Lawrence Berkeley National Laboratory
Recent Work

Title
MONTHLY PROGRESS REPORT FOR APRIL. DISTRIBUTION OF As, Cd, Hg, Pb, Sb, AND Se DURING SIMULATED IN-SITU OIL SHALE RETORTING

Permalink
https://escholarship.org/uc/item/9bn705gm

Author
Hodgson, Al.

Publication Date
1981-05-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
May 15, 1981

TO: Pat Fair
FROM: Al Hodgson
RE: Monthly Progress Report for April
 Distribution of As, Cd, Hg, Pb, Sb, and Se During Simulated
 In-Situ Oil Shale Retorting
 LBID-397

TASK 2. ANALYTICAL METHODS FOR GAS SAMPLES

With the air-acetylene burner method for on-line Cd analysis, offgas flow rate measurement and control must be accomplished before the offgas reaches the burner. As previously noted, we experienced difficulty with the method used for sample gas flow rate measurement during retort run LBL-08. The major source of this difficulty was the necessity to interrupt gas flow to the burner in order to make the measurement. During April, we investigated several alternate methods of flow rate determination. One method appears to be suitable. This method is based upon the measurement of pressure drop over a length of capillary tubing. A simple gas flow measuring apparatus was designed using theoretical calculations. Materials were assembled, and the system, utilizing a one meter section of heated 1.5 mm I.D. stainless steel tubing, was constructed. We are currently calibrating the system.

TASK 4. LABORATORY PARTITIONING STUDIES

Experiment LBL-08 produced the first on-line measurements of Cd in retort offgas. However, the offgas Cd results are semi-quantitative due to the flow rate measurement problems. A mass balance is currently being attempted for that experiment in order to evaluate the on-line Cd measurements. Cadmium concentrations in raw and spent shale samples from the experiment have been determined using an acid digestion technique that results in improved analytical precision. These results indicate that 96% of the Cd in the raw shale was volatilized at the 890°C retorting temperature.
Oil and water samples are being analyzed to determine Cd partitioning to these products.

PROJECTED WORK

The two major tasks for May are as follows:
1. Complete the first draft of the report on the results of the Hg partitioning studies.
2. Make preparations for the second retort run for Cd partitioning. This retort run could be conducted in May if the new flow rate measurement system is found to be adequate.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.