Title
Search for Dark Matter Produced in Association with a Higgs Boson Decaying to b b Using 36 fb-1 of pp Collisions at s =13 TeV with the ATLAS Detector

Permalink
https://escholarship.org/uc/item/9bc4f212

Journal
Physical Review Letters, 119(18)

ISSN
0031-9007

Authors
Aaboud, M
Aad, G
Abbott, B
et al.

Publication Date
2017-11-01

DOI
10.1103/PhysRevLett.119.181804

License
CC BY 4.0

Peer reviewed
Search for Dark Matter Produced in Association with a Higgs Boson Decaying to $b \bar{b}$ Using 36 fb$^{-1}$ of pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

M. Aaboud et al.*
(ATLAS Collaboration)
(Received 6 July 2017; published 1 November 2017)

Several extensions of the standard model predict associated production of dark-matter particles with a Higgs boson. Such processes are searched for in final states with missing transverse momentum and a Higgs boson decaying to a $b \bar{b}$ pair with the ATLAS detector using 36.1 fb$^{-1}$ of pp collisions at a center-of-mass energy of 13 TeV at the LHC. The observed data are in agreement with the standard model predictions and limits are placed on the associated production of dark-matter particles and a Higgs boson.

DOI: 10.1103/PhysRevLett.119.181804

One of the central open questions in physics today is the nature of dark matter (DM) that comprises most of the matter in the Universe [1]. A compelling candidate for DM is a stable electrically neutral particle χ whose nongravitational interactions with standard model (SM) particles are weak. This extension of the SM could be detectable at the scale of electroweak symmetry breaking [2] and accommodate the observed DM relic density [3,4]. Many models predict detectable production rates of such DM particles at the Large Hadron Collider (LHC) [5].

Most collider-based searches for DM rely on the signature of missing transverse momentum [6] E_T^{miss} from DM particles recoiling against one SM particle X radiated off the initial state, denoted by the “$X + E_T^{\text{miss}}$” signature. LHC experiments have searched for this $X + E_T^{\text{miss}}$ signature, where X is a light quark or gluon [7–9], a b or t quark [10–12], a photon [13–17], or a W or Z boson [18–21]. The discovery of the Higgs boson h [22,23] opens a new opportunity through the $h + E_T^{\text{miss}}$ signature [24–26]. Because h radiation off the initial state is Yukawa suppressed, the $h + E_T^{\text{miss}}$ process represents a direct probe of the hard interaction involving DM particles.

This Letter presents a search for DM in association with a Higgs boson decaying to a pair of b quarks, $h \rightarrow b \bar{b}$, with a branching ratio $\mathcal{B} = 57\%$ [27], using 36.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector [28,29] in run 2 of the LHC in 2015 and 2016. This search substantially extends the sensitivity relative to previous results at 8 [30,31] and 13 TeV [32–34] in the $h \rightarrow b \bar{b}$ and $h \rightarrow \gamma \gamma$ channels.

A type-II two-Higgs-doublet model (2HDM) with an additional $U(1)_{\tilde{\chi}}$ gauge symmetry yielding an additional massive Z' boson provides an $h + E_T^{\text{miss}}$ signature [26] used for the optimization of the search and its interpretation. This model results in five physical Higgs bosons: a light scalar h identified with the SM Higgs boson in the alignment limit [35], a heavy scalar H, a pseudoscalar A, and two charged scalars H^\pm. The $h + DM$ signal in this Z'-2HDM model is produced through $pp \rightarrow Z' \rightarrow Ah$, where A decays to $\tilde{\chi} \tilde{\chi}$ with a large \mathcal{B}. Relevant model parameters are the ratio of the vacuum expectation values of the two Higgs fields coupling to the up-type and down-type quarks $\tan \beta$, the Z' gauge coupling g_{E_Z}, and the masses $m_{Z'}$, m_{A}, and m_{χ}. The results are also generically interpreted in terms of the production cross section of non-SM events with large E_T^{miss} and a Higgs boson without extra model assumptions.

Monte Carlo (MC) event generators were used to simulate the $h + DM$ signal and all SM background processes, except the multijet background, which was evaluated using data. All MC event samples were processed through a detailed simulation of the ATLAS detector [36] based on GEANT4 [37], and contributions from additional pp interactions (pileup) were simulated using PYTHIA 8.186 [38] and the MSTW2008LO parton distribution function (PDF) set [39].

Signal samples for the $pp \rightarrow Z' \rightarrow Ah \rightarrow \tilde{\chi} \tilde{\chi} b \bar{b}$ process were generated at leading order using MADGRAPH_AMC@NLO 2.2.3 [5,40] interfaced to PYTHIA 8.186, using the NNPDF3.0 PDF set [41]. Samples were generated in the $(m_{Z'}, m_A)$ plane for 0.2 TeV < $m_{Z'}$ < 3 TeV and 0.2 TeV < m_A < 0.8 TeV with $m_{\chi} = 100$ GeV, $\tan \beta = 1$, $g_{E_Z} = 0.8$, $m_H = m_{H^0} = 300$ GeV [5].

Backgrounds from top quark pair production and single top quark production were generated at next-to-leading order (NLO) in quantum chromodynamics (QCD) with POWHEG-BOX [42–46] using CT10 PDFs [47], where the parton shower was simulated with PYTHIA 6.428 [48]. The $t \bar{t}$ samples are normalized using calculations at next-to-next-to-leading order (NNLO) in QCD including...
next-to-next-to-leading logarithmic corrections for soft-gluon radiation [49]. The single-top-quark processes are normalized with cross sections at NLO in QCD [50–54]. Background processes involving a vector boson are studied using NNPDF3.0 PDFs. The perturbative calculations for $V+j$ jets were performed at NLO for up to two partons and at leading order for up to four partons [56,57], and matched to the parton shower [58] using the ME+PS@NLO prescription from Ref. [59]. The central small-J production was simulated at NLO in QCD [60]. Diboson processes ($V V$) were also operated at NLO in QCD with SHERPA 2.1.1 and CT10 PDFs. Backgrounds from other processes are treated at leading order. The single-top-quark processes are studied using the ME+PS@NLO prescription from Ref. [59]. The gluon radiation [49].

The resolution and minimize uncertainties, the mass of large-R jets is determined by the mass measured using calorimeter information alone and the track-assisted jet mass [70]. The latter is obtained by scaling the mass determined using ID tracks alone by the ratio of jet p_T measured in the calorimeter and in the ID.

Multivariate algorithms are used to identify jets containing b and c quarks and using NNPDF3.0 PDFs. The perturbative calculations for $V+j$ jets were performed at NLO for up to two partons and at leading order for up to four partons [56,57], and matched to the parton shower [58] using the ME+PS@NLO prescription from Ref. [59]. The central small-J production was simulated at NLO in QCD [60]. Diboson processes ($V V$) were also operated at NLO in QCD with SHERPA 2.1.1 and CT10 PDFs. Backgrounds from other processes are treated at leading order. The single-top-quark processes are studied using the ME+PS@NLO prescription from Ref. [59]. The gluon radiation [49].

Events are selected by an E_T^{miss} trigger based on calorimeter information [61]. Its threshold was 110 GeV for most of the data taking period, and lower in the first third. Events are required to have at least one pp collision vertex reconstructed from at least two inner detector (ID) tracks with $p_T^{track} > 0.4$ GeV. The primary vertex (PV) for each event is the vertex with the highest $\sum (p_T^{track})^2$.

Reconstruction of muons (μ) incorporates tracks or track segments found in the muon spectrometer and matched ID tracks. Identified muons must satisfy the “loose” quality criteria [62] and have $|\eta| < 2.7$. Electrons (e) are reconstructed by matching an ID track to a cluster of energy in the calorimeter. Electron candidates are identified through a likelihood-based method [63] and must satisfy the loose operating point and be within $|\eta| < 2.47$. Muon and electron candidates must have $p_T > 7$ GeV and are required to be isolated by limiting the sum of p_T for tracks within a cone in ΔR around the lepton direction, as in Ref. [32].

Jets reconstructed from three-dimensional clusters of calorimeter cells [64] with the anti-k_t algorithm [65] are used to identify the $h \rightarrow b \bar{b}$ decay. For small to moderate h momenta, the decay products can be resolved using jets with a radius parameter $R = 0.4$ (small-R jets or j). The decay products of high-momenta h become collimated and are reconstructed using a single jet with $R = 1.0$ (large-R jet or J). Small-R jets with $|\eta| < 2.5$ must satisfy $p_T > 20$ GeV and are called “central,” while those with $2.5 < |\eta| < 4.5$ must have $p_T > 30$ GeV and are called “forward.” Small-R jets are corrected for pileup [66], and central small-R jets with 20 GeV $< p_T < 60$ GeV and $|\eta| < 2.4$ are additionally required to be identified as originating from the PV using associated tracks [67]. Small-R jets closer than $\Delta R = 0.2$ to an electron candidate are rejected. Large-R jets are reconstructed independently of small-R jets and trimmed [68,69] to reduce the effects of pileup and the underlying event. Furthermore, large-R jets must fulfill $p_T > 200$ GeV and $|\eta| < 2.0$. To improve the

The signal is characterized by high E_T^{miss}, no isolated leptons, and an invariant mass of the h candidate m_h compatible with the observed Higgs boson mass of 125 GeV [74]. In the signal region (SR) described below, the dominant backgrounds from $Z(\ell\nu)+j$-jets, $W+j$-jets, and $t\bar{t}$ production contribute, respectively, 30%–60%, 10%–25%, and 15%–50% of the total background, depending on E_T^{miss} and the b-tag multiplicity. The models for $V+j$ and $t\bar{t}$ are constrained using two control regions (CR): the single-muon control region (1μ-CR) is designed to constrain the $t\bar{t}$ and $W+j$-jets backgrounds, while the two-lepton control region (2ℓ-CR) constrains the $Z+j$ jets background contribution.

The SR requires $E_T^{miss} > 150$ GeV, and no isolated e or μ. The multijet background contributes due to misidentified jet veto. To suppress it, additional selections are required: $\min |\Delta \phi (E_T^{miss}, p_T^{miss})| > 0.05$ for the three highest-p_T (leading) small-R jets, $\Delta \phi (E_T^{miss}, p_T^{miss,trak}) < \pi/2$, and $p_T^{miss,trak} > 30$ GeV for events with fewer than two central b-tagged small-R jets. The requirements using $p_T^{miss,trak}$ also reduce noncollision backgrounds.

In the “resolved” regime, defined by $E_T^{miss} < 500$ GeV, the h candidate is reconstructed from two leading b-tagged central small-R jets, or, if only one b tag is present in the event, from the b-tagged central small-R jet and the leading non-b-tagged central small-R jet. At least one of the jets comprising the h candidate must satisfy $p_T > 45$ GeV. A separation in $\Delta \phi$ between the h candidate and E_T^{miss} of more than $2\pi/3$ is required following the back-to-back configuration of the Higgs boson recoiling against DM. To improve the trigger efficiency modeling, events are retained only if the scalar sum H_T of the p_T of the two (three) leading jets fulfills $H_{T,2j} > 120$ GeV ($H_{T,3j} > 150$ GeV) if two (more
than two) central jets are present. Further optimization of the event selection described below provides an additional background reduction of up to 60% relative to Ref. [32], for a small signal loss. Events with a hadronic τ-lepton candidate, identified either by an algorithm based on a boosted decision tree [75] or as small-ΔR jets containing one to four tracks within the jet core and $\Delta \phi(E_T^{\text{miss}}, \vec{p}_T^{\tau}) < \pi/8$, are rejected to reduce the $t\bar{t}$ background, which can enter the SR if at least one top quark decays as $t \to Wb \to \tau \nu b$. This background is further reduced by removing events with more than two b-tagged central jets, which typically happens for $t\bar{t}$ events with $t \to Wb \to csb$ decays. Since most of the hadronic activity in a signal event is expected from the $h \to bb$ decay, the scalar sum of the p_T of the two jets forming the h candidate and, if present, the highest-p_T additional jet must be larger than 0.63 × $H_{T,\text{all jets}}$. Finally, $\Delta R(\vec{p}_T^{h1}, \vec{p}_T^{h2}) < 1.8$ is required for the two jets forming the h candidate.

In the “merged” regime, defined by $E_T^{\text{miss}} > 500$ GeV, the leading large-ΔR jet represents the h candidate. Further selection optimization reduces backgrounds, primarily $t\bar{t}$ production, by up to 30% relative to Ref. [32], for a small signal loss: events containing τ-lepton candidates with $\Delta R(\vec{p}_T, \vec{p}_{\tau}) > 1.0$ are vetoed; no b-tagged central small-ΔR jets with $\Delta R(\vec{p}_T^{b-tag}, \vec{p}_T) > 1.0$ are allowed in the event; and the scalar sum of p_T of the small-ΔR jets with $\Delta R(\vec{p}_T, \vec{p}_T) > 1.0$ is required to be smaller than 0.57 times that sum added to p_T^{τ}.

The resolution in m_h is improved using muons associated with small-ΔR jets in the resolved regime or with track jets matched to large-ΔR jets in the merged regime [69,76].

The event selection in the 1μ-CR is identical to the SR, except that exactly one isolated μ candidate with $p_T^{\mu} > 27$ GeV is required, and that p_T^{τ} is added to E_T^{miss} to mimic the behavior of events contaminating the SR when the charged lepton is not detected.

Events in the 2ℓ-CR are collected using a single-e or single-μ trigger, and selected by requiring one pair of isolated e or μ, one of which must have $p_T^{\ell} > 27$ GeV. Events with a Z boson candidate are retained, identified as having 83 GeV < m_{ee} < 99 GeV or 71 GeV < $m_{\mu\mu}$ < 106 GeV with an opposite-charge requirement in the $\mu\mu$ case. In addition, a measure of the E_T^{miss} significance given by the ratio of the E_T^{miss} to the square root of the scalar sum of p_T of all leptons and small-ΔR jets in the event must be less than 3.5 GeV$^{1/2}$. This requirement separates $Z(\ell\ell) + jets$ processes from $t\bar{t}$ production, as E_T^{miss} originates from finite detector resolution for the former and mainly from neutrinos for the latter. To mimic $Z \to \nu\nu$ decays in the SR, the E_T^{miss} is set to the p_T of the dilepton system, which is then ignored in the subsequent analysis. All other selection requirements are identical between the 2ℓ-CR and the SR.

Subdominant backgrounds, including diboson, Vh, single top quark, and multijet production, contribute less than 10% of the total background in the SR. Multijet production is negligible for $E_T^{\text{miss}} > 350$ GeV. Its m_h distribution is determined from data in a dedicated multijet-enriched sideband, defined by inverting the min $[\Delta \phi(E_T^{\text{miss}}, \vec{p}_T^{\ell})]$ requirement.

Dominant sources of experimental systematic uncertainty arise from the number of background MC events, the calibration of the b-tagging efficiency and integrated luminosity, as well as the scale and resolution of the energy and the mass of jets. Uncertainties associated with the τ vetoes are found to be negligible. Dominant sources of theoretical systematic uncertainty originate from the modeling of the signal and background processes such as $t\bar{t}$, $V + jets$, Vh, diboson, and multijet production. The few relevant changes in the estimation of systematic uncertainties relative to Ref. [32] encompass the improved calibrations of the b-tagging efficiency using $t\bar{t}$ events [69,71] as well as of the jet energy and mass scales using various methods [70,71]; the reduced uncertainty from the new jet-mass observable [69,70]; and the uncertainty of 3.4% on the integrated luminosity of data collected in 2016. Table I quantifies dominant sources of uncertainty after the fit to data assuming three representative Z'-HDM scenarios.

A fit to the m_h observable based on a binned likelihood approach [78,79] is used to search for a signal. Systematic uncertainties are included in the likelihood function as nuisance parameters with Gaussian or log-normal constraints and profiled [76]. To account for changes in the background composition and to benefit from a higher signal sensitivity with increasing E_T^{miss} and b-tag multiplicity, the data are split into categories that are fit

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Impact [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + jets modeling</td>
<td>5.0</td>
</tr>
<tr>
<td>$t\bar{t}$, single-t modeling</td>
<td>3.2</td>
</tr>
<tr>
<td>SM $Vh(bb)$ normalization</td>
<td>2.2</td>
</tr>
<tr>
<td>Signal modeling</td>
<td>3.9</td>
</tr>
<tr>
<td>MC statistics</td>
<td>4.9</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.2</td>
</tr>
<tr>
<td>b tagging, track jets</td>
<td>1.4</td>
</tr>
<tr>
<td>b tagging, calo jets</td>
<td>5.0</td>
</tr>
<tr>
<td>Jets with $R = 0.4$</td>
<td>1.7</td>
</tr>
<tr>
<td>Jets with $R = 1.0$</td>
<td><0.1</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>10</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>6</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>12</td>
</tr>
</tbody>
</table>
normalizations of free parameters in the fit, where HF represents jets considered in the categories that are used as inputs to the fit. The upper panels show a comparison of data to the SM expectation before (dashed lines) and after the fit (solid histograms) with no signal included. The lower panels display the ratio of data to SM expectations after the fit, with its uncertainty considering correlations between individual contributions indicated by the hatched band. The expected signal from a representative Z’-2HDM model is also shown (long-dashed line).

The results are interpreted as exclusion limits at 95% confidence level (C.L.) on the production cross section of $h + $DM events σ_{h+DM} times $B(h \rightarrow b\bar{b})$ with the CLs formalism [81] using a profile likelihood ratio [82] as test statistic. Exclusion contours in the $(m_{Z’}, m_A)$ space in the Z’-2HDM scenario are presented in Fig. 2, excluding $m_{Z’}$ up to 2.6 TeV and m_A up to 0.6 TeV, substantially extending previous limits [30–34]. Furthermore, upper limits on $\sigma_{h+DM} \times B(h \rightarrow b\bar{b})$ are provided under the minimal $h + $DM model assumption that a Higgs boson is produced in a generic back-to-back configuration relative to E_T^{miss}.
TABLE II. Observed (obs) and expected (exp) upper limits at 95% C.L. on \(\sigma_{\text{vis},(h\bar{b})+\text{DM}} \equiv \sigma_{h+\text{DM}} \times B(h \to b\bar{b}) \times A \times \epsilon \) of \(h(b\bar{b}) + \text{DM} \) events. Also shown are the acceptance x efficiency (\(A \times \epsilon \)) probabilities to reconstruct and select an event in the same \(E_T^{\text{miss}} \) bin as generated.

<table>
<thead>
<tr>
<th>Range in (E_T^{\text{miss}}) (GeV)</th>
<th>(\sigma_{\text{obs},(h\bar{b})+\text{DM}}) (\text{[fb]})</th>
<th>(\sigma_{\text{exp},(h\bar{b})+\text{DM}}) (\text{[fb]})</th>
<th>(A \times \epsilon) (\text{[%]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>[150, 200)</td>
<td>19.1</td>
<td>18.3(^{+7.2}_{-5.1})</td>
<td>15</td>
</tr>
<tr>
<td>[200, 350)</td>
<td>13.1</td>
<td>10.5(^{+4.1}_{-2.9})</td>
<td>35</td>
</tr>
<tr>
<td>[350, 500)</td>
<td>2.4</td>
<td>1.7(^{+0.7}_{-0.5})</td>
<td>40</td>
</tr>
<tr>
<td>[500, \infty)</td>
<td>1.7</td>
<td>1.8(^{+0.7}_{-0.5})</td>
<td>55</td>
</tr>
</tbody>
</table>

from DM particles. For this, limits are set on \(\sigma_{\text{vis},(h\bar{b})+\text{DM}} \equiv \sigma_{h+\text{DM}} \times B(h \to b\bar{b}) \times A \times \epsilon \) of \(h(b\bar{b}) + \text{DM} \) events per \(E_T^{\text{miss}} \) bin at detector level, after all SR selections except the requirements on \(b \)-tag multiplicity and \(m_h \) range as used in the fit. The \(A \times \epsilon \) term quantifies the probability for an event to be reconstructed in the same \(E_T^{\text{miss}} \) bin as generated and to pass all \(\sigma_{\text{vis},(h\bar{b})+\text{DM}} \) selections, where \(A \) represents the kinematic acceptance and \(\epsilon \) accounts for the experimental efficiency. The results are shown in Table II. To minimize the dependence on the \(E_T^{\text{miss}} \) distribution of a potential \(h + \text{DM} \) signal, the standard fit approach is modified to analyze one \(E_T^{\text{miss}} \) range at a time in the SR. The \(Z' \)-2HDM model is used to evaluate the dependence of the \(\sigma_{\text{vis},(h\bar{b})+\text{DM}} \) limits and of \(A \times \epsilon \) on the event kinematics within a given \(E_T^{\text{miss}} \) bin. A range of \((m_{Z'}, m_H) \) parameters that yield a sizable contribution of \(\geq 10\% \times \sigma_{h+\text{DM}} \times B(h \to b\bar{b}) \) in a given \(E_T^{\text{miss}} \) bin is considered. Corresponding variations of 25% (70%) in the expected limits and of 50% (25%) in \(A \times \epsilon \) are found in the resolved (merged) regime. Table II quotes the least stringent limit and the lowest \(A \times \epsilon \) value in a given \(E_T^{\text{miss}} \) bin after rounding. The limits are valid for \(p_T,h \lesssim 1.5 \text{ TeV} \).

In summary, a search for DM produced in association with a Higgs boson in final states with \(E_T^{\text{miss}} \) and a \(b\bar{b} \) pair from the \(h \to b\bar{b} \) decay was conducted using 36.1 fb\(^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 13 \text{ TeV} \) recorded by the ATLAS detector at the LHC. The results are in agreement with SM predictions, and a substantial region of the parameter space of a representative \(Z' \)-2HDM model is excluded, significantly improving upon previous results. Stringent limits are also placed on the production cross section of non-SM events with large \(E_T^{\text{miss}} \) and a Higgs boson without extra model assumptions.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleiteos, Thales and Aristea programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [83].

[6] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis
points to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. The distance between two objects in $\eta-\phi$ space is $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$. Transverse momentum is defined by $p_T = p \sin \theta$.

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany New York, USA
3Department of Physics, University of Alberta, Edmonton Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Istanbul, Turkey
4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Department of Physics, The University of Texas at Austin, Austin, Texas, USA
12Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14Institute of Physics, University of Belgrade, Belgrade, Serbia
15Department for Physics and Technology, University of Bergen, Bergen, Norway
16Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
17Department of Physics, Humboldt University, Berlin, Germany
18Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20aDepartment of Physics, Bogazici University, Istanbul, Turkey
20bDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20cIstanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
20dBahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
20eCentro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
21Diapartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
22aINFN Sezione di Bologna, Italy
22bDipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23Physikalisches Institut, University of Bonn, Bonn, Germany
24Department of Physics, Boston University, Boston, Massachusetts, USA
25Department of Physics, Brandeis University, Waltham, Massachusetts, USA
26aUniversidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
26bElectrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
26cFederal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
26dInstituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27Physics Department, Brookhaven National Laboratory, Upton, New York, USA
28aHoria Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
28bDepartment of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
28cNational Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania
28dUniversity Politehnica Bucharest, Bucharest, Romania
28eWest University in Timisoara, Timisoara, Romania
29Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
30Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31Department of Physics, Carleton University, Ottawa, Ontario, Canada
32CERN, Geneva, Switzerland
33Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
34aDepartamento de Fisica, Pontificia Universidad Catolica de Chile, Santiago, Chile
169Department of Physics, University of Illinois, Urbana, Illinois, USA
170Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Spain
171Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
172Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
173Department of Physics, University of Warwick, Coventry, United Kingdom
174Waseda University, Tokyo, Japan
175Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
176Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
177Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
178Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
179Department of Physics, Yale University, New Haven, Connecticut, USA
180Yerevan Physics Institute, Yerevan, Armenia
181Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
182Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
dAlso at Novosibirsk State University, Novosibirsk, Russia.
eAlso at TRIUMF, Vancouver, BC, Canada.
fAlso at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.
gAlso at Physics Department, An-Najah National University, Nablus, Palestine.
hAlso at Department of Physics, California State University, Fresno, CA, USA.
iAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland.
jAlso at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
kAlso at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain.
lAlso at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
mAlso at Tomsk State University, Tomsk, Russia.
nAlso at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
oAlso at Universita di Napoli Parthenope, Napoli, Italy.
pAlso at Institute of Particle Physics (IPP), Canada.
qAlso at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
rAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
sAlso at Borough of Manhattan Community College, City University of New York, New York City, USA.
tAlso at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
uAlso at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
vAlso at Louisiana Tech University, Ruston, LA, USA.
wAlso at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
xAlso at Graduate School of Science, Osaka University, Osaka, Japan.
yAlso at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.
zAlso at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
aaAlso at Department of Physics, The University of Texas at Austin, Austin, TX, USA.
abAlso at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
cAlso at CERN, Geneva, Switzerland.
dAlso at Georgian Technical University (GTU),Tbilisi, Georgia.
eAlso at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
fAlso at Manhattan College, New York, NY, USA.
gAlso at Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile.
hAlso at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
iAlso at The City College of New York, New York, NY, USA.
jAlso at School of Physics, Shandong University, Shandong, China.
kAlso at Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal.
lAlso at Department of Physics, California State University, Sacramento, CA, USA.
mAlso at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
nAlso at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
oAlso at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.
pAlso at School of Physics, Sun Yat-sen University, Guangzhou, China.
qAlso at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
rAlso at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.

181804-20
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Department of Physics, Stanford University, Stanford, CA, USA.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Turkey.
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
Also at Department of Physics, Nanjing University, Jiangsu, China.
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.