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Abstract

The e↵ect of di↵usion resistance in porous solid catalysts on reaction rate during peri-

odic cycling of CO concentration is shown for CO oxidation over Pt/Al2O3 by numerical

simulation. At some cycling frequencies, the average reaction rate during cycling is higher

than the steady-state rate at the mean CO concentration, as expected for this nonlinear,

reactant-inhibited reaction. In order to identify major aspects of dynamic di↵usion-reaction

behavior, a simple kinetic mechanism that shows the main features of CO oxidation and other

reactions with significant inhibition by reactants is investigated. A single dimensionless pa-

rameter group, the dynamic di↵usion coe�cient, is added when going from steady-state to

unsteady-state di↵usion-reaction equations. In the dynamic di↵usion coe�cient, the rate

at which gas-phase reactant di↵uses is reduced by the surface adsorption capacity of the

catalyst. The frequency at which the peak average rate occurs is controlled by the dynamic

di↵usion coe�cient. Keywords: dynamic, di↵usion-reaction, reaction-di↵usion, heteroge-

neous catalyst, porous catalyst, periodic operation, unsteady state.
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Introduction

Scott Fogler’s textbooks1,2 helped teach my students the subject of reaction engineering

for over 20 years at UC San Diego. Scott was kind enough to include my Reactor Lab

software3 with the later editions of his reaction engineering texts.

I had the pleasure to meet Scott many years ago in Michigan, when I worked at GM

Research Labs. People from U. Michigan, Wayne State, GM, Ford, Dow and other research

labs in the area got together frequently at meetings of the Michigan Catalysis Society, where

we socialized and listened to visiting speakers.

At one of those meetings, Joe Kummer of Ford asked me about the research I was doing.

I explained something about di↵usion plus elementary step reaction models (microkinetics).

Joe replied, “steady state is boring!” Taken aback, I later realized that he had a point

and decided to focus on catalysis under dynamic conditions.4 The microkinetic models of

Herz and Marin5 were extended to dynamic conditions by our colleague at GM, Byong

Cho, who predicted interesting space-time patterns of components in porous catalysts.6 We

developed microkinetic di↵usion-reaction models, which we fit to time-resolved experimental

measurements of CO oxidation.7-10

Peter Silveston would sometimes visit the Michigan Catalysis Society from nearby Wa-

terloo University in Ontario, Canada. Peter later edited the book Composition Modulation

of Catalytic Reactors.11 Whereas we usually teach students to design systems to operate

at the optimal steady state, works in this book demonstrated that periodic operation of

reactors can sometimes achieve higher conversion of reactants than steady-state operation.

Peter, along with Robert Hudgins, recently published a related book, Periodic Operation of

Reactors,12 which reviews additional modes of operation such as temperature cycling.

The result that dynamic operation of a reactor has the potential to achieve better perfor-

mance than steady-state operation is both an intriguing and potentially profitable idea.13,14

In order for a reaction system to have the possibility of rate enhancement during composition

modulation, the kinetics must be nonlinear.13,15-18
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Models with equations that describe dynamic di↵usion and reaction in porous catalysts

during composition forcing have been developed for specific reactions to explain experimen-

tal measurements. Many of these works have studied CO oxidation 6-10,19 or three-way

automotive catalytic reactions20 with rather complex models.

There is a need for studying periodic operation with more general models that exhibit

the main features of experimental results but whose di↵usion-reaction equations are simple

such that parameters that determine performance can be identified. An important feature

for any useful model is description of the maximum capacity of a porous catalyst for ad-

sorbed components. Work with models that specify linear adsorption and no limit on surface

coverage21 e↵ectively add only a reversible step to a homogenenous reaction system.

In this work, results for reactant composition cycling of CO oxidation in a porous cata-

lyst are presented. Significant aspects of the steady-state and dynamic behavior seen for CO

oxidation, such as rate enhancement during composition cycling, can also be obtained with

a simple reaction model with reactant inhibition. Di↵usion-reaction equations are devel-

oped for the simple model. Dimensionless scaling parameters are identified that explain the

frequency range in which maximum rate enhancement is obtained under limiting conditions.

Even with a simple reaction model under limiting conditions, the parameter and operating

condition ranges are large and outside the scope of this work. Thus, the goal of this work is

to stimulate further study of the dynamic operation of di↵usion-reaction systems.

Periodic Operation of a CO Oxidation Catalyst

Fig. 1 shows plots of predicted average rate vs. frequency for periodic operation of a CO

oxidation catalyst. CO was cycled in a sine wave while the O2 pressure was held constant.

The detailed di↵usion-reaction model solved was that of Nett-Carrington and Herz9 for

a porous Pt/Al2O3 catalyst. The model was developed from experiments in which gas

concentrations were measured (a) for gas flowing over a porous catalyst layer and (b) at the

equivalent center of the layer where a no-flux boundary condition was closely approached.8

Isothermal conditions were assumed and were closely approached in the experiments used to

3





develop the model.8,9

The sti↵ system of partial di↵erential equations for the elementary-step model and porous

catalyst were integrated numerically using the Crank-Nicolson method9,22 with 40 equally

spaced nodes. An empty-surface initial condition was specified, and the system of equations

was integrated until a steady cycling pattern developed. Average rates are the mean of

local reaction rates within the layer during one period. Computation time is long for low

frequencies but a steady cycling pattern is reached after only a few cycles.

The curve that peaks on the right side of the figure is the average rate predicted for these

kinetics over a hypothetical “flat” catalyst surface with no mass transfer resistance.

The curve that peaks on the left side of the figure is the average rate predicted over

a 25 micron-thick porous catalyst layer at 140 �C, 0-16 Pa-CO, 110 Pa-O2. Compared to

the results for the flat catalyst, the peak in rate is lower in height and is at two-orders of

magnitude slower frequency. Although the presence of di↵usion resistance appears to degrade

the performance of the catalyst, the “flat” case with no di↵usion resistance is hypothetical

and most industrial catalysts are porous for a variety of reasons.

The color insets show space-time patterns of local reaction rate within the porous layer.

The vertical dimension is position in the layer and the horizontal dimension is time. The top

of each color inset is at the outer boundary of the layer that is exposed to flowing gas. The

bottom is the inner boundary of the layer with a no-flux boundary condition. Left-to-right

is the progression of time. The local reaction rate is on a color scale (MATLAB jet) that is

blue for low rate and red for high rate. There are no space-time patterns for the flat surface

because there is no spatial variation in that case.

At low cycling frequency, CO penetrates to the inner boundary of the porous catalyst

layer, and the rate is inhibited or “quenched” everywhere in the layer during part of the

cycle. At intermediate frequency near the peak in rate, there is a periodic looping pattern

of local rate in the layer. At high frequency, relaxed steady-state conditions are approached

such that the average rate during cycling approaches the steady-state rate at the mean
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concentration.

Fig. 2 shows predicted steady-state rate vs. CO pressure under steady-state conditions

over the flat surface and porous layer under the same conditions as Fig. 1. Near the mean

CO pressure, there is a region for the porous catalyst where there are two stable steady

states possible at a given CO pressure. This rate multiplicity is caused by the coupling of the

nonlinear, Langmuir-Hinshelwood, reactant-inhibited kinetics with di↵usion resistance.23 For

these kinetics, there are no multiple steady states over the flat surface with specified external

CO concentration. Other CO oxidation kinetics may admit to intrinsic rate multiplicity.24,25

Note that the rate over the porous catalyst (di↵usion resistance) is greater than the rate

over the flat surface (no di↵usion resistance) for external CO pressures greater than 2.2 Pa,

CO/(16 Pa) > 0.14. The e↵ectiveness factor is greater than one in this range for the CO-

inhibited reaction. For a di↵erent case with either the flat or porous catalyst inside a CSTR,

multiple steady states of reaction rate vs. reactor inlet CO concentration can occur due to

coupling of the nonlinear kinetics with the material balance over the reactor.26

High reaction rate occurs when coverages of both adsorbed CO and adsorbed O over the

surface are at intermediate values, since the rate determining step is reaction of adsorbed

CO and O to form CO2. The lower branch of the curve for the steady-state reaction in the

porous layer is at conditions where the coverage of the catalyst surface by CO is high, the

coverage of O is low, and the rate is relatively low.

At the maximum CO pressure during cycling, if steady-state were to be approached, the

coverage of CO would be high and the rate would be low. This condition occurs at low

cycling frequencies, as seen in the left-most space-time color inset in Fig 1. At intermediate

and high frequencies, the layer never becomes covered with high CO everywhere, and high

reaction rates are obtained at points within the layer.
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The rate at the peaks of both curves in Fig. 1 during cycling are higher than the steady-

state rate at the mean CO concentration on the high-rate branch of the curve in Fig. 2. That

is, the reaction rate during cycling is higher than at steady-state at the mean concentration.

In Fig. 1, note the arrow and label in the right margin that refers to the porous layer: “High

steady-state rate at mean CO concentration.”

The rate enhancement can be explained in terms of storage by the surface of adsorbed

reactants in one half of a cycle and desorption and reaction of the stored reactants in the

other half of the cycle, with CO and O2 being stored in successive halves of the cycle.6,27

The magnitude and location of the mean rate vs. frequency curve for a porous catalyst

will vary with many factors, including layer thickness, active site concentration, and shape

of the composition forcing function.

Periodic Operation With Simplified Kinetics

The kinetic mechanism used for Figs. 1 and 2 are complex since they were developed

to explain experimental measurements. A simple reaction mechanism, which exhibits the

same main qualitative results, can be used to highlight the relationships between catalyst

parameters and conditions and how they a↵ect rate vs. frequency curves.

The reaction mechanism modeled in this work is:

1) A (g) + S *) AS

2) AS + S * P (g) + 2S

with overall stoichiometry A * P.

Step 1 is reversible adsorption of reactant component A over surface sites S. Step 2 is the

rate determining step and is assumed to be far from equilibrium under the conditions con-

sidered. Assumptions of Langmuir-Hinshelwood kinetics apply such as random distribution

of adsorbates over sites with constant properties.

At low concentrations of A, the overall rate is first-order in A. At intermediate concen-

trations of A, when the concentrations of AS and S are equal, the overall rate reaches a

maximum. At high concentrations of A, the rate is low because the concentration of vacant
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sites S is low, and the overall rate is negative-order in A. The main feature of this model,

inhibition of the reaction by a reactant, is also a key feature of some industrially important

reactions including CO oxidation.

In the limit of small surface rate constant and the absence of mass-transport resistance,

the steady-state rate equation is:

�r
A

=
k2KA

C
A

(1 +K
A

C
A

)2
(1)

where C
A

is the gas-phase concentration of the reactant, K
A

is the equilibrium adsorption

constant for adsorption of A, and k2 is the rate constant of step 2. This is the same form

of rate equation used by Wei and Becker23 to study the e↵ects of di↵usion resistance on CO

oxidation over porous catalysts. A plot of steady-state rate vs. reactant concentration for

this equation is qualitatively similar to the curve in Fig. 2 for the flat surface.

Other mechanisms with di↵erent step 2 reactions should also exhibit su�cient nonlin-

earity to provide rate enhancement during composition cycling. Examples include (a) AS

+ AS ! P (g) + 2S and (b) A + AS ! P (g) + S. These mechanisms will change from

second-order in A to zero-order as the concentration of A increases. A mechanism with AS

! P (g) + S will change from first-order to zero-order as the concentration of A increases,

which is a regime that should not produce rate enhancement during cycling.17

The dimensionless equation for the dynamic system in a 1D porous catalyst layer is, for

the adsorbed reactant at each position within the layer:

d✓

d⌧
= 

ads

 (1� ✓)� ✓ � 
rxn

✓(1� ✓) (2)

with dimensionless variables and parameters:

✓ = fractional coverage of surface by adsorbed reactant (3)
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⌧ = t(s)k�1(s
�1)= dimensionless time (4)

where k�1 is the reactant desorption rate constant in step 1,


ads

=
k1(m3mol�1s�1)C

A,max

(mol m�3)

k�1(s�1)
= reactant adsorption rate constant (5)

 =
C

A

C
A,max

= gas-phase reactant concentration (6)


rxn

=
k2(s�1)

k�1(s�1)
= reaction rate constant (7)

The dimensionless equation for the dynamic system in a 1D porous catalyst layer is, for

the gas-phase reactant:

@ 

@⌧
=

⇣
di↵

✏

⌘✓
@2 

@�2

◆
� ↵ [

ads

 (1� ✓)� ✓] (8)

with dimensionless parameters:


di↵

=

✓
D

e

L2

◆✓
1

k�1

◆
= dimensionless di↵usion coe�cient in layer of thickness L (9)

✏ = void fraction in porous catalyst layer (10)

� =
z(m)

L(m)
= position within layer (11)

with z measured from the interior, zero-flux boundary,

↵ =
A(m2)Csurface

A,max

(mol m�2)

✏V (m3)Cgas
A,max

(mol m�3)
= surface-to-gas capacity ratio (12)

where A is the active internal surface area of the layer, and V is the volume of the layer.

The surface-to-gas capacity ratio ↵ is the ratio between the maximum number of moles that

can be adsorbed on the surface in the layer to the maximum number of moles of gas that

can be held in the pore volume of the layer.9,7 The boundary conditions for the gas-phase
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equation are:

 (� = 1, t) =  1(t) (13)


d 

dt

�

�=0

= 0 (14)

For specified parameter values and initial conditions, the system behavior can be com-

puted for specified reactant concentration forcing functions  1(t) over the external boundary

of the layer. Hsiao28 has written a general di↵usion-reaction solver that can solve this prob-

lem as well as problems with arbitrary kinetic schemes.

Even with such simple kinetics, there are four dimensionless parameters to specify (
ads

,


rxn

, (
diff

/✏), ↵) and two di↵erential equations to integrate (surface, gas) in order to solve

the dimensionless system.

The system can be simplified by considering a limiting case that will hold over many

practical catalyst systems, including catalytic CO oxidation. This simplification will allow

identification of scaling parameters and explanation of the frequency range at which maxi-

mum rate enhancement occurs. The limiting case is obtained when the surface reaction is

rate limiting and the surface capacity for adsorbed reactant is large.

First, specify that the surface reaction rate constant is small, 
rxn

<< 1, such that step

1 in the mechanism is in close approach to equilibrium adsorption of reactant. The equation

for reactant gas in the catalyst pores becomes:

@ 

@⌧
=

⇣
di↵

✏↵

⌘"
1

1
↵

+ ads
(1+ads )2

# 
@2 

@�2
� �2  

(1 + 
ads

 )2

�
(15)

where the Thiele modulus � is given by:

�2 =

✓

rxn


ads


di↵ /(✏↵)

◆
=

L2

D
e

⇥
k2(A/V )

ads

Csurface
A,max

⇤
=

L2(m2)

D
e

(m2 s�1)

⇥
K

r

(s�1)
⇤

(16)

This Thiele modulus is equivalent to that defined for these kinetics by Wei and Becker.23

Since reactant surface coverages closely approach equilibrium under this specification,
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only the gas-phase equation must be solved under dynamic conditions: the equilibrium

surface coverage at each time and position can be computed from the gas concentration.

This is also termed a quasi-steady-state approximation for adsorbed components.21

Next, specify that the surface-to-gas capacity ratio is large, ↵ >> 1. This is a reasonable

condition for many systems, including the system shown in Fig. 1. For example, ↵ = 100

for 0.1% CO in 1 atm-gas at 360 K over 2% exposed, 1 wt% Pt on 1 g/cm3 alumina with ✏

= 0.3.

The equation for reactant gas in the catalyst pores becomes:

@ 

@⌧
=

⇣
di↵

✏↵

⌘
(1 + 

ads

 )2


ads

� 
@2 

@�2
� �2  

(1 + 
ads

 )2

�
(17)

For this limiting case, the number of di↵erential equations has been reduced from two to

one, and the number of dimensionless parameters has been reduced from four to three: 
rxn

,


ads

, and (
diff

/(✏↵)). The Thiele modulus � is a combination of the other dimensionless

parameters:

�2 =

✓

rxn


ads


di↵

/(✏↵)

◆
(18)

�2 = (✏↵)

✓
L2

D
e

◆
(

rxn


ads

k�1) (19)

Under steady-state conditions:

@2 

@�2
= �2  

(1 + 
ads

 )2
(20)

where the two boundary conditions are the same as above, Eqns. 13 and 14, for the dynamic

gas-phase equation. The dimensionless steady-state solution is determined by two values:

those of � and 
ads

. Solutions of this steady-state equation were presented by Wei and

Becker.23 Plots of steady-state rate vs. reactant concentration will look similar to the curves

for the porous catalyst in Fig. 2, also showing the possibility of multiple steady states in the

presence of di↵usion resistance.
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Finally, redefine the dimensionless time:

@ 

@T
=


(1 + 

ads

 )2


ads

� 
@2 

@�2
� �2  

(1 + 
ads

 )2

�
(21)

T =
⇣

di↵

✏↵

⌘
⌧ (22)

t(s) = (✏↵)

✓
L2

D
e

◆
T (23)

The di↵erential equation for the limiting case, Eqn. 21, was solved with an explicit

finite-di↵erence numerical method with 40 equally spaced nodes. An empty-surface initial

condition was specified, and the system of equations was integrated until a steady cycling

pattern developed. Average rates are the mean of local reaction rates within the layer during

one period.

The gas phase concentration of reactant over the outer boundary of the layer  1 was

changed in steps and was also cycled in square waves and sine waves in di↵erent numerical

experiments. During periodic operation, the real-time frequency ! (s-1) can be defined by

its use in a sine-wave forcing function:

 1(t) = 0.5 [1 + sin(2⇡!t)] (24)

The dimensionless frequency ⌦ can be defined by:

 1(T ) = 0.5 [1 + sin(2⇡⌦T )] (25)

⌦ = (✏↵)

✓
L2

D
e

◆
! (26)
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Scaling Parameters

In going from the steady-state system (Eqn. 20) to the dynamic system, (Eqn. 17), only

one more dimensionless parameter is added: (
diff

/(✏↵)). This parameter can be considered

a dynamic di↵usion coe�cient in which the surface-to-gas capacity ratio ↵ modifies the

di↵usion dynamics. For example, a larger surface capacity slows the rate of penetration of

reactant gas into the porous catalyst layer.

The system has been simplified su�ciently such that we can see some interesting scaling

cases.

Case 1 : Change any two or more components of the dynamic di↵usion coe�cient (
diff

/(✏↵))

= (✏↵L2/D
e

) such that the value of the group remains constant.

Result 1: The steady-state solution of dimensionless concentration profile  (�) remains

unchanged because the Thiele modulus � and the adsorption constant 
ads

remain

unchanged.

Result 2: The dynamic solutions of dimensionless concentration profiles remain unchanged

in both dimensionless time  (�,T ) and real time  (�,t) as the external reactant con-

centration is varied. This result is true for arbitrary forcing functions.

Result 3: Although the dimensionless solutions remain unchanged, the dimensioned rate of

reaction over the catalyst layer (mol/s) will change if the ratio L2/D
e

changes.

Case 2 : Change 
di↵

and 
rxn

by the same factor such that the Thiele modulus � remains

constant but the dynamic di↵usion coe�cient value changes. Keep 
ads

constant.

Result 1: The steady-state solution  (�) remains unchanged.

Result 2: The dynamic solution in dimensionless time  (�,T ) remains unchanged.

Result 3: The dynamic solution in real time  (�,t) changes because the dynamic di↵usion

coe�cient, which relates t(s) and T, has changed.
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The results of Case 2 prove an imperative for kinetic studies: Dynamic experiments should

be performed in addition to steady-state experiments, since two catalytic systems can exhibit

the same steady-state behavior but di↵erent dynamic behavior.29

Frequency at Maximum Rate Enhancement

The solutions for the simplified kinetic model during periodic operation show peaks in

average rate vs. frequency, similar to those seen in Fig. 1 for a detailed kinetic model of CO

oxidation. The results for the simplified model are shown in Fig. 3. The color insets show

space-time patterns of local reaction rate within the porous layer, as described above for

Fig. 1. Also shown is the local reaction rate pattern for steady state at the mean reactant

concentration over the layer.

The simplified kinetics allow us to understand some of the features of the average rate

vs. cycling frequency curves. Case 1, Result 2 above shows that systems with constant �,


ads

and (✏↵L2/D
e

) will exhibit the same dimensionless solutions during periodic operation

on rate vs. ! (s-1) real-time frequency plots.

Case 2, Result 3 shows that systems with constant � and 
ads

but di↵erent (✏↵L2/D
e

)

will exhibit di↵erent curves on rate vs. ! (s-1) plots. The frequency at which the peak in

rate occurs is related to the surface-to-gas capacity ratio ↵ as well as the layer thickness and

e↵ective di↵usivity.

Case 2, Result 2 shows that systems with constant � and 
ads

but di↵erent (✏↵L2/D
e

)

will fall on the same curve on rate vs. ⌦ dimensionless frequency plots.

For 
ads

= 100 and � = 34, rate multiplicities exist at the mean concentration on the

steady-state rate vs. concentration plot. Steady-state profiles were presented by Wei and

Becker23 for these parameter values.

For these parameter values, the peak in average rate during cycling occurs at ⌦ = 1.8

for sine-wave forcing (Eqn. 25, initial condition  (�,0)=0, and integrating to steady cycling

conditions). The magnitude of the peak in average rate is 1.28 times the steady-state rate at

the mean concentration on the high branch of the steady-state rate vs. concentration curve.
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As the forcing frequency increases above the peak frequency, the average rate during

cycling approaches the steady-state rate at the mean concentration (on the high branch of

the rate vs. concentration curve when rate multiplicities exist and when starting from an

empty-surface initial condition). That is, the value of the rate enhancement ratio approaches

one. At very high frequencies, the assumption of close approach to equilibrium adsorption

in Eqn. 21 will not hold and detailed simulations using Eqn. 2 and Eqn. 8 can be used to

extend the plot closer to the relaxed steady-state asymptote at high frequencies.

As the forcing frequency decreases below the peak frequency for these kinetics and pa-

rameter values (
ads

= 100 and � = 34), the entire layer will go into the inhibited state (low

branch of the rate vs. concentration curve) for part of the cycle, thus, causing the average

rate during cycling to be less than the steady-state rate at the mean concentration on the

high branch of the rate curve (rate enhancement ratio < 1). The onset of this condition at

low frequency can be seen in Fig. 3 where the curve for sine-wave cycling has an abrupt

change in slope at log10(⌦) = -0.22, ⌦ = 0.60.

As discussed below, the peak rate occurs at ⌦ = 2.7 for square-wave cycling vs. ⌦ = 1.8

for sine-waves. The result that the peak rate occurs at about ⌦ = 2 can be explained in

terms of the rate at which the surface inside the layer can be filled by adsorbed reactant in

the presence of di↵usion resistance.

Consider a limiting case in which adsorption is fast such that the outer fraction of the

porous catalyst layer that is exposed to any amount of gas-phase reactant at any time is fully

covered and the remaining portion of the layer is empty. After an empty layer is suddenly

exposed to a fixed external concentration of reactant gas, the time required to completely

fill the internal surface in the layer with adsorbed reactant is:7,30

tfill(s) =
1

2
(✏↵)

✓
L2

D
e

◆
(27)

Note that increasing surface-to-gas capacity ratio ↵ increases the time required to fill the
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surface in the layer.

Now, if we force the system with a frequency that is the inverse of this surface filling

time,

!(s�1) =
1

tfill(s)
=

2

✏↵

✓
D

e

L2

◆
(28)

we get the dimensionless frequency near which the peaks in average rate vs. cycling frequency

are obtained:

⌦ = (✏↵)

✓
L2

D
e

◆
! (29)

⌦ = 2 (30)

This is an approximation, of course. The surface in the layer doesn’t fill completely with

adsorbed reactant, and a portion of the cycle period is needed to desorb and react adsorbed

reactant. But this approximation does give a physical reason for the location of the peak.

For the porous layer in Fig. 1, the peak in rate is at ⌦ = 0.8 for sine-wave forcing of a

complex CO+O2 oxidation mechanism over a surface with two adsorbed reactants and two

types of sites with di↵erent parameter values.

The presence and magnitude of a peak in rate vs. frequency is also related to the Thiele

modulus � and the adsorption equilibrium constant 
ads

. As the Thiele modulus decreases

and adsorption constant increases, the potential for rate enhancement during periodic oper-

ation increases. Identification of the ranges of parameter values for which rate enhancement

is possible is outside the scope of this work.

Eqn. 21 for the limiting condition was obtained for 
rxn

<< 1 and ↵ >> 1. This is a

single partial di↵erential equation. For larger values of 
ads

and smaller values of ↵, solution

of a sti↵ system of coupled di↵erential equations may be required. The e↵ect of such changes

in the parameters will be to make the kinetics more linear and decrease the surface storage

capacity, thus, lowering the rate enhancement during periodic operation.
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Forcing Function Shape

Rate vs. frequency curves vary with the shape of the forcing function, as shown in Fig.

3. For these parameter values (
ads

= 100 and � = 34), the peak in average rate during

sine-wave cycling occurs at ⌦ = 1.8 with a peak in average rate 1.28 times the steady-state

rate at the mean concentration.

For the same conditions but with 50% duty-cycle, on-o↵ square-wave forcing, the peak

in rate occurs at ⌦ = 2.7 with a peak in average rate 1.43 times the steady-state rate at the

mean concentration.

Reaction over a porous catalyst tends to lessen the e↵ects of changes in the shape of the

forcing function relative to reaction over a hypothetical “flat” surface in the absence of mass

transfer resistance.

Over the “flat” surface with no di↵usion resistance, maximum rate enhancement can

be obtained with on-o↵ square-wave forcing in which the reactant is “on” for only a small

fraction of the cycle. For these kinetics, the enhancement in average rate during cycling

increases with an increase in 
ads

, i.e., for k1 >> k�1. This is because a relatively large

amount of reactant is “stored” by adsorption over the surface during the “on” fraction of

the cycle, when 
ads

is large and equilibrium coverage ✓ is high, for later reaction (plus

desorption) during the “o↵” fraction of the cycle. Since the adsorption rate constant k1 is

relatively large, the surface fills to capacity in a relatively short period of time, i.e., short

fraction of the cycle.

In contrast, over a porous catalyst layer, the filling and emptying of the surface through-

out the layer is controlled by the dynamic di↵usion coe�cient and not k1 and k�1.

Conclusion

This work has discussed the importance of studying and, in some cases, operating porous

heterogeneous catalysts under dynamic conditions. Focus was placed on the e↵ects of internal

di↵usion resistance and the development of dimensionless scaling parameters for dynamic

operation. Scott Fogler is to be complimented for including many sections in his textbooks
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about dynamic operation of chemical reactors.
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Figure Captions

Fig. 1. Predicted patterns of local CO oxidation rate during sine-wave cycling of CO in

constant O2 over Pt/Al2O3. Curves are average overall rate during cycling vs. log10 of

frequency. Black (peak on right) = hypothetical “flat” surface with no di↵usion resistance.

Blue (peak on left) = rate over 25 micron porous catalyst layer. Color insets are space-time

patterns of local reaction rate in the porous layer. The model of Nett-Carrington and Herz9

and the parameter values in Table 1 of that work apply for the porous layer, except that

�1 = 0.20 (fraction site-type 1) and Csurf
tot

= 44 mol of total surface sites per m3 layer. T

= 140 �C, 0-16 Pa-CO, 110 Pa-O2. Rate shown is turnover frequency (product molecules

formed per site per second).

Fig. 2. Predicted steady-state CO oxidation rate vs. external CO pressure in constant

O2 over Pt/Al2O3. Dashed line = rate over hypothetical “flat” surface with no di↵usion

resistance. Double solid lines = rate over porous catalyst layer showing rate multiplicity.

Same conditions as Fig. 1

Fig. 3. Rate enhancement during reactant concentration forcing for the simplified kinetic

model. The vertical axis is the ratio of the average reaction rate during cycling to the steady-

state rate at the mean reactant concentration over the external boundary of the layer. The

horizontal axis is the log of the dimensionless cycling frequency: log10(⌦). Circles: sine-

wave forcing. Squares: square-wave forcing (on-o↵ with 50% duty cycle). Color insets are

space-time patterns of local reaction rate in the porous layer. 
ads

= 100 and � = 34.

23




