EVALUATION OF THE NEW GENERATION RCA 3854 PHOTOMULTIPLIER

Author
Lo, C.C.

Publication Date
2010-03-17

Peer reviewed

EVALUATION OF THE NEW GENERATION RCA 8854 PHOTOMULTIPLIER

C.C. Lo and Branko Leskovar

October 1981

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48
LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, nor any of their subcontractors, assumes any liability whatsoever for the contents hereof, or for any use that may be made of the information herein contained.

Lawrence Berkeley Laboratory Library
University of California, Berkeley
Abstract

Characteristics have been measured for the new generation RCA 8854 114 mm-diameter photomultiplier. The first dynode of this photomultiplier has a cesium-activated, gallium-phosphide secondary emitting surface. Some typical photomultiplier characteristics—such as gain, dark current and risetime—are compared with data provided by the manufacturer. Photomultiplier characteristics generally not available from manufacturers were also measured. These include pulse height spectrum, time spectrum of afterpulses, and in addition, measurements have been made of the collection and quantum efficiency uniformity and of the single photoelectron time spread for the full photocathode illumination. Measurement techniques and description of measuring systems are given in detail.

Introduction

The RCA 8854 is a variant of the 4522. It has a high gain GaP first dynode followed by thirteen BeO dynodes. The new RCA designation for the photocathode is 38ET (formerly 118), which has a peak response at 400 nm and a quantum efficiency of 27%. Its spectral response extends from 200 nm to 660 nm. The minimum useful photocathode diameter is 114 mm. The anode output pulse (10-90%) risetime is approximately 3 ns.

Several specific measurements were made related to a possible application of the photomultiplier in the Deep Underwater Muon and Neutrino Detection (DUMAND) system. The DUMAND Project proposes to study muon and neutrino interactions at ultra-high energies and to investigate astronomical phenomena by means of neutrinos which reach the earth from extra-terrestrial sources.

The proposed technique involves creating a large target-detector system, consisting of 1 km³ of seawater at a deep ocean site. The thick layer of ocean above the target-detector system will significantly reduce the intense background of cosmic ray muons produced in the earth's atmosphere. A three-dimensional array of photon detectors, consisting of approximately 22 x 10³ or 44 x 10³ photomultipliers will detect Cherenkov light resulting from particle cascades in the deep detection volume. Photomultipliers will be housed in optical sensor modules together with appropriate fluorescent wavelength shifters. The modules will be deployed on vertical strings, which will be connected to one another at the ocean floor. Earlier DUMAND workshops (1,2,3) described the optical array system and its characteristics with respect to the array efficiency for observation of both hadronic cascades and muon tracks which result from arriving neutrinos. Also, the photomultiplier characteristics for the DUMAND system were analyzed in general terms in an earlier paper (4). These efforts and the considerations presented at the DUMAND Signal Workshop, February 11-16, 1980, pointed out the need to make pulse height resolution and afterpulse measurements of the RCA 8854.

Gain and Dark Current Measurements

Gain and dark current measurements were made with the system described in Ref. 5. Figure 2 shows the average gain and dark current characteristics of the three photomultipliers tested, as a function of voltage applied between the anode and cathode. With 2500 V applied between the anode and cathode, the gain was 3.5 x 10⁶, while the dark current was 1.3 x 10⁻⁷ A.

Collection and Quantum Efficiency Uniformity Measurements

A system similar to the one described in Ref. 6 was used to measure collection and quantum efficiency uniformity. The results of two of the three 8854 photomultipliers are presented in this report. Figures 3 and 4 show that the uniformity is better than 50% within a 5 cm radius from the center of the photocathode. This is a marked improvement over the development type C70133B photomultipliers (9).

Pulse Height Resolution Measurement

The system used to measure resolution was similar to the one described in Ref. 7. The first peak-to-valley ratio of the three photomultipliers ranges from 1.6 to 1.9. Figure 5 shows the pulse height spectrum of 8854, serial number 1337, with a first peak-to-valley ratio of 1.9 : 1. The dark pulse spectrum of the same 8854 is shown in Figure 6. The average dark pulse count of the three 8854's, summed from 1/8 photoelectron to 16 photoelectron, is

\[\sum \] photoelectron = 155 counts per second

1/8 photoelectron

Afterpulse Measurements

Contemporary fabrication and activation techniques have reduced afterpulses from most photomultipliers to a point where they are rarely important. However,
for the large photocathode area photomultipliers for the DUMAND detection system, a significant amount of afterpulses could introduce serious error. One group of afterpulses may be produced as a result of the ionization of residual gases, such as He, H₂, N₂ and CO₂, between the photocathode and the first dynode (8). The positive ions formed are accelerated toward the photocathode by the focusing electric field. On impact these ions liberate up to five secondary electrons which constitute the secondary signal or afterpulse. These afterpulses generally occur from 200 ns to several microseconds after the main pulse. The time of occurrence of the afterpulses can be closely correlated with the atomic mass of the residual gas inside the glass envelope. Other phenomena may cause afterpulsing, such as dynode fluorescence, electrical fields in the exposed glass of the envelope, etc.

In order to measure this characteristic, a pulse height spectrum and a time spectrum must be taken of the anode output pulse. Figure 7 is a block diagram of the system for measuring the pulse height spectrum.

A pulse generator was used to drive a light-emitting diode, type XP 21. The light intensity of the pulse was controlled by varying the drive pulse amplitude. The light-emitting diode was placed more than 1 meter away from the photocathode of the photomultiplier. An attenuator and preamplifier were used at the output of the photomultiplier to provide more flexibility for controlling pulse height spectrum display on the pulse height analyzer.

Table 1 shows the dark pulse count of three 8854's from 1/8 photoelectron to 16 photoelectron level, inclusive. An obvious conclusion is that most of the dark pulses are of single electron. Only a few percent of dark pulses are of two photoelectron and above. These are probably quite different in origin from the single electron pulses. The dark pulse count of the three 8854's ranges from 137 counts per second to 207 per second by summing all pulses between 1/8 photoelectron to 16 photoelectron. Figure 6 shows a typical dark pulse height spectrum of an 8854.

Table 2 shows the results of the high counting rate measurement. On this measurement a light-emitting diode was pulsed at 1 MHz and the light level was adjusted so that the 8854 yielded 100 kHz of single photoelectron pulses. Note that the 100 kHz pulse frequency was limited by the pulse height analyzer used in the measuring system. Under high, single photoelectron counting operation the percentage of pulses of two photoelectron and above is very similar to that in the dark counting measurement. However, it is interesting to note that the percentage of pulse count of three photoelectron and above was smaller than in the dark pulse count case. It appears that this effect is caused by a gain decrease of the photomultiplier operating at the signal induced condition and by statistical error of the measurement. Figure 9 shows a typical pulse height spectrum of an 8854 under 100 kHz single photoelectron counting operation.

The system shown in Figure 8 was used to measure afterpulses. A pulse generator was used to drive a light-emitting diode, type XP 21, which, in turn, produced light pulses for the photomultiplier. The trigger pulse from the pulse generator was delayed and shaped before it was used as a start pulse for the time-to-amplitude converter (TAC). The output pulse of the photomultiplier was used as the stop pulse for the TAC after being processed by the constant fraction discriminator. The trigger pulse from the pulse generator, however, was purposely delayed to come after the photomultiplier main pulse so that an output pulse from the TAC would only occur when the photomultiplier generated an afterpulse. The output of the TAC was then recorded and displayed on the pulse height analyzer. In order to look for pulses many microseconds after the main pulse, the timing range of the TAC must be set accordingly and unavoidably limit the operating frequency of the test system. Table 3 shows the results of the afterpulse measurement.

Under single photoelectron counting at a rate of 100 kHz afterpulses were detected in the time interval ranges of 52 - 58.5 ns and 190 - 192 ns, after the main output pulse in all three photomultipliers. In the 450 ns - 68 μs time range afterpulses were detected in two out of three 8854's. For one photomultiplier at a 10 kHz pulse rate, 0.8 afterpulses per second were observed at 933 ns and the other at 1 kHz pulse rate gave 3.4 afterpulses per second at 12.5 μs.

When the light pulse intensity was increased so that pulses with three photoelectrons were produced by the 8854's afterpulses were detected in four time intervals in all three photomultipliers: 54.5 - 59 ns, 197 - 198 ns, 956 - 987 ns, and 10.6 - 12.8 μs. Detailed results are given in table 3.

Figure 10 shows the time distribution of output pulses in the time interval 0 - 150 ns after the main photomultiplier pulse under a 100 kHz single photoelectron counting rate. The first distribution at the beginning of the spectrum is the main output pulse of the photomultiplier. The second distribution represents the afterpulses which occurred 52 - 58.6 ns time interval after the main pulse.

Figure 11 shows the afterpulse spectrum in the time interval 4.5 - 68 μs under 10 kHz-three photoelectron counting rate (limited by TAC timing range setting). Afterpulses were present in all three photomultipliers at 8.5 μs, 9.2 μs, 12.8 μs and 14 μs after the main photomultiplier output pulse.

The pulse height spectrum shown in Fig. 9 indicates that very few pulses were above the 4 photoelectron level and most of the pulses were well below level.

Single Photoelectron Measurements

There are generally two important parameters regarding single photoelectron operation of photomultipliers; namely, (1) the pulse response and (2) the time resolution. Both parameters were measured with the systems described in Ref. 4.

Figure 12 shows the output pulse of an 8854 operating at the single photoelectron level. The 10 - 90% risetime of the pulse is 3.2 ns, and its full-width at half-maximum is 4 ns.

Figure 13 shows two single photoelectron time spread spectra spaced 16 ns apart. The full-width at half-maximum time spread was 1.55 ns with the full photocathode illuminated. When a 3.2 mm diameter spot was illuminated at the center of the photocathode, the time spread became 1.35 ns.

Conclusions

Measurements have shown that the basic characteristics of the 8854 photomultipliers agree closely with those given by the manufacturer. The photocathode uniformity as well as the pulse height resolution were found to be significantly better than the developmental
Dark pulse spectra of the three 885A's measured showed that the average pulse count from 2 - 16 photoelectron, inclusive, was 4.6% and that from 3 - 16 photoelectron, inclusive, was 3.6%. Under 100 kHz signal-induced counting rate, the average pulse count from 2 - 16 photoelectron, inclusive, was 4.9% and that from 3 - 16 photoelectron, inclusive, was 0.58%. 96.4% of the pulses in the dark spectrum were below 3 photoelectron, whereas 99.4% of the pulses in the 100 KHz signal-induced spectrum were below 3 photoelectron. Thus, it appears that the dark pulse spectrum includes both multielectron and single electron pulses.

Afterpulses were detected under single photoelectron counting at 52 - 59 ns and 190 ns in all three tubes, 933 ns in one and 12.5 µs in another. By increasing the pulse height to a predominantly 3 photoelectron level, afterpulses were detected on all three tubes in the following time intervals: 52 - 58.5 ns; 933 - 987 ns and 8.5 - 14 µs.

Since the afterpulse time zones were fairly well defined from tube to tube, gating could be done in signal processing almost completely eliminating the error that might otherwise be caused by the afterpulses.

Acknowledgments
This work was performed as part of the program of the Electronics Research and Development Group of the Lawrence Berkeley Laboratory, University of California, Berkeley, California, and was partially supported by the Director, Office of Energy Research, Office of High Energy Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract No. W-7405-ENG-48 and by the DUMAND Hawaii Center, University of Hawaii, Honolulu, Hawaii.

<table>
<thead>
<tr>
<th>Photomultiplier</th>
<th>Dark Pulse Count (cps)(^a)</th>
<th>% of dark pulses from 2 to 16 photoelectron levels</th>
<th>% of dark pulses from 3 to 16 photoelectron levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial No.</td>
<td>1/8 1 2 3 4 5 6 7 8 9 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13370</td>
<td>137 71 6.6 5 3.3 2.2 1.6 1 0.5 0.3 0.18</td>
<td>4.8</td>
<td>3.6</td>
</tr>
<tr>
<td>11894</td>
<td>136 62 7 5.4 4 2.5 1.3 0.6 0.23 0.1 0.05</td>
<td>5.1</td>
<td>3.9</td>
</tr>
<tr>
<td>11880</td>
<td>207 100 8 6.8 5.5 3.8 2.4 1.1 0.4 0.2 0.1</td>
<td>3.86</td>
<td>3.28</td>
</tr>
</tbody>
</table>

\(^a\) Dark pulse summation is defined by \[\sum_{N=1/8, 1, 2, \ldots, 10} \text{counts per second} \] where \(N = 1/8, 1, 2, \ldots, 10 \).
Table 2. Signal Induced Anode Pulse Count Rate at Different Photoelectron Levels

<table>
<thead>
<tr>
<th>Photomultiplier Serial No.</th>
<th>Induced Pulse Count (cps)(^a)</th>
<th>% of anode pulses from 2 to 16 photoelectron levels</th>
<th>% of anode pulses from 3 to 16 photoelectron levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Photoelectron level</td>
<td>1/8</td>
<td>1</td>
</tr>
<tr>
<td>13370</td>
<td>106k</td>
<td>58k</td>
<td>63k</td>
</tr>
<tr>
<td>11894</td>
<td>107k</td>
<td>54k</td>
<td>4.7k</td>
</tr>
<tr>
<td>11880</td>
<td>110k</td>
<td>53k</td>
<td>5k</td>
</tr>
</tbody>
</table>

\(^a\) Anode pulse summation is defined by \(\sum_{N \text{ photoelectrons}} \frac{counts}{second} = \frac{16\text{ photoelectrons}}{N\text{ photoelectrons}}\)

where \(N = 1/8, 1, 2, \ldots, 10\).

Table 3. Afterpulse Performance of 8854 Photomultiplier

<table>
<thead>
<tr>
<th>Photomultiplier Serial No.</th>
<th>Measurement Time Interval</th>
<th>Single Photoelectron Pulse Rate=10kHz</th>
<th>Single Photoelectron Pulse Rate=1kHz</th>
<th>Three Photoelectron Pulse Rate=10kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-680ns</td>
<td>450ns-7(\mu)s</td>
<td>4.5(\mu)s-68(\mu)s</td>
</tr>
<tr>
<td>11370</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>11894</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>11880</td>
<td>a</td>
<td>3.4 at 12.5(\mu)s</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

\(a\) - Afterpulses were not observed.
\(b\) - Measurement was not made due to a measuring system limitation.
\(c\) - Average distribution width was 5.3\(\mu\)s, FWHM.
Fig. 1 Schematic diagram of voltage divider.

Fig. 2 Gain and dark current of 8854 as a function of supply voltage between anode and cathode.

Fig. 3 Collection and quantum efficiency uniformity as a function of the position of the photocathode sensing area for RCA 8854, S/N 11894.
SUPPLY VOLTAGE BETWEEN ANODE AND CATHODE = 2500 V

Fig. 4 Collection and quantum efficiency uniformity as a function of the position of the photocathode sensing area for RCA 8854, S/N 13370.

Fig. 5 Typical pulse height resolution of 8854.

Fig. 6 Typical dark pulse spectrum of 8854.

Fig. 7 System block diagram for measuring pulse height spectrum.

Fig. 9 Pulse height spectrum with 100 KHz signal-induced count rate.
Fig. 8 System block diagram for measuring time spectrum of afterpulse.

Fig. 10 Time spectrum of anode output pulse between 0-150ns.

Fig. 12 Single photoelectron pulse response of 8854.

Fig. 11 Time spectrum of anode output pulse between 4.5-68μs.

Fig. 13 Single photoelectron time resolution of 8854.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.