Title
ELECTRONIC BAND STRUCTURE AND OPTICAL PROPERTIES OF PbTe, PbSe, AND PbS

Permalink
https://escholarship.org/uc/item/9b7149xf

Authors
Kohn, S.E.
Yu, P.Y.
Petroff, Y.
et al.

Publication Date
1972-08-01
ELECTRONIC BAND STRUCTURE AND OPTICAL PROPERTIES OF PbTe, PbSe, AND PbS

August 1972

AEC Contract No. W-7405-eng-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Submitted to Physical Review

LBL-1132
Preprint

UNIVERSITY OF CALIFORNIA
Lawrence Berkeley Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

ELECTRONIC BAND STRUCTURE AND OPTICAL PROPERTIES OF PbTe, PbSe, AND PbS†
S. E. Kohn, P. Y. Yu,† Y. Petroff, ‡ Y. R. Shen, Y. Tsang, and M. L. Cohen

August 1972
Electronic Band Structure and Optical Properties of PbTe, PbSe, and PbS

S. E. Kohn, P. Y. Yu, † Y. Petroff, * Y. R. Shen,
Y. Tsang, and M. L. Cohen

Department of Physics, University of California
and
Inorganic Materials Research Division,
Lawrence Berkeley Laboratory,
Berkeley, California 94720

ABSTRACT

By using the techniques of wavelength-modulation spectroscopy, we have measured the reflectivity, \(R(\omega) \), and the derivative of the reflectivity, \(1/R \, dR/d\omega \), for PbTe, PbSe, and PbS from 1.5 to 6 eV. We have calculated the band structure, frequency dependent dielectric function, density of states, and derivative reflectivity spectrum for all three compounds by the Empirical Pseudopotential Method.
I. INTRODUCTION

The narrow gap IV-VI semiconductors have been the object of extensive research over the past few years.1-3 Compounds of Pb, Sn, and Ge have been studied, and a great deal is known about many of them. Particular emphasis has been placed on studies of the band edge properties and the fundamental gap. The location of the gap in the Brillouin zone,4,5 the temperature and pressure dependence,6,7 and the alloy dependence of the fundamental gap7 have been studied extensively. Higher energy gaps have also been explored, but less is known about these gaps, and few experimental measurements have been made at higher energies.

In this paper we will present experimental optical data and theoretical band structure calculations for the lead chalcogenides PbTe, PbSe, and PbS. Several band structure calculations of these compounds are available in the literature using the APW method,8-11 the Green's function method,12 and two versions of the pseudopotential method.4,13 All of these calculations have a minimum direct gap at the L point in the Brillouin Zone and many other features in common. There are differences, however, of the order of 1 eV for the energy bands away from the fundamental gap. These differences lead to different interpretations of the optical spectrum. These interpretations can be tested by calculating the optical constants in the visible and ultra-violet regions from the various band structure calculations, and then comparing the results with the measured optical spectra. Some calculations of this kind exist for the IV-VI semiconductors,5,14,15 but not all of the above band structure calculations have been tested in this way.
Until recently, the only optical data in the visible and ultraviolet spectral regions available for comparison to theoretical calculations have been the near-normal incidence reflectivity measurements of Cardona and Greenaway, and of Belle. Since these experiments were performed, derivative spectroscopic techniques have become very popular. Aspnes and Cardona have measured the electroreflectance of all three lead salts. In their experiment, the electric field inside the samples was considerably distorted from the ideal square wave shape because of the high dielectric constant of the compounds. This made the usual interpretation of the electroreflectance data more difficult. Nishino, et al. have measured the electroreflectance and thermoreflectance of PbSe, showing some differences between these measurements. We have measured the wavelength-modulated reflectance of PbTe, PbSe, and PbS from 1.5 to 6 eV at temperatures ranging from 5° to 300°K. The only previously published wavelength-modulation reflectivity measurements on any of these compounds is the work of Korn, Welkowsky, and Braunstein on the $\text{Pb}_x\text{Sn}_{1-x}\text{Te}$ alloy system.

We have also made Empirical Pseudopotential Method (EPM) calculations of the band structure and $\varepsilon_2(\omega)$ spectrum of PbSe, and PbS. In addition, by Kramers-Kröning transformations of the theoretical $\varepsilon_2(\omega)$ spectrum, the reflectivity derivative spectrum $1/R \, dR/d\omega$ is calculated for PbTe, PbSe, and PbS, and compared with the experimental measurements. These results confirm the critical point assignment for the $\varepsilon_2(\omega)$ spectrum of PbTe made previously by Cohen and Tsang. By using the method of Gilat and Dolling, we have also calculated the density of states for all three compounds.
II. EXPERIMENTAL PROCEDURE

The theory of wavelength-modulation spectroscopy and a description of our experimental apparatus has been given elsewhere. A double beam optical system is used to normalize the reflectivity and to cancel the background contributions to the derivative signal. The system is operated in a configuration that measures $R(\lambda)$ and $dR/d\lambda$ simultaneously. These results are then converted to $R(\omega)$ and $dR/d\omega$ by a relatively simple computer manipulation.

Samples of all three compounds studied were bulk single crystals. All of the samples used were cleaved to produce a clean, flat surface and immediately placed in the optical dewar. The PbS crystal was large and cleaved very well. The crystals of PbTe and PbSe were relatively small, and their cleavages were not as perfect. Therefore, the absolute magnitude of their reflectivity measurements may not be correct, though the relative measurements are still very acceptable. Once inside the dewar, the samples were continuously maintained in a helium atmosphere. Temperature control was achieved by flowing helium gas past the samples. The spectra thus obtained are always reproducible.
III. EXPERIMENTAL RESULTS

The experimentally measured reflectivity spectra $R(\omega)$, and derivative reflectivity spectra $dR/d\omega$ for PbTe, PbSe, and PbS are presented in Figs. 1, 2, and 3 along with theoretical calculations of the derivative spectra. All experimental results presented here were measured at 5$^\circ$K. The main feature of the $dR/d\omega$ spectrum of PbTe agrees quite well with the results of Korn et al.20 at 80$^\circ$K. The derivative spectrum of all three compounds are strikingly similar. In all of the spectra, the E_2 and E_3 structures (in the notation of Cardona and Greenaway16) are well resolved. It is of particular interest to note the fine structure in the derivative spectra, particularly the existence of several peaks on the low energy side of the E_2 peak. These peaks are very similar in the spectra of all three compounds.

A Kramers-Krönig analysis of the $dR/d\omega$ spectra was performed to determine $\varepsilon_1(\omega)$, $\varepsilon_2(\omega)$, $d\varepsilon_1/d\omega$, and $d\varepsilon_2/d\omega$. The results of these calculations are presented in Figs. 4 and 5. A description of the method of calculation is given in the appendix. The results agree well with the calculations of Korn et al. in the case of PbTe. A quick glance at the $\varepsilon_2(\omega)$ and $d\varepsilon_2/d\omega$ spectra shows that the $d\varepsilon_2/d\omega$ spectra reveals considerably more structure than the $\varepsilon_2(\omega)$ spectra, and is therefore useful in identifying critical points and finer details of the optical spectrum.

Critical points obtained from the experimental spectra are listed in Table 1, along with experimental results of previous work. They were determined in two ways. First, critical points in the reflectivity were determined from the $dR/d\omega$ spectra. However, in the Kramers-Krönig
analysis of the experimental data, structures were shifted. Therefore, a second list of critical point energies is given. These were determined by comparing the theoretical $\varepsilon_2(\omega)$ with the $d\varepsilon_2/d\omega$ calculated from the experimental data. The identification of the transitions then follows the results of the theoretical calculation.

It is possible for structures in $1/R\;dR/d\omega$ to originate from structures in $\varepsilon_1(\omega)$ rather than $\varepsilon_2(\omega)$. Aspnes and Cardona18 showed that, in electroreflectance, $\Delta R = \Delta \varepsilon_1$ near the E_2 peak for all three lead salts. A close comparison of our experimental data and the calculated $d\varepsilon_1/d\omega$ confirms this result.

IV. CALCULATION

The Empirical Pseudopotential Method (EPM) has now been widely applied to many compounds, and the pseudopotential form factors for many elements (extracted from different EPM band structure calculations) are now available.23 These existing pseudopotential form factors $V(q)$ for Pb, Se, and S are plotted respectively in Figs. 6, 7a, and 7b.24 A smooth curve is drawn through each set. The values of the form factors can be read directly from these curves and can be properly scaled to the lattice constants of PbSe and PbS to give the starting set of form factors. The lattice constants of PbSe and PbS are taken to be 6.124 Å and 5.936 Å. Following the EPM scheme, these form factors are slightly adjusted to fit several optical gaps. The choice of these optical gaps are based on the assumption that the corresponding structures in the reflectivity spectrum in PbS and PbSe arise from the
same regions of the Brillouin zone as in PbTe, which have been analyzed previously. In Table II are listed the starting set of form factors for PbS and PbSe interpolated and scaled from the Pb, S, and Se potentials, as discussed above. This Table also contains the final set used in calculating the band structure and optical properties. The starting and final sets of form factors are remarkably close. The adjustment from the former to the latter set is minimal.

Spin-orbit coupling effects are included in the EPM calculation. The symmetric and antisymmetric spin orbit parameters λ_S, λ_A in each material are chosen so that the ratio, λ_S/λ_A, corresponds to that of the constituent outermost core atomic spin orbit splitting.

The resultant band structure for PbSe and PbS are shown in Figs. 9 and 10 respectively. The minimum direct gap E_g is at the L point of the Brillouin zone with symmetry L^- for the top valence band and symmetry L^9 for the bottom conduction band, as in PbTe. The fundamental gaps are 0.172 eV and 0.287 eV respectively for PbSe and PbS. From studies of interband magneto-absorption, the corresponding experimentally measured values are 0.165 ± 0.005 eV and 0.286 ± 0.003 eV. The overall features of the band structures for PbSe and PbS are similar and resemble that for PbTe (Fig. 8).

An intrinsic property of an EPM calculation is that the high energy bands crowd together as a result of the truncation of the Hamiltonian matrix. This is illustrated by the PbS conduction bands at Γ. In a non-relativistic calculation, the conduction band symmetry at Γ for the lead salts would be $\Gamma_{15}', \Gamma_{25}', \Gamma_{12}'$, counting upward in energy from the forbidden gap. The spin-orbit coupling splits the Γ_{15} into Γ_{15}^- and
Γ⁻, Γ₂⁵, to Γ⁺ and Γ⁺ and Γ₁² to Γ⁺. In PbS, the levels arising from Γ₂⁵ and Γ₁² crowd together as they decrease in energy away from, and drop below, the Γ⁻ level of Γ₁₅. This same effect of the crowding of the higher energy bands is seen in the optical spectrum where the energies of the theoretical high energy structure (E⁴, E⁵, E₆) deviate somewhat from the measured data.

The imaginary part of the frequency dependent dielectric function ε₂(ω) has the form

\[ε₂(ω) = \frac{e^2 \hbar^2}{3 \pi m \omega^2} \sum_{c,v} \int \delta(E_c(k) - E_v(k) - \hbar \omega) |⟨u_{k,v} | ψ| u_{k,c}⟩|^2 d^3 k \] \tag{1}

where u_{k,v} and u_{k,c} are the periodic parts of the valence and conduction band Bloch wavefunctions at k, E_v(k), and E_c(k) are the energies of these states. In the previous calculation of ε₂(ω) for PbTe, these wavefunctions and energies are obtained by diagonalizing a pseudopotential Hamiltonian at 356 mesh points in the irreducible part of the fcc cubic Brillouin zone. Approximately 3 × 10⁶ random sampling points are then chosen using a Monte Carlo method. The energy eigenvalues and dipole matrix elements associated with each point are chosen by linear interpolation between the 356 mesh points. The prominent structure in the ε₂(ω) originate from Van Hove singularities at critical points where \(V_k(E_c(k) - E_v(k)) = 0 \). This can be more clearly seen if we write the k integration in Eq. (1) in terms of an integration over a surface S, corresponding to a constant interband energy difference E_c(k) - E_v(k).

Assuming the dipole matrix to be a constant,
\[\varepsilon_2 \sim \int \frac{dS}{|V_k(E_c(k) - E_v(k))|}. \] (2)

The expression on the right in Eq. (2) is the joint density of states. Gilat and Dolling21 developed a different method of calculation first applied to a computation of the phonon density of states for a cubic crystal.27 This method proved to be of much higher resolution, speed and accuracy in comparison with traditional random point sampling methods. This method also involves dividing the irreducible section of the first Brillouin zone into a cubic mesh, but instead of taking discrete random points within the mesh, the constant frequency surfaces inside every small cube are approximated by a set of parallel planes (the directions of the planes are determined by \(V_k \) \(E(k) \) at the mesh points) and may be continuously integrated. Since the spectra contains two important factors, the density of states and the transition probability or dipole matrix element, these have to be known accurately when comparing with high resolution experimentally measured spectra. Gilat et al. obtain such accuracy for the density of states in references 21 and 27 by treating the matrix element of each cube as a constant. This implies that fine details of the computed spectrum could be significantly distorted. The computation of the matrix elements was later taken to the same degree of accuracy as the density of states by Gilat and Kam.23

Along with the experimental derivative reflectivity data of the present work, we employ the Gilat scheme21,27 in computing the \(\varepsilon_2(\omega) \) for PbTe, PbSe and PbS. The pseudo-Hamiltonian is diagonalized at 308 \(k \) points within the irreducible part of the Brillouin zone. The
mesh chosen is slightly different from the former calculation for PbTe\(^4\) in that here the mesh points are shifted away from symmetry directions to avoid degeneracy, a necessary condition of the Gilat Scheme. For this calculation, the dipole matrix element inside each mesh is taken to be a constant equal to the value at the mesh point. This is done for two reasons. First of all, previous experience with PbTe indicates the usefulness of even the joint density of states in determining the origin of the main structure in the reflectivity. Secondly, a first order perturbation calculation on the dipole matrix element at the mesh point to allow interpolation between points requires far more computer time than doing a perturbation calculation on the energy. Therefore, as a first attempt, we have taken the matrix elements as constant in each small cubic mesh.

V. DISCUSSION

The final theoretical results are presented in Figs. 1 to 3 and the theoretical dR/Rd\(\omega\) spectra are shown as dashed lines in Figs. 1-3, together with the experimental spectra. The corresponding band structures for PbTe, PbSe, and PbS are given in Figs. 8-10 respectively. In Fig. 11, the corresponding \(\varepsilon_2(\omega)\) spectra are shown. They agree well with the \(\varepsilon_2(\omega)\) (Fig. 4) obtained from the experimental data.

The peaks in \(\varepsilon_2(\omega)\) are typically shifted down in energy from the reflectivity spectrum by about 0.3 eV. The purpose of the theoretical
and experimental $\varepsilon_2(\omega)$ curves (Figs. 11 and 4) are then to display the position of the main peaks and shoulders, whereas the experimental and theoretical derivative reflectivity spectra (Figs. 7, 9, and 11) are designed to display the fine structure on the main ones. In Table 1 are listed our critical point assignments for PbTe, PbSe and PbS using the EPM calculations, and experimental values of critical points obtained by us and by others 16,18 for the E_4-E_6 structures. Note that the critical point assignment for all three materials are almost identical. The values of E_4, E_5, and E_6 in the theoretical E_2 all group together and are shifted down in energy, owing to the crowding of higher energy conduction bands previously discussed.

To obtain the theoretical derivative spectrum, a Kramers-Krönig transformation was performed on the theoretical $\varepsilon_2(\omega)$ with an appropriate tail function 29 for frequencies above ω_{cutoff}. The respective ω_{cutoff} for PbTe, PbSe, and PbS are 8.5 eV, 9.0 eV and 9.5 eV.

In the following discussion for the results of the PbTe, PbSe, and PbS, the notations E_0-E_6 of Cardona and Greenaway 16 will be used freely since the optical spectra for the three materials are indeed qualitatively similar and discussion of a qualitative nature is applicable to all three cases.

a) PbTe (Figs. 1 and 11a) - The solid curve in Fig. 11a is the previous theoretical $\varepsilon_2(\omega)$ calculation obtained from a random point-sampling. The dotted curve is the present calculation using the Gilat sampling scheme. Note how the critical points are accentuated in the present (Gilat) scheme. The approximation that dipole matrix elements are constant within each cube in the present scheme shows up most
obviously at the bumps at 0.3, 0.6, and 1.2 eV. The previous random point sampling scheme, which gives less resolution than the present scheme when structure arises from critical point singularities, does take account of the interpolation of dipole matrix elements within the cubic mesh and probably portrays more faithfully the actual $\varepsilon_2(\omega)$. This is particularly true for the fine structure arising mainly from volume effects such as those at 0.3, 0.6, and 1.2 eV in PbTe. The theoretical $\varepsilon_2(\omega)$ curve is therefore much sharper than the experimental $\varepsilon_2(\omega)$ since the theoretical $\varepsilon_2(\omega)$ expression contains the singularities as discussed above. The agreement for the energy positions and the general profile between the theoretically calculated and experimental $\varepsilon_2(\omega)$ is good. The theoretical derivative reflectivity spectrum derived from $\varepsilon_2(\omega)$ is extremely sensitive to any slight variation of the slope as well as the main peaks and shoulders in the $\varepsilon_2(\omega)$. A comparison of the theoretical $1/R \, dR/d\omega$ with experiment in Fig. 7 is therefore encouraging. The theoretical $dR/Rd\omega$ would resemble the experimental curve at 3.35 eV if the E_3 shoulder in the theoretical $\varepsilon_2(\omega)$ were slightly flatter. The experimental $dR/Rd\omega$ curve changes slope from negative to positive at 5.4 eV due to an upward turn of slope in $\varepsilon_2(\omega)$ at energies just below the $E_4(6.3$ eV as measured from reflectivity) structure. The theoretical E_4 value is at 7.1 eV, and thus the theoretical $dR/Rd\omega$ continues to have a negative slope at 5.4 eV. These results seem to indicate that our previous critical point assignment4 for PbTe were essentially correct.

b) PbSe (Figs. 11b and 2) - One essential feature that differentiates PbSe from PbTe in the experimental $dR/Rd\omega$ spectrum (Figs. 2) is
the broad structure with small peaks between 2.0 and 3.1 eV in the
dR/Rdω spectrum. The corresponding structure in PbTe (Fig. 1) is
much narrower, having a width of only 0.5 eV. This can be understood
from the theoretical critical point analysis (Table 1) and the theoretical
ε₂(ω) curves (Fig. 11a and 11b). For PbSe, there are critical points
at 1.9 eV, 2.3 eV, both with moderate dipole matrix elements. The main
peak E₂ is composed of two critical points with large dipole matrix
elements at 2.7 eV and 2.9 eV. This cluster of critical points with
increasing dipole matrix element gives rise to the gentle rising E₂
peak. In PbTe, the moderate dipole matrix elements of critical points
are at 1.07 and 1.27 eV while the large dipole matrix elements of
critical points are at 2.00 and 2.02 eV. Thus, the moderate matrix
elements in PbTe are farther away in energy from the large matrix
elements than in PbSe while the large matrix elements of PbTe occur
at almost the same energy. This results in a sharper and narrower E₂
peak in PbTe than in the case of PbSe.

The small structure on the main peaks arise from varying dipole
matrix elements for different regions of k space. As can be seen by
the above arguments, both the position of the critical points and the
dipole matrix elements are important to give the optical spectrum.
This point will be even more apparent when discussing PbS. The struc-
ture near the 4.4 eV region in the experimental dR/Rdω (Fig. 2) is
again due to the E₃ shoulder in ε₂(ω) and the rise in slope at 6.1 eV
again arises because of the E₄ structure at 7.1 eV.

c) PbS (Figs. 11c and 3) -- The theoretical ε₂(ω) in Fig. 11c
shows that in addition to the E₁-E₆ structure, there is an extra bump
between 3.5 and 4.1 eV. No critical point is found in this energy region. A close examination of all the energy gaps that may contribute to $\varepsilon_2(\omega)$ in this energy range uncovers the following: 1) the contribution to this part of $\varepsilon_2(\omega)$ arises from the same band transitions essentially in neighboring cubic mesh, i.e., volume effect, (each mesh covers an energy level of about 0.2 - 0.3 eV) and 2) the dipole matrix elements of these neighboring mesh points vary by a factor of two or three. Recall that the matrix element in each cubic mesh is taken to be constant and equal to the value at the mesh point, whereas the energy is allowed to vary continuously within the mesh. Therefore in the continuous energy range of above 6.6 eV, the dipole matrix element jumps discontinuously by about a factor of 2 to 3 at every 0.2 or 0.3 eV interval.

If one now uses linear interpolation for the matrix elements in the continuous energy range of these particular neighboring cubic mesh points in question, the resultant $\varepsilon_2(\omega)$ between 3.5 eV and 4.1 eV will follow the dotted line in Fig. 11c. In the region of the spurious bump, there remains now only some smooth structure, which does show up when transformed to the theoretical $1/R \text{d}R/\text{d}\omega$ in Fig. 3. This structure deviates considerably in shape from the experiment $1/R \text{d}R/\text{d}\omega$ in the region from 3.5 to 4.5 eV. The Gilat Scheme would be necessary if one were interested in obtaining an undistorted spectrum and retaining the qualitative features of the fine structures of the optical spectrum, because it takes into account the interpolation of the matrix elements within each cubic mesh. The distortion of the fine structure is especially important when the structure arises from volume effects. In
PbSe and PbTe, the E_3 critical points are close in energy to the E_2 critical points. The singularities help to mask the distortion of fine structures arising from the approximation imposed on the dipole matrix elements. We are less fortunate in PbS in that E_3 critical points are much higher in energy than the E_2 critical points, allowing volume effects to dominate in between. The structure between $2 - 3.5$ eV in the experimental $1/R\,dR/d\omega$ (Fig. 3) is even broader than the corresponding one in PbSe. This is again a result of the clustering of critical points at 1.6 eV, 1.9 eV, 2.94 eV, and 3.5 eV. Note the two large matrix element critical points that give rise to the E_2 peak (2.94 eV and 3.5 eV) are separate by 0.56 eV. This gives rise to a very broad E_2 peak.

In measuring the reflectivity spectrum of PbS as a function of temperature, we observed a pronounced sharpening in the fine structure at 5.08 eV as the temperature decreases. This sharpening is observable even between liquid nitrogen and liquid helium temperatures. This is shown in Fig. 12. No other structure in the spectra of all three compounds has a similar behavior. The sample used in this measurement was n-type with a carrier concentration of $\sim 10^{16}/cm^3$ as obtained from Hall effect measurements. However, when we repeated the measurement on an n-type sample with a carrier concentration of $\sim 10^{18}/cm^3$, this 5.08 eV structure became less pronounced at low temperature, and did not show appreciable change as the temperature varied from 80 to 5°K. This result, similar to what was observed for the E_1 peaks of Ge, indicates that this structure is not simply due to band transitions. The strong temperature dependence together with the dependence on the
carrier density seems to suggest that the structure may be due to excitonic effect. According to Herman et al., the E_3 peak is due to M_1 and M_2 critical point transitions at Σ and Δ, and hence, based on the Toyozawa model, hyperbolic excitons can exist in the E_3 peak. One may use the high dielectric constant of PbS to argue against the idea of excitons in PbS. However, in our case, the excitons involving electrons in the high conduction bands may see a smaller effective dielectric constant than even the high-frequency dielectric constant ε_∞. The free carriers tend to screen the attractive interaction between electrons and holes, and this would explain why the excitonic effect decreases with higher carrier concentration in our observation.

For completeness, we also present theoretical calculations of the density of states of PbTe, PbSe, and PbS in Fig. 13. Again, these are based on the EPM band structures and the Gilat sampling scheme. The valence band edge is taken to be the zero energy reference. The energy ranges from -12 to $+12$ eV. This energy range covers four valence bands and five conduction bands. The lowest valence band in the EPM calculation for the three materials are more than 13 eV below the top valence band edge. Since these band structures have given reasonable results in explaining the reflectivity data, one would anticipate that the density of states could also be useful in studying photoemission experiments.

Wavelength-modulation spectroscopy has proved capable of detecting many fine structures in the optical spectrum of PbTe, PbSe, and PbS. The agreement of the experimental and theoretical $1/R \, dR/d\omega$ and $\varepsilon_2(\omega)$ is quite good. Based upon these results, we conclude that the EPM gives
band structures of the lead chalcogenides that are essentially correct throughout the Brillouin zone. With these band structures, we have gained confidence in a more thorough understanding of the optical properties of the lead chalcogenides. The computational techniques may be improved by changing the approximation used in handling the dipole matrix elements. If this is done, we believe that the band structure calculations are capable of giving not only the main structure but also the very fine structure in the optical reflectivity spectra.

ACKNOWLEDGEMENTS

One of us (Y. W. Tsang) would like to thank John Joannopoulos for helpful discussions on the Gilat scheme of computation. We would also like to thank M. Mulrey for assistance in preparing some of the graphs.
APPENDIX

Kramers-Kröng Analysis

To obtain \(\varepsilon_1(\omega) \) and \(\varepsilon_2(\omega) \), we need to know both the absolute reflectivity, \(R(\omega) \), and the corresponding phase angle, \(\theta(\omega) \). These two quantities are related by the Kramers-Kröng relation

\[
\theta(\omega) = -\frac{\lambda}{\pi} \int_0^\infty d\lambda' \frac{2\ln R(\lambda')}{(\lambda')^2 - \lambda^2}.
\]

(3)

This can be transformed into the form

\[
\theta(\lambda) = -\frac{1}{2\pi} \int_0^\infty d\lambda' \frac{d\ln R}{d\lambda} (\lambda') \frac{2\ln R(\lambda')}{(\lambda')^2 - \lambda^2}.
\]

(4)

which is more appropriate for our own case, since we measure \(d\ln R/d\lambda \) with greater accuracy than \(R \). This method of calculation has the disadvantage that the function \(\ln \left| \frac{\lambda + \lambda' - \lambda'}{\lambda - \lambda'} \right| \) does not go to zero as fast as \(1/(\lambda'^2 - \lambda^2) \) as \(\lambda' \) becomes very different from \(\lambda \). Hence, the calculation is a little more sensitive to the extrapolation conditions used for the low and high energy limits of the integral.

By differentiating Eq. (4) with respect to \(\lambda \), we have

\[
\frac{d\theta}{d\lambda}(\lambda) = -\frac{1}{\pi} \int_0^\infty d\lambda' \frac{d\ln R}{d\lambda}(\lambda') \frac{2\ln R(\lambda')}{(\lambda')^2 - \lambda^2}.
\]

(5)

The derivatives of \(\varepsilon_1 \) and \(\varepsilon_2 \) can be then calculated from \(d\ln R/d\lambda \) and \(d\theta/d\lambda \).

In evaluating the integrals for \(\theta \) and \(d\theta/d\lambda \), it is necessary to make truncating approximations for the low and high energy limits of
the integrals. It is well known that the reflectivity of semiconductors becomes approximately constant at very low energies. It is common to take $R(\lambda)$ as constant for long wavelengths when computing θ via Eq. (3). We have made a similar approximation $d\ln R/d\omega = 0$ for long wavelengths. Also, structure in $d\ln R/d\lambda$ far away from the long wavelength limit of Eqs. (4) and (5) tend to oscillate around zero, giving small contributions to the integrals. At very high energies, it is expected, from a Drude type of dielectric function, that the reflectivity should decrease roughly as ω^{-4}. Therefore, we approximated a functional dependence for R of ω^{-A}, where A is an adjustable parameter around 4. To make the calculations less sensitive to A, the room temperature reflectivity data of Cardona and Greenaway from 6 to 20 eV were used in computing the integrals. The results are very insensitive to the choice of A used. Varying A by over a factor of 2 does not change the shape of the curves appreciably, but does change the overall magnitudes somewhat. The absolute magnitudes of the curves are also somewhat in error because the absolute magnitude of $1/R$ $dR/d\lambda$ is a little uncertain, although this does not have a very strong effect in the Kramers-Krönig analysis.
References

† Supported in part by the U. S. Atomic Energy Commission and the National Science Foundation, Grant GP

‡ IBM Postdoctoral Fellow.

* On leave from the University of Paris.

24. The data points in Fig. 6, 7a, and 7b are taken directly from Reference 22, Tables 15, 16, page 212 and 215.

32. A very good agreement with the theoretical valence band density of states has been obtained by preliminary photoemission measurements on PbTe. R. Pinchaux, Y. Petroff, D. Daganeaux and M. Balkanski, Conference on Physics of IV-VI Compounds and Alloys, Philadelphia, 24-25 March 1972.

Table Captions

Table I. Critical point energies of a) PbTe, b) PbSe, and c) PbS. The second column contains critical points derived from experimentally measured $1/R \, dR/d\omega$. The third column has critical points from the $d\varepsilon_2/d\omega$ spectra obtained by Kramers-Kröning analysis. The fourth column contains the results of EPM calculations.

+ Reference 4
(a) Reference 16
(b) Reference 18
(ω) Weak

* Structure in $1/R \, dR/d\omega$ due to structure in ε_1.

Table II. The interpolated and final set of pseudopotential form factors used for the calculation of the band structures of PbSe and PbS.
TABLE 1A

PbTe

<table>
<thead>
<tr>
<th>Region</th>
<th>Other Experimental Data</th>
<th>I/R dR/dω</th>
<th>dε₂/dω</th>
<th>Theory</th>
<th>CP Symm.</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₀</td>
<td>.19(a)</td>
<td></td>
<td></td>
<td>.19</td>
<td>M₀</td>
<td>L(5 → 6)</td>
</tr>
<tr>
<td>E₁</td>
<td>1.24</td>
<td></td>
<td></td>
<td>1.07</td>
<td>M₁</td>
<td>Σ(5 → 7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.27</td>
<td>M₀</td>
<td>L(5 → 7)</td>
</tr>
<tr>
<td>E₂</td>
<td>2.18(b)</td>
<td>2.16(ω)*</td>
<td>2.1</td>
<td>2.00</td>
<td>M₁</td>
<td>Σ(5 → 7)</td>
</tr>
<tr>
<td></td>
<td>2.25*</td>
<td>2.1</td>
<td></td>
<td>2.03</td>
<td>M₁</td>
<td>Λ(5 → 6)</td>
</tr>
<tr>
<td></td>
<td>2.36*</td>
<td>2.2</td>
<td></td>
<td></td>
<td>M₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.56(ω)*</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₃</td>
<td>3.5(a)</td>
<td>3.47</td>
<td>3.3</td>
<td>2.78</td>
<td>M₂</td>
<td>Δ(4 → 6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.83(ω)</td>
<td>4.9</td>
<td>3.1</td>
<td>M₁</td>
<td>E(4 → 7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.9</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₄</td>
<td>6.3(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₅</td>
<td>7.8(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volume effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transitions near X</td>
</tr>
<tr>
<td>E₆</td>
<td>11.2(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1B
PbSe

<table>
<thead>
<tr>
<th>Region</th>
<th>Other Experimental Data</th>
<th>$1/R \text{d}R/\text{d}\omega$</th>
<th>$\text{d}c_2/\text{d}\omega$</th>
<th>Theory</th>
<th>CP Symm.</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0</td>
<td>.165(c)</td>
<td></td>
<td></td>
<td>.172</td>
<td>M_0^1</td>
<td>$L(5 \rightarrow 6)$</td>
</tr>
<tr>
<td>E_1</td>
<td>1.59(a)</td>
<td>1.97(ω)</td>
<td>2.0</td>
<td>1.6</td>
<td>M_{1}^0</td>
<td>$L(5 \rightarrow 7)$</td>
</tr>
<tr>
<td></td>
<td>1.54(b)</td>
<td></td>
<td></td>
<td>1.9</td>
<td>M_{1}^1</td>
<td>$\Sigma(5 \rightarrow 6)$</td>
</tr>
<tr>
<td></td>
<td>1.78(b)</td>
<td>2.18(ω)</td>
<td>2.15</td>
<td>2.3</td>
<td>M_{1}^2</td>
<td>$L(4 \rightarrow 6)$</td>
</tr>
<tr>
<td>E_2</td>
<td>2.95(a)</td>
<td>2.84(ω)*</td>
<td>2.65</td>
<td>2.7</td>
<td>M_{2}^1</td>
<td>$\Sigma(5 \rightarrow 7)$</td>
</tr>
<tr>
<td></td>
<td>3.12(a)</td>
<td>3.12*</td>
<td>2.8</td>
<td>2.9</td>
<td>M_{2}^2</td>
<td>$\Delta(5 \rightarrow 6)$</td>
</tr>
<tr>
<td></td>
<td>3.3(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.8(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_3</td>
<td>4.5(a)</td>
<td>4.47</td>
<td>4.40</td>
<td>4.2</td>
<td>M_{3}^1</td>
<td>$\Delta(4 \rightarrow 6)$</td>
</tr>
<tr>
<td></td>
<td>4.6(b)</td>
<td>5.52</td>
<td>5.3</td>
<td>4.3</td>
<td>M_{3}^2</td>
<td>$\Sigma(4 \rightarrow 7)$</td>
</tr>
<tr>
<td>E_4</td>
<td>7.1(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_5</td>
<td>9.1(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volume effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transitions near Γ and X.</td>
</tr>
<tr>
<td>E_6</td>
<td>12.5(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>Other Experimental Data</td>
<td>1/R dR/dω</td>
<td>dc₂/dω</td>
<td>Theory</td>
<td>CP Symm.</td>
<td>Transition</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>E₀</td>
<td>~0.286</td>
<td></td>
<td></td>
<td></td>
<td>~0.287</td>
<td>M₀</td>
</tr>
<tr>
<td>E₁</td>
<td>1.85(a), (b) 1.98(b)</td>
<td>1.9</td>
<td>2.0</td>
<td>1.6</td>
<td>M₀</td>
<td>L(5 → 7)</td>
</tr>
<tr>
<td></td>
<td>2.15 2.46 2.85</td>
<td>2.1</td>
<td>2.3</td>
<td>1.9</td>
<td>M₁</td>
<td>Σ(5 → 6)</td>
</tr>
<tr>
<td>E₂</td>
<td>3.49(a) 3.7(b) 4.0(b)</td>
<td>3.35*</td>
<td>3.0</td>
<td>2.94</td>
<td>M₁</td>
<td>Σ(5 → 7)</td>
</tr>
<tr>
<td></td>
<td>3.66* 4.01* 4.5*</td>
<td>3.3</td>
<td>3.9(ω)</td>
<td>3.5</td>
<td>M₂</td>
<td>Λ(5 → 6)</td>
</tr>
<tr>
<td>E₃</td>
<td>5.27(a) 5.31 5.75(ω)</td>
<td>5.08</td>
<td>5.0</td>
<td>4.92</td>
<td>M₁</td>
<td>Σ(4 → 7)</td>
</tr>
<tr>
<td>E₄</td>
<td>8.1(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₅</td>
<td>9.8(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volume effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transitions near Γ and X.</td>
</tr>
<tr>
<td>E₆</td>
<td>13.9(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PbSe</td>
<td>PbS</td>
<td></td>
<td>PbSe</td>
<td>PbS</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interpolated</td>
<td>Final Adjusted</td>
<td>Interpolated</td>
<td>Final Adjusted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V^S(4)$</td>
<td>-.2334 Ry</td>
<td>-.2377 Ry</td>
<td>-.256 Ry</td>
<td>-.2532 Ry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V^S(8)$</td>
<td>-.0171</td>
<td>-.0171</td>
<td>-.0116</td>
<td>-.0181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V^S(12)$</td>
<td>.0097</td>
<td>.0097</td>
<td>.0242</td>
<td>.0242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V^A(3)$</td>
<td>.0657</td>
<td>.0735</td>
<td>.091</td>
<td>.0859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V^A(11)$</td>
<td>.0154</td>
<td>.01224</td>
<td>.0154</td>
<td>.01038</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1. Reflectivity and derivative reflectivity of PbTe at 5°K. The dotted curve is the theoretical $1/R\ dr/d\omega$ spectra calculated by the EPM.

Fig. 2. Reflectivity and derivative reflectivity of PbSe at 5°K. The dotted curve is the theoretical $1/R\ dr/d\omega$ spectra calculated by EPM.

Fig. 3. Reflectivity and derivative reflectivity of PbS at 5°K. The dotted curve is the theoretical $1/R\ dr/d\omega$ spectra calculated by EPM.

Fig. 4. $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$ of a) PbTe, b) PbSe, and c) PbS calculated by Kramers-Krönig analysis of the $1/R\ dr/d\omega$ spectra.

Fig. 5. $d\varepsilon_1/d\omega$ and $d\varepsilon_2/d\omega$ of a) PbTe, b) PbSe, and c) PbS calculated by Kramers-Krönig analysis of the $1/R\ dr/d\omega$ spectra.

Fig. 6. Pseudopotential form factors for Pb. The points are derived from PbTe data.23,24

Fig. 7. Pseudopotential form factors for a) Se and b) S.23,24

Fig. 8. Energy band structure of PbTe (a reproduction from Ref. 4).

Fig. 9. Energy band structure of PbSe.

Fig. 10. Energy band structure for PbS.

Fig. 11. The theoretical imaginary part of the frequency dependent dielectric function $\varepsilon_2(\omega)$ for a) PbTe, b) PbSe, and c) PbS.

Fig. 12. Temperature dependence of the derivative reflectivity, $1/R\ dr/d\omega$, of PbS around the E\textsubscript{3} structure.

Fig. 13. Density of states (number of states per eV per primitive cell) for a) PbTe, b) PbSe, and c) PbS.
Fig. 3
Fig. 4
Fig. 5
\[V(q) \text{ (Ry)} \]

\[q \text{ (Å}^{-1}\text{)} \]

Fig. 7

- **Se**
 - □ from elemental Se
 - ○ from ZnSe
 - △ from CdSe

- **S**
 - □ from ZnS
 - ○ from CdS
PbS

Energy (eV)

Temperature: T=300\(^\circ\)K

T=140\(^\circ\)K

T=77\(^\circ\)K

T=5\(^\circ\)K

Fig. 12
Density of states

Energy (eV)

PbSe

Fig. 13(b)
Density of states

Energy (eV)

PbS
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.