Seismic Array Software System
Sam Irvine, Martin Lukac, Andrew Parker, Allen Husker, Igor Stubailo,
Richard Guy, Paul Davis, Deborah Estrin
CENS System Lab – http://research.cens.ucla.edu

Motivation: Long-term Deployment of a Portable Broadband Seismic Array

About
• Part of the Middle America Subduction Experiment (MASE)
• Partnered with Caltech and UNAM

Goals
• Map the subducted slab beneath Mexico
• Examine slow earthquakes observed at this subduction zone
• Examine volcanic earthquakes observed at this subduction zone
• Study the propagation of seismic waves in Mexico City

Needs
• Line of seismic stations: Acapulco to Tampico through Mexico City
• 100 Stations total, 5-20 km apart
• 100 Hz broadband seismometers

The Setup: High Powered 802.11b Connect 50 Stations to Mexico City

Physical Topology Characteristics
• Non-uniformity in Topology
• Variable Spacing: many factors in choosing a site
 – Terrain and vegetation
 – Policy – need local permission for each site
 – Cable length and antenna height
 – Seismic Noise
• Distance between stations: 100m to 20km
 – Relays fill in critical gaps
 – Some stations have internet connections and hard drives
• Network topology is the physical topology
 – Each node only has a single downstream neighbor
• Not completely linear – local clusters and star topology
• Max hops is 15 - largest cluster of nodes is 20
• End-to-end connections are unreliable, unstable, and slow
• Data is multi-hopped delivered to a sink
 – Need EVERY bit – cannot lose any data

Dualer: Software for end to end system autonomous seismic data collection

October 2005 Status
• 40 of 50 sites completed
• Additional relays required to connect paths to sinks
• Duiker completed
 – Instrumentation underway

Purposed Measurement Instrumentation
• Transport component will keep track of:
 – When it first tried to send a bundle
 – Each time it begins to send the same bundle
 – When it successfully completes sending a bundle
 – The disk space used on the node on send and receive
• Compare with simulation and testbed results

Storage Estimates
• Data generated at 1-3MB per hour
• 1 GB CF card: 14 days worth of data from a single node at 3MB per hour
• For a 12 node path: 27 hours of data / 1 GB

Minimum Bandwidth Estimations
• Assume worst-case:
 – 3MB per hour = 6667 bits per second per node
 – Last hop connection to sink requires most bandwidth
• For 12 nodes, ~ 80-kbps at last hop:
 – 6,667 bits/node * 12 nodes = 80,004 bps

Latency Measurements
• Latency will be measured through simulation
• Instrumentation will report actual latency
• Depends on node uptime
 – Nodes going down means data can get lost
 – CF Cards fill up and data is delayed or lost

Duiker components
• Acquisition: runs on microservers
 – Collects data from Q330 over ethernet
 – Bundles contain raw Q330 packets, state information configuration info, and an md5sum
 – < 1% of CPU and < 1MB of RAM on Stargate
• Transport: runs on microservers
 – Moves bundles hop-by-hop to a sink
 – Bundles transferred over tcp using scp
 – Storage priority given to local bundles
• Data Acknowledgement
 – Initiated at the sink
 – List of received files at sink updated throughout network
 – Each node uses list to delete files
 – Old local bundles that are not ack’ed are resent
• Data Conversion runs at the sink
 – Converts bundles into minised format
 – No conversion happens on Stargate
 – Allows recovery from conversion errors since all raw packets from Q330 are saved