$_p$ (R15a) are assumed to occur at every liquid phase encounter and thus assumed in the model to be diffusion limited ($\sim 10^{-13} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$).40 These estimates provide a self consistent set of constraints in the model that are used when attempting to replicate the experimental results.

To replicate the experimental data using the kinetic model, the Henry’s Law constant for O$_2$ dissolved in squalane is fixed to $H_{O2} = 0.18$ ($k_{H,cc}$, the dimensionless ratio) as reported in Ref.41. To our knowledge the Henry’s law constant for Cl$_2$ dissolved in squalane has not been measured, so an estimate is made using the difference in solubility of O$_2$ in water and squalane. The Henry’s law constant for O$_2$ in water is 0.03, which is a factor of 6 smaller than that for squalane. The Henry’s law constant for Cl$_2$ in water is measured to be 2,42 so we estimate that Cl$_2$ is similarly 6 times more soluble in squalane than in water. So in the model, the Henry’s law constant for Cl$_2$ in squalane is fixed to $H_{Cl2} = 12$ ($k_{H,cc}$, the dimensionless ratio).

As discussed above and shown in Fig. 1, after heterogeneous initiation the subsequent reaction pathways (propagation vs. termination) can proceed either at the surface or within the bulk of the particle. To explore this interplay we first construct a model that considers only homogeneous propagation (R3a) and termination steps (R5a, R13a and R15a). The potential importance of heterogeneous propagation and terminations steps will be discussed below.

The Henry’s law coefficients for Cl$_2$ and O$_2$ are fixed to 12 and 0.18 respectively as described above. The primary Cl uptake coefficient (R2) and the rate coefficients for R3a (R- + Cl$_2$), R4 (RH + Cl$_p$), R5a (R- + O$_2$), R13a (Cl$_p$ + Cl$_p$) and R15a (R- + Cl$_p$) are then adjusted in the model, within the order of magnitude estimates outlined above, to replicate the three sets of
experimental results: γ_{Cl}^{Sq} vs. $[O_2]$, $[Cl_2]$, and $[Cl]$ as shown in Figs. 7, 9, and 10. To achieve the best representation of the experimental measurements using the homogeneous model, within the rate constant constraints outlined above, it was found that $\gamma_{Cl} = 0.55$, $k_{3a} = 1.3 \times 10^{-15}$, $k_4 = 1.3 \times 10^{-14}$, $k_{5a} = 8.5 \times 10^{-16}$, and $k_{13a} = k_{15a} = 2.2 \times 10^{-13}$ cm3·molec$^{-1}$·s$^{-1}$.

Although the model provides a reasonable description of the experimental results shown in Figs. 7, 9 and 10, care should be exercised in rigorously interpreting the absolute values of the predicted rate coefficients since the kinetic model is highly coupled. For example, the relationship between the effective uptake coefficient and $[O_2]$, shown in Fig. 7, is controlled mainly by the ratio of $(HCl_2 \times k_{3a})$ to $(HO_2 \times k_{5a})$. For the model to replicate the experimental results in Fig. 7, using purely homogeneous propagation and termination pathways this ratio needs to be ~ 102. In other words, the overall reaction rate of Cl_2 with R- is two orders of magnitude faster than the equivalent reaction with O_2. This can be achieved by a number of combinations of HCl_2, k_{3a}, HO_2 and k_{5a}.

The homogeneous model results, shown as solid lines in Fig. 7, capture the overall functional form of the effective uptake coefficients vs. $[O_2]$ at two fixed Cl_2 concentrations. Both the experimental data and model results show that the large effective uptake coefficients (1.5-3.5) decrease steeply with $[O_2]$ reaching a value of $\gamma_{Cl}^{Sq} = 0.57$, which becomes independent of $[O_2]$ beyond 2%. Unlike the experiment, the modeled effective uptake coefficient can be easily decomposed into contributions from the primary heterogeneous reaction (γ_{Cl}) and secondary chemistry in order to determine chain propagation lengths. The chain propagation length is simply the number of molecules that are removed for each reactive gas phase collision of Cl with the particle (i.e. γ_{Cl}^{Sq}/γ_{Cl}). For example, $\gamma_{Cl}^{Sq} = 0.57$ is very close to the best fit value for the primary reactive uptake coefficient ($\gamma_{Cl} = 0.55$) in the model. This is consistent with our expectation that at high $[O_2]$ the chain terminating pathway (R5a) resulting in stable products such as alcohols and ketones dominates, and therefore the primary heterogeneous reaction controls the overall chemistry rather than the propagating reaction (R-
+ Cl₂). Alternatively, at low [O₂] (and [Cl₂] = 32.7 ppm) secondary reactions dominate, with radical chain lengths as large as 6.3 (3.5/0.55), indicating that for each molecule in the particle consumed by the heterogeneous reaction six others are removed via secondary reactions.

Shown in Fig. 9 are measurements of the effective uptake coefficients as a function of Cl₂ concentration. These measurements are intended to isolate, to the extent possible, how the reaction scheme depends upon absolute Cl₂ concentration. Completely isolating the Cl₂ dependence experimentally from the inverse dependence of the effective uptake coefficient on [Cl], shown in Fig. 10, is difficult since the measurements of effective uptake coefficients shown in Fig. 9 are made by varying the average [Cl] at a fixed concentration of Cl₂. For example, the uptake coefficient measurement at [Cl₂] = 7 ppm requires a larger average concentration of chlorine atoms ([Cl]ₜ = 1x10¹⁰ molec/cm³) than the measurement at [Cl₂] = 30 ppm ([Cl]ₜ = 1x10⁹ molec/cm³) to obtain a decay trace ([Sq]/[Sq]₀ vs. Cl exposure) of sufficient length for the accurate determination of the kinetic decay constant used to compute an uptake coefficient. This is because at lower [Cl₂] the reaction occurs ~3 times slower than at [Cl₂] = 30 ppm, thus requiring higher ⟨Cl⟩ₜ in the former case. Consequently, for these sets of measurements, the kinetic model is used to simulate each data point using the average Cl atom and Cl₂ concentrations used in the experiment. In this way, modeled decay curves can be generated that resemble the experimental measurements shown in Fig. 6. These modeled decay curves are then fit to single exponential functions to extract the modeled uptake coefficients shown in Fig. 9. The homogeneous model results are shown as solid lines in Fig. 9 and reveal, as does the experimental data, that the effective uptake coefficient monotonically increases with [Cl₂]. At low [Cl₂] the effective uptake coefficient approaches the primary heterogeneous reaction probability (γ_Cl = 0.55) and increases to γ_Cl[Sq] ≈ 3 at [Cl₂] = 32 ppm, which corresponds to a chain propagation length of ~6.

In Fig. 10, the model captures the experimentally determined effective uptake coefficients as a function of [Cl]. Unfortunately, experimental limitations prevent measurements at Cl
concentrations in excess of 2×10^{10} molec/cm3. Nevertheless the model shows that the effective uptake coefficient approaches 0.55 in the limit of high [Cl], which as discussed above is the primary heterogeneous reaction probability ($\gamma_{\text{Cl}} = 0.55$). Under these conditions, radical chain lengths of 3.54 and 1.54 at [Cl] = 2.67×10^9 molec cm$^{-3}$ and 2.2×10^{10} molec cm$^{-3}$ are observed, respectively.

The kinetic model, parameterized with purely homogeneous propagation and termination pathways, correctly describes how the measured effective uptake coefficient depends upon [Cl], [O$_2$] and [Cl]. Although, the evolution of oxygenated products, in the absence of secondary chemistry, discussed in Section III.A, is well described by a sequential oxidation model whose analytical form is shown in Eq. (12), it should be noted that the numerical kinetic model, described above, also correctly predicts the chemical evolution of oxygenated reaction products at 20% O$_2$ observed in Fig. 8.

As shown in Fig. 1, the propagation and terminal reaction pathways can also proceed at the surface via collisions with gas phase species such as Cl$_2$, O$_2$ and Cl. To evaluate the potential importance of these surface pathways the overall rate of the R\cdot + Cl$_2$ and R\cdot + O$_2$ heterogeneous reactions are compared with the analogous reactions occurring within the particle. For the homogeneous R\cdot + Cl$_2$ propagation reaction the time dependent change in concentration of R\cdot is given by,

$$\frac{d[R\cdot]}{dt} = k_{3a}[\text{Cl}_2]H_{\text{Cl}_2}[R\cdot] = (1.6 \times 10^{-14}) [\text{Cl}_2][R\cdot] s^{-1} \quad (18)$$

which can be compared to the equivalent expression for the heterogeneous reaction,

$$\frac{d[R\cdot]}{dt} = \gamma_{\text{Cl}_2} \overline{v}_{\text{Cl}_2} A [\text{Cl}_2][R\cdot] = \frac{(3.9 \times 10^{-17}) \gamma_{\text{Cl}_2} [\text{Cl}_2][R\cdot] s^{-1}}{d} \quad (19)$$

where V, A and d are the particle volume, surface area and diameter respectively. $\overline{v}_{\text{Cl}_2}$ is the mean speed of Cl$_2$, and S_{q0} is the molecular density of squalane. It should be noted that Eq. (19) assumes that the particle is well mixed on the time scale of the reaction, as previously shown by Smith et al.12 For the average diameter (167 nm) used in the experiments reported here,
dividing the heterogeneous (Eq. (19)) by the homogeneous (Eq. (18)) rate yields,

\[
\frac{\text{Hetero.}}{\text{Homo.}} = 151 \gamma_{\text{Cl}_2} \tag{20}
\]

thus providing a measure of the competition between the heterogeneous and homogeneous \(\text{R}^- + \text{Cl}_2 \) reaction pathways. If the heterogeneous reaction occurs with every collision of a gas phase \(\text{Cl}_2 \) molecule with an molecule containing an alkyl radical at the particle surface (i.e. \(\gamma_{\text{Cl}_2} = 1 \)), then the heterogeneous propagation rate, for the particle sizes used here, is over two orders of magnitude faster than the equivalent reaction of dissolved \(\text{Cl}_2 \) with \(\text{R}^- \) inside the particle. However, if it is assumed that there is on average only 1 radical site per molecule then the uptake coefficient is therefore likely to be much less than one. For example, there are 62 hydrogen atoms in squalane yielding 62 possible locations for the formation of \(\text{R}^- \). In this case, a more reasonable value for \(\gamma_{\text{Cl}_2} \) is 1/62 or 0.016, which suggests that the heterogeneous reaction is only faster by a factor of 2.4.

The same analysis can be applied to the \(\text{R}^- + \text{O}_2 \) reaction to evaluate its potential importance at the surface of the particle. In this case, the ratio is,

\[
\frac{\text{Hetero.}}{\text{Homo.}} = 22705 \gamma_{\text{O}_2} \tag{21}
\]

suggesting that there is a much larger possible heterogeneous contribution to this reaction pathway for the particle sizes investigated here. For the heterogeneous and homogeneous rates to be equal, \(\gamma_{\text{O}_2} \) would be on the order of \(10^{-5} \). Such a straightforward comparison of the \(\text{R}^- + \text{Cl} \) and \(\text{Cl} + \text{Cl} \) termination reactions is difficult, but it was determined that even if the uptake coefficient for these reactions were in fact unity, there would be less than a 0.5% change in the homogeneous model results presented above and shown in Fig. 7, 9 and 10. This then suggests that these radical-radical termination reactions occur primarily as homogeneous reactions inside the particle. Consequently, these heterogeneous termination reactions (R13b and R15b) are neglected in the model that is presented below.

The preceding analysis therefore suggests that, for the average particle sized used here, the
heterogeneous propagation (R + Cl_2) and termination (R + O_2) might play a significant role in
the observed kinetics. To illustrate this possibility, a purely heterogeneous model is constructed,
the results of which are plotted as dotted lines in Fig. 7, 9 and 10. In this case, we assume the
primary uptake coefficient for Cl_g is 0.55, and the rate coefficient $k_4 = 1.3 \times 10^{-14}$
cm3·molec$^{-1}$·s$^{-1}$ (RH + Cl_p) and $k_{13a} = k_{15a} = 2.2 \times 10^{-13}$ cm3·molec$^{-1}$·s$^{-1}$, which are the same
values used in the homogeneous model described above. The experimental data shown in Figs.
7, 9, and 10 can be well represented by the purely heterogeneous model using the following
parameters: $\gamma_{Cl_2} = 0.01$ and $\gamma_{O2} = 5 \times 10^{-5}$. These uptake coefficients indicate that for Cl_2
nearly every collision with a radical site (1 site per molecule with 62 possible sites) yields a
reaction, while for O_2 1 in every 320 collisions with the radical site yields a reaction. Since the
model is highly coupled and heterogeneous measurements of R + O_2 and R + Cl_2 reaction
probabilities have not been previously quantified, caution again should be exercised in
interpreting any of the absolute values of the uptake coefficients reported here. Nevertheless,
to reproduce the experimental data the heterogeneous rate of R + Cl_2 is found to be 130 times
larger than the R + O_2 uptake coefficient. This is similar in magnitude to the differences
homogeneous rates for the same reactions described above.

Unfortunately, the measured data set is insufficient to fully ascertain what fraction of the
measured effective uptake coefficient originates from the heterogeneous vs. homogeneous
reaction pathways. However, it seems likely, given the model results for the rate and uptake
coefficients used here, that indeed both reaction pathways are competitive. One large factor is
the slowing of the homogeneous reaction pathways by the viscosity of squalane. To distinguish
between these heterogeneous and homogeneous process would require further experimental
constraints of various rate and uptake coefficients, for the R + Cl_2 and R + O_2 reactions.
Furthermore, the heterogeneous reaction mechanism is expected to increase in importance as
the average size of the particle distribution is decreased (see Eq. (19)), since for smaller
particles there will be on average a larger fraction of surface alkyl radicals (assuming a well
mixed particle) available for a heterogeneous reaction with O2 or Cl2. Therefore, systematic studies, such as those described here could be extended to size-selected particles with broad range of diameters to potentially constrain the relative importance of the heterogeneous and homogeneous reaction pathways.

To further understand generally, how secondary chemistry impacts the evolution of reaction products, both models will be used to predict the kinetic evolution of chlorinated products formed at low [O2] concentrations as described below.

D. The formation and evolution of chlorinated reaction products

Chlorinated reaction products, formed at low [O2], are observed in the mass spectra as shown in Figs. 4 and 5. The product ion peaks in the mass spectrum that evolve as a function of chlorine exposure are labeled SqCl' (m/z = 454), SqCl2' (m/z = 488), and SqCl3' (m/z = 522), as shown in Fig. 11. This series of peaks correspond to products in which H atom(s) are replaced with Cl atom(s). There is one main product ion (Sq-2') at m/z = 420, which is 2 mass units smaller than that of squalane and could correspond to the formation of a stable alkene molecule, although it is difficult to rationalize the formation of this product given the well-established low temperature hydrogen abstraction mechanisms. To determine if this product does indeed correspond to an alkene, the particle stream was directed into a second flow tube containing ozone (~5.1 ppm for ~1 min.). Since ozone reacts quickly with alkenes, a change in the particle phase composition is expected if alkenes are indeed formed as reaction products. However, we find no evidence that the particle reacts with ozone.

A more probable explanation for these peaks in the mass spectrum is dissociative photoionization of SqCln, which eliminates HCl. For smaller chlorinated hydrocarbons, such as 1-chloro-pentane, HCl elimination upon photoionization is a significant dissociation pathway. Furthermore, the electron impact mass spectra of small chlorinated hydrocarbons produces hydrocarbon fragments consistent with HCl elimination, providing further evidence for this channel. It is therefore extremely likely that a similar dissociative
photoionization pathway is occurring for the chlorinated hydrocarbons observed here. In this case, the Sq-2′ peak forms from the elimination of HCl from the SqCl⁺ ion, (m/z = 456-36 = 420 = Sq-2′), SqCl⁺ from SqCl₂⁺ (m/z = 490-36 = 454 = Sq-2′+34), SqCl₂⁺ from SqCl₃⁺, (m/z = 524-36 = 488 = Sq-2′+34+34) and so on.

The chemical evolution of the particle is shown in Fig. 11. This figure shows how squalane and four generations of chlorinated products, at low O₂, evolve as a function of chlorine exposure. Each product is both formed and decays over the course of the reaction. The arrows in Fig. 11 indicate the Cl exposures that correspond to 1, 2, 3, and 4 squalane lifetimes (τ = 1/k_{Sq}), respectively. Unlike the kinetic evolution of the oxygenated products (at 20% O₂) shown in Fig. 8, there is no longer a simple relationship between squalane lifetimes and the peak maxima in the kinetic evolution of each reaction product. For the 20% O₂ case, the maxima in the evolution of SqOₙ products as a function of Cl exposure are equally spaced and coincide with n squalane lifetimes. While the first chlorinated reaction product SqCl (detected as m/z = Sq-2′) reaches its maxima around 1 squalane lifetime, similar to the kinetic evolution of SqO, subsequent generations of chlorine products reach their maxima at much larger lifetimes than predicted by the sequential model (Eq. (12)). In fact, the deviation of the product evolution from the sequential oxidation model (Eq. (12)) becomes larger for each subsequent generation of chlorinated reaction product.

Results from the kinetic models (described in Sec. III.C) are used to simulate the product evolution as shown in Fig. 11. The models are parameterized to replicate the experimental conditions by fixing the reaction time and changing the Cl exposure via increasing (or decreasing) the chlorine atom concentration. The same set of rate and uptake coefficients are used to model the reaction products that were previously used to achieve the best representation of effective uptake measurements shown in Figs. 7, 9, and 10. This not only provides an additional test of the overall chemistry included in the kinetic models, but provides a global view of both the reaction rate (effective uptake coefficients) and the chemical
evolution of the particle undergoing significant amounts of radical chain chemistry. As discussed above, all of the homogeneous rate and heterogeneous uptake coefficients for all generations of products (SqClₙ) are assumed to be the same.

Shown as solid lines in Fig. 11, the homogeneous model can capture the overall evolution of the first four chlorinated reaction products at both ~0% and 0.14 % O₂ (Cl₂ = 32.7 ppm). For comparison the heterogeneous model predictions are shown as dotted lines in Fig. 11. For both models there are some discrepancies between predictions and the experimental. These deviations between the models and the experimental data may arise from slightly non-uniform concentrations of Cl along the length of the flow reactor, which would not be properly accounted for in the model since a single average [Cl] for the whole flow tube is used to generate the model lines shown in Fig. 11.

Nevertheless, the overall rate and chemical evolution of the particle is well-represented by both the homogeneous and heterogeneous kinetic models and reveals that, in this system, which is dominated by radical chain chemistry, the formation of reaction products evolve in a more complex way than for the OH + squalane reaction or the Cl + squalane reaction at 20% O₂. The agreement between model and experiment also reveals that, within measurement error and over the first couple of generations of reaction, both the chemistry of squalane and its subsequent reaction products can indeed be approximated by a single rate and uptake coefficients (e.g. $Y^{Sq}_Cl \approx Y^{SqCl}_Cl \approx Y^{SqCl₂}_Cl \approx Y^{SqCl₃}_Cl \approx Y^{SqO}_Cl \approx Y^{SqO₂}_Cl \approx Y^{SqO₃}_Cl$).

The difference between the measured kinetic evolution of reaction products at low and 20 % O₂ is a natural consequence of radical chain chemistry. The product kinetics, shown in Fig. 11, are measured by increasing the concentration of chlorine atoms in the flow tube. However, as shown in Fig. 10, the effective uptake coefficient decreases with increasing chlorine atom concentration. The inverse dependence of the effective uptake coefficient on [Cl] is discussed above and originates from the increasing importance of reactions such as R13 and R15, the Cl₋ₚ + Cl₋ₚ and R₋ + Cl₋ₚ chain termination reactions, at high Cl concentrations. These reactions have
the net consequence of decreasing the overall radical propagation length (i.e. the amount of secondary chemistry) in the particle phase as the [Cl] increases and the reaction progresses. This interplay between radical propagation and termination has the net consequence of slowing down the reaction at larger chlorine exposures. This in turn modifies the kinetic evolution of the chlorinated reaction products, whose chemical evolution increasingly deviates from that observed for the oxygenated products formed at 20 % O₂.

Finally, it should also be pointed out that the presence of secondary chemistry, as observed here, produces kinetics in which reaction time and concentration (i.e. [Cl₂]) are not longer interchangeable quantities. For example, measurements that only change reaction time at a fixed [Cl₂] will produce quite different results from those experiments that fix reaction time and scan [Cl₂], which is consistent with observations reported by McNeil et al.⁸

IV. Conclusion

The heterogeneous reaction of squalane with Cl atoms is examined using VUV photoionization aerosol mass spectrometry. In the absence of O₂, chlorinated reaction products are formed and a radical chain reaction is observed; propagated by the \(\text{R}^- + \text{Cl}_2 \rightarrow \text{RCl} + \text{Cl}^- \) reaction. Effective uptake coefficients vary from 0.8 to ~3 and correspond to radical chain propagation lengths of 1.4 and ~6, respectively. The magnitude of the effective uptake coefficient is found to be directly proportional to the [Cl₂] in the flow reactor. Furthermore, it was found that the effective uptake coefficient is inversely proportional to [Cl]. This inverse correlation arises from the competitive rates of chain propagation and termination.

Adding as much as 20% O₂ to the reaction, effectively shuts off the chain cycling reaction, produces oxygenated products and decreases the uptake coefficient to ~0.57. The diffusion-corrected uptake coefficient is found to be 0.65±0.07 and the chemical evolution of the particle follows a sequential oxidation mechanism. Under these conditions the Cl initiated oxidation of the particle is nearly identical to that found for the OH + squalane reaction albeit ~2.2 times faster, due to the larger initial reactive uptake coefficient.
Two detailed kinetic models are formulated to explore two limiting cases: homogeneous vs. heterogeneous chain propagation and termination. Both models provide a reasonable and independent representation of the global data set, which accounts for how the effective uptake coefficients and product evolutions depend upon [Cl₂], [Cl] and [O₂]. As a result, it is not easy to evaluate the relative importance of each pathway on the global mechanism. However, the results presented here suggest that for radical reactions in viscous droplets, such as squalane, the slow diffusion of reactants inside the particle may enhance the potential importance of competing heterogeneous reaction pathways.

These results clearly illustrate, in a more general way, that for heterogeneous reactions in which free radical intermediates propagate chain reactions, time and concentration, generally considered in aggregate as exposure, are no longer independent separable kinetic quantities. As a consequence, the reaction probability and product evolution will be markedly different if measured as a function of time and therefore may not be directly comparable to those measurement that change radical exposure by concentration. The observation and easy control of secondary chemistry in this system could be used to further explore how molecular structure (n-alkane vs. branched alkane, alkane vs. alkene) might control radical chain reaction chemistries.

Acknowledgements

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C.L.L. is partly supported by the National Science Council, Taiwan under Contract NO. NSC97-2917-I-564-142. J.D.S. was partially supported by the Camille and Henry Dreyfus foundation postdoctoral program in environmental chemistry during this work. D.L.C. is grateful to the National Aeronautics and Space Administration for support on Grant NASA-NNG06GGF26G.
References

38. Webbook, The National Institute of Standards and Technology (NIST) Gaithersburg, MD.
Figure captions

Figure 1. An schematic of the potential reaction mechanism initiated by the heterogeneous reaction of Cl atoms with squalane particles in the presence of O₂ and Cl₂. Both heterogeneous and homogeneous propagation and termination reaction pathways are shown separately.

Figure 2. Schematic of the photochemical flow reactor. The total flow rate through the reactor is 1.1 L/min and corresponds to a reaction time of 33.5 seconds. Chlorine atoms are formed via the photolysis of Cl₂ at 365 nm using black lights (BLB). The photon flux is adjustable using a variac. After reaction, the gas stream is sampled by a SMPS (TSI model 3936), VUV-AMS, and GC for measurements of the particle size distribution, aerosol composition, and Cl exposure, respectively.

Figure 3. Cl exposure as a function of illumination length at [Cl₂] = 8 ppm. It is found that Cl exposure is linearly proportional to illuminated length (i.e. Cl atom concentration is constant) only for illumination lengths greater than 33 cm.

Figure 4. 10 eV photoionization mass spectra of squalane aerosol. (a) Before reaction, the main peaks observed in the spectrum are the squalane molecular ion (m/z = 422) and its largest fragment ion (m/z = 238). (b), (c) After reaction with Cl atoms (32 ppm Cl₂ and 0.143% O₂.), there are a series of product ion peaks (m/z > 422), each separated by 34 amu. The peaks, labeled Sq-2’, SqCl’, SqCl₂’ and SqCl₃’, are formed via dissociative photoionization (i.e. HCl elimination) of SqCl⁺, SqCl₂⁺, SqCl₃⁺, and SqCl₄⁺ ions, respectively, as discussed in Sec. III.D. Oxygenated reaction products are separated by 14 mass units. There are also peaks in the mass spectra that correspond to mixed products species that contain both oxygen and chlorine functional groups.
Figure 5. 10 eV photoionization mass spectra recorded at $[\text{Cl}_2] = 32.7$ ppm and $[\text{O}_2] = (a) \sim 0\%; (b) 0.3\%; (c) 1\%; (d) 5\%$. The peaks identified with dashed lines are second and third generation (n) chlorinated reaction products, denoted as SqCl_{n-1} originating from SqCl_n as detailed in the text. At low $[\text{O}_2]$, only chlorinated products are observed. The chlorinated product peaks decrease and the oxygenated products (i.e. SqO_n) increase with $[\text{O}_2]$. When $[\text{O}_2]$ is larger than 5%, only oxygenated products are observed.

Figure 6. Normalized kinetic decay of squalane measured as a function of Cl exposure at 14.5 ppm chlorine for (●) $[\text{O}_2] = 20\%$ and (○) $[\text{O}_2] \leq 0.2\%$. Both decay curves are fit using single exponential functions (solid lines).

Figure 7. Effective reactive uptake coefficients as a function of $[\text{O}_2]$ at $[\text{Cl}_2] = (a) 14.5$ ppm and (b) 32.7 ppm. Solid lines are predictions from the kinetic model parameterized with homogeneous propagation reactions as detailed in Sec. III.C. Dotted lines are predictions from the heterogeneous kinetic model also detailed in Sec. III.C.

Figure 8. The evolution of squalane (Sq) and its first three generations of reaction products (SqO, SqO$_2$, SqO$_3$) as a function of chlorine exposure at $[\text{O}_2] = 20\%$ and $[\text{Cl}_2] = 24.6$ ppm. Solid lines are results of a sequential oxidation model (Eq. (12)) described in Sec. III.A. The arrows in panels (b), (c) and (d) indicate the chlorine exposures that correspond to 1, 2, and 3 squalane lifetimes, respectively, as described in the text.

Figure 9. Effective reactive uptake coefficients as a function of $[\text{Cl}_2]$. The experimental data (○) exhibits a linear increase with $[\text{Cl}_2]$. Both the homogeneous (solid lines) and heterogeneous (dotted lines) models predict the same linear increase in effective uptake coefficient with increasing $[\text{Cl}_2]$.
Figure 10. Effective uptake coefficients as a function of [Cl] at [Cl2] = 14.5 ppm shown with the results of the homogeneous (solid lines) and heterogeneous (dotted lines) model predictions.

Figure 11. The evolution of squalane (Sq) and the first four generations (SqCl\textsubscript{n}) of reaction products as a function of chlorine exposure at [Cl\textsubscript{2}] = 32.7 ppm. For (a) to (e) [O\textsubscript{2}] = ~0.02% and (f) to (j) [O\textsubscript{2}] = 0.14%. The chlorinated reaction products, denoted as SqCl\textsubscript{n−1}' originate from SqCl\textsubscript{n} as detailed in the Sec. III.D. Results from the homogeneous (solid lines) and heterogeneous (dotted lines) models are computed at each experimental point using the average chlorine concentration (⟨Cl⟩t). The arrows shown in (b) and (g) correspond to 1 squalane lifetime, while the arrows in (c) and (h), (d) and (i), and (e) and (j) indicate the chlorine exposures that correspond to 2, 3, and 4 squalane lifetimes, respectively.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Effective Uptake Coefficient vs. $[O_2]$ (%)

(a) $[Cl_2] = 14.5$ ppm

(b) $[Cl_2] = 32.7$ ppm
Figure 8
Figure 9
Figure 11
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.