Title
Model Based Multiscale Sensing (MAS 5)

Permalink
https://escholarship.org/uc/item/9951c5sxx

Authors
Cathy Kong
William Kaiser
Greg Pottie

Publication Date
2006
Model Based Multiscale Sensing

Xiangming Kong, William J. Kaiser and Gregory J. Pottie

Motivation

- **Multiscale Sensing**: Combining hierarchy of sensor data sources with varying deployment density and sensing modes
- **Problem**: Achieve the high fidelity of exhaustive sensing by engaging multiple levels of sparse sensing
- **Application**: Determine spatiotemporal characteristics of sunlight field under forest canopy
- **Motivation for Model Based Approach**:
 - Direct fusing of measurements at multiple levels enhances performance, but improvement benefit is limited
 - Models directly extract phenomena behavior
 - Communication and computation rate requirements constrained to most important data
 - New information can be directly incorporated by updating models

Multi-level Information Processing

- **Info Levels**
 - Context: weather condition and environment
 - High level information: camera provides global measurement with low accuracy and high spatial resolution
 - Low level information: PAR sensor provides local measurement (low spatial resolution) with high accuracy

- **Image Processing**
 - Segment the field image into feature clusters
 - Partition the field based on pixel features and connectivity

- **Three-phase Information Processing**
 - **Model learning phase**
 - Apply dense sampling in different small areas to learn the possible incident light distributions and reflectivity distributions
 - Build a set of incident light distribution and reflectivity models
 - Decompose sunlight into 3 components
 - Direct beam, sky diffused light and leaf diffused light
 - Obtain distribution model of sky diffused light and leaf diffused light from measured data
 - Obtain distribution models of direct beam from measured and simulated field
 - Combine the two to build a set of reflected light distribution models
 - **Model selection phase**
 - Compare the reflected light distribution model measured by the camera with the set of models
 - Select a few models from the model set that are closest to the measured model
 - Use static PAR sensor measurement to pick one most probable model
 - **Model validation and updating phase**
 - Verify the PAR sensor measurement matches the selected incident light distribution model
 - Update the model set if the measured incident light distribution model is substantially different from any available model in the model set
 - Bound the minimum number of PAR sensors to fulfill the model selection and validation task

- **Interactive Information Processing**
 - Simulate the field with parameters based on prior knowledge and global condition
 - Refine the simulation parameter with information from static sensor measurements
 - Update models by assimilating new simulation results, static sensor measurements and reconstructed field
