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An optimization technique for addressing DEM misregistration in hilly terrain
Wenwen Lia and Michael F. Goodchildb

aGeoDa Center for Geospatial Analysis and Computation, School of Geographical Sciences and Urban Planning, Arizona State University,
Tempe, AZ, USA; bDepartment of Geography, University of California, Santa Barbara, CA, USA

ABSTRACT
Digital elevation models (DEMs) represent the Earth’s topography and support a variety of applica-
tions, ranging from extracting watershed drainage structure to measuring glacier volume.
Applications that require conflation of multiple DEMs are problematic, however, because of mis-
registration. We explore a spatial optimization technique to quantify the misregistration on the pixel
level between NASA’s Shuttle Radar Topography Mission (SRTM) elevation data set and the USGS’s
National Elevation Dataset (NED). The misregistration, estimated within blocks by horizontal offset
and direction, is modelled spatially in terms of typical topographical parameters: slope, aspect and
elevation. A Nelder–Mead algorithmwas implemented to compute the local shift at two study sites in
the San Gabriel Mountains (SGM) and Santa Monica Mountains (SMM) in Los Angeles County,
California. The magnitude of misregistration is generally less than the distance between DEM
postings, and varies by terrain type, being larger in steeper terrains; nevertheless, misregistration is
systematic within these continuous terrains that have similar topographical features.
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1. Introduction

Recent years have seen a proliferation of digital elevation
data, largely as a result of new acquisition systems
(Thompson, Bell, and Butler 2001). Digitized contours are
often obtained by scanning published topographic maps,
or acquired as an intermediate product in the mapping
process. Rasters of elevation data are often used in geo-
graphic applications and analysis. These data sets are often
found in the form of digital elevation models (DEMs),
through interpolation from contours (the contour-to-grid
or CTOG process), by remote sensing using radar (e.g.,
Shuttle Radar Topography Mission or SRTM data) or
LiDAR data, or by interpolation from spot heights. The
resulting data sets will vary by spatial resolution and the
accuracy of position and elevation, and also by semantics,
or precisely what ismeant by height. LiDAR first returns, for
example, will record the elevation of the tree canopy or
buildings; radarwill alsobe affectedbydense canopies and
buildings (DEMs acquired from first-return LiDAR or radar
are sometimes termed digital surface models or DSMs for
this reason); and the elevations depicted on topographic
maps are typically those of the bare ground devoid of
buildings, trees, and in some cases sand dunes (Zhang
andWhitman 2005) (bare-earth DEMs obtained from topo-
graphicmaps are sometimes termed digital terrainmodels,
or DTMs). Some DEMs record the elevation measured at

point locations, while in other cases the elevation reported
may be the average over a pixel, or the result of a more
complex spatial convolution.

This variety of elevation data is opening new applica-
tions that rely on the ability to fuse or compare two or
more sources. Our study, for example, is motivated by a
need to estimate the spatial distribution of total building
volume in Los Angeles at a coarse scale, and our explora-
tion of the possibility to accomplish this by comparing a
DEM that records the elevation of bare ground with one,
specifically SRTM that records the top surface of any
buildings that are present. This effort required a careful
registration of the two DEMs; this article reports on the
technique we developed to address that problem. The
broader issue of building volume estimation will be
addressed in a separate article. Besides the application
of DEMs in our study, a number of other scientific research
topics, such as the extraction of watershed drainage struc-
ture (Maddalena 2010), estimation of canopy height
(Miliaresis and Delikaraoglou 2009), and measurement of
glacier volume (Nuth and Kääb 2011), all need cross-
source DEM analysis. To perform precise science, it is
imperative that the misregistration across DEMs is identi-
fied and as far as possible corrected.

In some cases, it is possible to address misregistra-
tion visually, or at least to gain some rough impression
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of its amount and direction. For example, in the Ridge and
Valley Province of the Appalachian Mountains, an offset
between two DEMs that is perpendicular to the ridges
would lead to a characteristic pattern that alternates posi-
tive and negative elevation errors. Figure 1(a) shows an
area near Harrisonburg, Virginia, where the ridges run
approximately southwest to northeast. We then simulated
a misregistration of 0.83 pixel perpendicular to the ridges.
Figure 1(b) shows the result. Along each mountain ridge,
the differences are all negative (black) on the northwest
facing slope of the ridge, and positive on the southeast
slope, allowing the ridges and valleys to become clear, as
if the surface were illuminated from the southeast.

The Appalachian Mountains example is an ideal case
illustrating the patterns caused by subpixel misregistra-
tion because (1) these mountains are mostly single-
directional; (2) we impose a constant shift in a single
direction perpendicular to the structure of the moun-
tain range. Therefore, the misregistration can be
detected easily. However, in real-world situations, the
identification of misregistration is much more compli-
cated. It is therefore essential to develop a computer-
aided spatial model for automated misregistration
detection. In this article, we report on our efforts to
design a spatial model that considers three important
topographic parameters: slope, aspect and elevation, in
order to quantify the misregistration (we also term it
the shift) in hilly areas using optimization techniques.

The rest of the paper is organized as follows. Section
2 introduces the related research in the literature;
Sections 3–5 describe the study area, the data set in
use and the proposed method; Section 6 presents
experimental results from our case studies and Section
7 concludes the article and identifies future research
directions.

2. Literature

In image processing, it is sometimes necessary to fuse
two or more images that have been produced by dif-
ferent approaches, acquired at different times or
acquired from different points of view (Fonseca and
Manjunath 1996; Zitová and Flusser 2003). In such
cases, it is desirable to remove any misregistration
that may be present, using one of two traditional meth-
ods. The feature-matching method involves computing
the cross-correlation for a range of distances and direc-
tions between the image to be registered and a refer-
ence image, and selecting the distance and direction
for which cross-correlation is maximum (Reddy and
Chatterji 1996; Habib et al. 2005; Habib and Al-Ruzouq
2005; Guizar-Sicairos, Thurman, and Fienup 2008).
Transform-model estimation involves the identification
of a number of control points on both the image to be
registered and the reference image that can be used to
warp one to fit the other. Global approaches such as
shape-preserving mapping and local approaches such
as thin-plate splines (Davis et al. 1997) are commonly
used transform models.

Most of the image-registration studies reported in
the literature focused on registering images that exhibit
sharp changes of value. Land-cover images, for exam-
ple, have values that change sharply at the edges of
different land-cover types, and may be classified, in
which case values are measured on nominal scales. In
contrast, elevation surfaces are measured on interval
scales and typically follow Tobler’s first law of geogra-
phy (Sui 2004), exhibiting strong spatial autocorrela-
tions over short distances.

One popular method ofmeasuring the positional accu-
racy of a DEM and improving its registration is by using

Figure 1. (a) Satellite imagery of Appalachian Mountain ranges near Harrisonburg, Virginia. (b) Simulation of the effects of a 0.83-
pixel misregistration.
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ground control points (GCPs). The basic procedure is to:
(1) identify a set of GCPs and measure their locations; (2)
obtain the elevation at each GCP from in-situ measure-
ment or from an independent source that is known to
have better accuracy (Maune, Maitra, andMcKay 2007); (3)
identify feature points to be matched on the DEM and (4)
estimate the parameters of a 3D transformation using the
matched point pairs, with the objective of minimizing the
least-square error of the elevations. However, this method
is not effective for large-scale terrain DEM registration
because it is costly and time consuming, and it may
occasionally be impossible to obtain enough GCPs
(Goodchild, Buttenfield, and Wood 1994; Zebker et al.
1994). Moreover, if the number of GCPs is limited and
the transform model is poorly chosen, the result may be
large discrepancies between the transformed DEM and
the reference source, even after transformation
(Carpenter and Hogarty, 2007).

To overcome this drawback, researchers have inves-
tigated the capabilities of DEM-to-DEM registration uti-
lizing all of the available terrain information (Carpenter
and Hogarty, 2007; Dawn, Saxena, and Sharma 2010).
Carpenter and Hogarty (2007) performed a simulta-
neous vertical and horizontal DEM registration using a
‘coarse exhaustive’ algorithm, a ‘coarse with parabolic
refinement’ algorithm and a ‘unified least squares’ algo-
rithm. The objective was to find the best fit between
the master DEM (finer-resolution DEM) and the DEM to
be registered (coarser-resolution DEM). This study
found that the shift obtained is more reliable using
DEMs with similar resolutions than with very different
resolutions. It was not mentioned whether the com-
plexity of terrains, such as local slope and aspect,
were considered in the registration.

Recently, subpixel misregistration of images has
attracted much attention. Dai and Khorram (1998)
showed that highly accurate change detection (with less
than 10% error induced) based onmulti-temporal Landsat
Thematic Mapper (TM) images requires that the magni-
tude of misregistration be less than 0.2 pixel (see also
Townshend et al. 1992), in other words, less than 0.2
times the horizontal separation of DEM postings. Simard
et al. (2006) reported an instance of subpixel DEM mis-
registration. Van Niel et al. (2008) investigated the impact
of misregistration between DEMs, including SRTM, and
found that differences between DEMs are very sensitive
to subpixel misregistration, and that the sensitivity
depends on the pixel sizes of the data sets being com-
pared (see also Smith and Sandwell 2003). They also con-
cluded that even low levels of misregistration caused
considerable differences in landscapes with steep terrains.
However, neither of the above studies quantified the
spatial variation of misregistration and its relationship to

terrain characteristics. To extend previous studies,
Streutker, Glenn, and Shrestha (2011) proposed a method
to utilize slope for the co-registration of overlapping ele-
vation surface. Nuth and Kääb (2011) modelled the mis-
registration among SRTM, ICESat and the ASTER GDEM
data sets by considering elevation, local slope and aspect.
This is a pioneer work in utilizing a complete set of topo-
graphical parameters to quantify the misregistration,
however, we argue that horizontal shift has local charac-
teristic instead of having a globally consistent offset. This
spatial variation is significant especially in hilly regions
where the changes of terrains vary by subareas.
Additionally, as the goal of Nuth and Kääb’s research is
to measure the thickness change of glacier, substantial
implementation details on the co-registration are missing.
Our method, in comparison, extends the prior work of
Nuth and Kääb (2011), and obtains block-by-block esti-
mates of misregistration between two DEMs, allowing us
to analyse the relationship between misregistration, loca-
tion and the characteristics of terrain using a fine-tuned
optimization approach. Once the misregistration is cor-
rected, any systematic differences in elevations between
the two data sets can be evaluated (Rodríguez, Morris,
and Belz 2006).

3. Study sites

Two study sites in Los Angeles County in Southern
California area were selected for this study: one located
in the San Gabriel Mountains in the north of the county,
and the other in the Santa Monica Mountains in the
southwest, as Figure 2(a) shows. These two mountainous
regions were selected because they contain few build-
ings and tree cover is sparse, and therefore the elevation
difference between DSMs, such as SRTM, and DTMs, such
as NED (National Elevation Dataset), would be minimal.
The study site SGM (black box in Figure 2(b)) in the San
Gabriel Mountain region covers 153 km2 [−118.38°,
34.34°; −118.19°, 34.42°]. It has very steep terrain, the
distribution of slopes [slope defined as vertical rise over
horizontal run, that is, the tangent of the slope angle, and
estimated at DEM points using the Horn (1981) algo-
rithm] having a mean of 50% and a standard deviation
of 22%. The elevations in this area lie between 568 m and
1845 m (mean = 1145 m; standard deviation = 249.5 m).
The study site SMM (black box in Figure 2(c)) in the Santa
Monica Mountain region covers 274 km2 [−118.86°,
34.04°;-118.56°, 34.13°]. Although less steep than SGM,
the SMM region also has relatively steep terrain, with a
mean slope of 38% (standard deviation 21%). The max-
imum and minimum elevations of this site are 3.2 m and
860 m, respectively. The mean elevation is 374 m, with a
standard deviation of 146.8 m.
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4. Data

The Shuttle Radar Topography Mission (Farr et al. 2007),
an international effort led by the U.S. National
Geospatial-Intelligence Agency and the U.S. National

Aeronautics and Space Administration, was carried out
between 11 February and 22 February 2000. A C/X-
band Synthetic Aperture Radar (SAR) was carried on
board the Space Shuttle Endeavour, and used to scan

Figure 2. (a) The regional placement of the study sites. (b, c) The topography of the San Gabriel Mountain region (b) and the Santa
Monica Mountain region (c) from the NED DEM (the black rectangles indicate the study areas).
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the Earth’s surface elevation between 54° south and 60°
north. The radar signal was reflected off the first object
encountered, and was therefore affected by all con-
structed or natural objects on the Earth’s surface. For
this reason, the SRTM data could be categorized as a
digital surface model (DSM).

The SRTM Version 2 data were released in 2005, with
certain artefacts fixed, including single-pixel errors and
the noise that occurs in radar returns from water sur-
faces. About 3 arc-second SRTM data are available for
most of the world’s continents, but 1 arc-second SRTM
data are publicly available only for the United States.
The specifications of SRTM data are provided in Table 1.

In this study, the NED data were used as the refer-
ence data to which SRTM would be compared. NED
data are generated from the bare-Earth contours of
USGS 1:24,000-scale topographic maps. The contours
are then gridded at a constant spacing into quadran-
gle-based DEM tiles (Gesch et al. 2002; Gesch 2007).
Each tile is clipped to the actual coverage extent (1°
by 1°) to remove edge artefacts. The NED data are
available at 1 arc-second, 1/3 arc-second and 1/9 arc-
second postings on USGS’s seamless data warehouse.

Basing DEM points on equal intervals of latitude and
longitude necessarily lead to east-west spacings that
are only 83% of north-south spacings at the latitude
of Los Angeles. For the purposes of this study, we
reprojected both data sets to UTM Zone 11, resampling
both to a spacing of 27.24 m to ensure that the DEM
points are equidistant in both directions. In principle,
the postings of the two data sets should coincide,
though from the available documentation of these
data sets it is clear that the implicit convolution func-
tions are different: NED data are more point-like, with
narrow convolution functions, while the SRTM eleva-
tions compare better to averages over pixel areas
because of the wider implicit convolutions.

Before comparing the two data sets, it is important to
point out that they use slightly different vertical data:
NAVD88 for NED and EGM96 for SRTM. However, the
differences between them are virtually constant over the
study areas and as such would have no effect on the
optimization of our approach; and they are submeter in
magnitude. We therefore chose to ignore the difference.

5. Methods

5.1. Problem formulation

This section presents a formal mathematical representa-
tion of the components (slope, aspect, elevation, shift
offset and shift angle) that influence the multi-source
DEM differencing process. Our analysis is another form
of that of Nuth and Kääb (2011), with the exception of a
constant term, which we didn’t consider since it has no
influence on the optimization. Consider the same point P
in both SRTM and NED DEMs. The shift from SRTM to NED
is a vector D

*

, represented by its offset d and direction β, as
Figure 3 shows. Let ε� denote the difference in elevations
provided at a point by the two sources, and let εdenote
the error that would be observed at that point due to a
misregistration of amount D

*

alone. When β ¼ α, the shift
is in the direction of steepest slope, and because of mis-
registration the elevations obtained from the two sources
should differ by d tan θ, plus any error due tomismeasure-
ment. When β�α, the apparent slope parallel to β is
tan θ cosðβ� αÞ, therefore, the misregistration error
caused by the shift equals:

ε ¼ d tan θ cosðβ� αÞ (1)

Our objective is to identify the unknowns d and β.
We assume that d and β vary slowly, and can be

estimated using a block strategy. For example, a block
of 1 km2 contains about 900 observations, and a block
of 1.4 km2 contains about 2200 observations. Writing
the problem as an optimization, and adding subscripts i
to identify individual observations, the objective can be
formalized as

Minimize
Xn

i¼1

εi � εi
�ð Þ2

¼
Xn

i¼1

di tan θi cos βi � αið Þ � εi
�½ �2

(2)

where n is the number of observations that fall inside
the desired scene. Note that we assume a local shift for
each block instead of a single global shift because the
former emphasizes the effects of local geometric fea-
tures (Flusser 1992; Goshtasby 1987), though we expect
some degree of consistency in the estimates for each

Table 1. The published profiles of the two data sets.
DEM source NED SRTM

Full name National Elevation
Data

Shuttle Radar Topography
Mission

Provider USGS NASA
Type Bare-earth elevation Surface elevation
Spatial
resolution

1/9 arc-second
(~3 m)
1/3 arc-second
(~10 m)
1 arc-second
(~30 m)

1 arc-second (~30 m)
3 arc-second (~90 m)

Vertical accuracy 2.44 m (RMSE) 9.0 m (90% confidence level)
(Rodríguez, Morris, and Belz
2006)

Horizontal
accuracy

n/a ±20 m
(90% confidence level)
(SRTM Mission Statistics 2000)
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block. In the next section, the methods used for the
shift estimation will be discussed.

5.2. Multidimensional unconstrained non-linear
minimization

The following characteristics of the objective function indi-
cate that this problem can be categorized as a multidimen-
sional unconstrained non-linear optimization problem.
First, the minimization of the objective function is decided
by more than one variable (d and β), meaning that the
problem space is multidimensional. Second, the objective
function is non-linear since it is twice continuously differ-
entiable. Third, the domain of permissible solutions is not
limited to variables satisfying some equality or inequality
constraints, therefore it is an unconstrained problem.

In the literature, there are many methods and algo-
rithms developed to solve the multidimensional uncon-
strained non-linear problem, such as Newton’s method,
Broyden’s method (Broyden 1965), line-search methods,
trust-region methods (Celis, Dennis, and Tapia 1985),
the Nelder–Mead simplex method (Nelder and Mead
1965), the conjugate-gradient method (Hestenes and
Stiefel 1952) and their variants (Fan and Zahara 2007;
Birgin and Martinez 2001). Most of these algorithms
involve an iterative process that converges on a suffi-
ciently accurate solution. Newton’s method is a typical
example of the above processes. However, the method

is very computational intensive [O(n3) operations per
iteration] and requires many function evaluations at
each iteration. Broyden’s method does not require the
error-prone computation in Newton’s method and it is
able to reduce the computational complexity from O
(n3) to O(n2). But it may fail to converge on the optimal
solution if poor starting points are selected. In compar-
ison, line-search methods and trust-region methods
introduce strategies, such as steepest descent (Wolfe
1969), to prevent the process from getting stuck at a
local optimum, while preserving the advantages of local
convergence in Newton’s and Broyden’s methods. All of
these methods are derivative-dependent and are there-
fore computationally intensive. To overcome this draw-
back, the direct-search methods are built on sound
heuristics and are derivative-free. Methods such as the
Nelder–Mead algorithm and the conjugate-gradient
method have drawn a lot of attention in the optimiza-
tion field (Dennis and Schnabel 1989; Lewis, Torczon,
and Trosset 2000). The conjugate-direction method is
more suitable for solving problems with large numbers
of variables, while the Nelder–Mead algorithm is very
effective in solving minimization problems with few
dimensions.

The Nelder–Mead algorithm begins by selecting a
simplex of n + 1 points (n is the problem dimension-
ality, in our case, n = 2). Mathematically, the selection of
n + 1 points is based on the fact that the derivative of
the objective function of n variables could be estimated

Figure 3. Vector representation of local shift D
* ¼ ðd; βÞ in three-dimensional space. y-axis toward North, x-axis toward the East and

z-axis measures the elevation above ground. dis the offset of the shift andβ is the direction of the shift measured clockwise from
North. The terrain slope is represented by an inclination θto the horizontal, and aspect is represented by an angle αmeasured
clockwise from North.
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by the n + 1 function values through finite differences.
There are four operations: (1) reflection, (2) expansion,
(3) contraction and (4) shrink, for moving the vertices of
the simplex until it converges. Reflection moves the
location of the worst vertex through the centroid to
its opposite side; worst means that the value of the
objective function at that vertex is the least desirable.
In our minimization problem, the worst vertex is the
one with the largest objective value. By reflection, the
solution space (the interior of the simplex) moves away
from the worse set of values and moves closer to a
better set. Expansion doubles the distance from the
reflection point to the centroid. Similarly, contraction
halves the distance from the reflection point to the
centroid. Both the expansion and reflection operations
reposition the reflected vertex and thus accelerate the
search. If no more acceptable move of the vertex can be
identified, the edge facing the best vertex is halved and
the two vertices on the same edge move toward the
best vertex to shrink and close up the simplex. Once the
simplex converges to a stationary point, the optimal
solution is found.

The unique features of Nelder–Mead allow it to dis-
cover patterns which cannot be immediately obtained
from the original specifications, and the simplicity of this
method can avoid the pitfalls of other sophisticated
approaches. Therefore, it is selected as the algorithm in
our study.

5.3. Workflow

Figure 4 illustrates the workflow for the DEM registra-
tion. This process is divided into three phases: data
preparation, data processing, and results visualization:

● Data preparation. This phase generates all
required input data (slope, aspect and observed
error) for the minimization process. First, the tiled
SRTM and NED data were merged separately into
a single data set. Then, the DEMs falling inside the

two rectangular study areas, SGM and SMM, were
extracted. As the NED data is assumed more accu-
rate, the local slopes and aspects were estimated
from NED data using the standard Horn (1981)
algorithm. Besides slope and aspect, the observed
errors between SRTM and NED data sets were
obtained by subtracting terrain height values on
a pixel-by-pixel basis. Finally, these three images
were converted to two-dimensional ASCII matrices
as the input for the minimization process. ArcMap
and its python library ArcPy (raster analysis mod-
ule) are used to generate the terrain variables,
including slope, aspect and the observed elevation
errors.

● Data processing. This phase optimizes the function
introduced in Section 5.1 utilizing the Nelder–
Mead algorithm in Matlab. As the premise of this
procedure is that misregistrations are uniform in
local blocks, the original data matrices were
divided up into several blocks, and the shift com-
puted separately in each block. Taking the
1 km × 1 km block as an example, and considering
that we are using 30 m DEM data, then Block 1
(right matrix in Figure 5) will contain cells falling in
the first 30 rows and 30 columns. Applying the
shift model (in Section 5.1) at each pixel and sum-
ming over the 900 pixels, we obtained the func-
tion to solve for Block 1. Similarly, functions for
other blocks can be obtained and the Nelder–
Mead minimization can be applied to obtain one
local shift vector per block.

● Results visualization. Through the above process,
we obtained the misregistrations between SRTM
and NED for all blocks in terms of shift offset and
angle. To visualize the shift in each block on the
actual terrain, each such shift vector was added
into a polyline shapefile. The start point of each
shift vector is the centre of the scene. The end
point of the shift vector is calculated from the

Figure 4. Three-phase process for DEM registration.
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offset and angle of the shift. As subpixel shift is
usually small in comparison to the extent of the
scene, the offset was lengthened by 25 times
when being rendered on the map.

6. Results

6.1. Experiment (A): method validation by
synthetic data

To validate the proposed method, we constructed a
cone-shaped mountain with steep terrain (the slope is
100%) to simulate similar steep terrain in our study
area. The mathematical expression of the mountain is

z ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

subject to: x2 þ y2 � r2; x; y 2 ½�r; r�
where (0,0) is the centroid of the mountain base (a
circle) and r is the highest elevation of the synthetic

mountain. The characteristic of the cone-shaped moun-
tain is that the magnitude of slope is constant but the
aspect is always changing. Table 2 shows the spatial
profile of the synthetic mountain. After constructing the
mountain, a misregistration shift was introduced at 0.5
pixel in the eight directions of north, south, east, west,
northeast, southeast, southwest and northwest
(Figure 6 shows the shift from original location
(coloured) to the northwest direction (grey)). Then the

Figure 5. Mapping from original data matrix into matrices of smaller blocks 1 km on a side.

Table 2. Parameters of cone-shaped mountain.
Parameter Notation Value

Height r 2
Slope θ 100%
Aspect α 180þ arctanðx=yÞ; y > 0

360þ arctanðx=yÞ; x > 0; y < 0

arctanðx=yÞ; x < 0; y < 0
Pixel size s 0.01
Relative shift ~dr (2.732 pixel size, 30°)
Absolute shift ~dab (0.02732, 30°)
Number of blocks 1 × 1

Figure 6. Manual shift of the synthetic mountain.
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observed elevation difference, slope and aspect at each
pixel cell were computed to feed into the Nelder–Mead
algorithm for generating the estimated shift. Finally, the
estimated shift and the actual shift were compared,
giving the results shown in Table 3.

Table 3 compares the result obtained from the
Nelder–Mead estimation and the actual shifts for
this mountain. The local shift vectors returned from
the Nelder–Mead estimation were averaged to
obtain the estimated shift. From Table 3, it can be
seen that the proposed Nelder–Mead estimation
shows good performance in identifying the shift in
eight directions at a subpixel (½ pixel) level. Errors in
the estimated offset were no more than 2% and
errors in shift angle less than 1°. This experiment
proves the validity of the proposed method in hand-
ling the co-registration of DEMs with terrains on
which aspect changes frequently. We also plotted
(Figure 7) the elevation differences averaged over
two aspects (east and northwest) when the data
has misregistration in cardinal (e.g. east) and ordinal
directions (e.g. northwest). These sinusoidal curves
indicate that the averaged elevation differences
maximize at the aspect (direction) of introduced
shift. This conclusion can be deduced from the spa-
tial model introduced in Section 5.1 – at the direc-
tion of the shift, the elevation difference is toward
the steepest slope and therefore, the elevation

difference at that direction is maximal. This finding
can be used to assess the accuracy of estimated shift
from the real data sets.

6.2. Experiment (B): local shift identification in
both SGM and SMM regions

Experiment (A) testified to the validity of the pro-
posed method in identifying subpixel misregistration.
This experiment explores the actual shifts that exist
between SRTM and NED data in both study sites:
SGM (Figure 8(a)) and SMM (Figure 8(b)). The block
size for both regions is 1.4 km × 1.4 km. This block
size was chosen to illustrate the misregistration
because using this block size, the result obtained is
the most optimal (has the highest objective values),
in comparison to other block sizes such as 1 km. The
numbers on the arrows refer to the offsets of the
shifts (in meters) and the directions refer to the
angle of the shifts. From the figures, we can tell
that the SRTM data set maintains a consistent sub-
pixel shift toward the northwest compared to the
NED data set within both regions. We also found
that the offset (25.8 m) of the shift in the SGM region,
although also subpixel, is greater than that in SMM
region, which has less steep terrain.

On average, the shifts are (25.8 m, −23.6°) for the
SGM region and (17.89 m, −27.6°) for the SMM region at
the tested scale. By using blocks rather than estimating
a single shift for each region, we are able to explore the
possibility of spatial variations in shifts. We can infer
from Figure 8 and the above experiments that the
misregistration is a systematic offset in this case, in
two continuous terrains that have similar topographical
features. However, the misregistration is not a global
offset; its value tends to be larger in steeper terrains
(such as the SGM region) and smaller in less steep
terrains (such as the SMM region). Figure 8(a) and 8(b)

Table 3. Comparison of estimated result by minimization and
actual shift.
Case Shift direction Shift distance Actual shift Estimated shift

(1) North ½ pixel (0.005, 0°) (0.005, 0.1°)
(2) South ½ pixel (0.005, 180°) (0.005, 180.2°)
(3) East ½ pixel (0.005, 90°) (0.005, 90°)
(4) West ½ pixel (0.005, 270°) (0.005, 269.83°)
(5) Northeast ½ pixel (0.005, 45°) (0.0049, 45.78°)
(6) Southeast ½ pixel (0.005, 135°) (0.005, 135.02°)
(7) Southwest ½ pixel (0.005, 225°) (0.0049, 225.97 °)
(8) Northwest ½ pixel (0.005, 315°) (0.005, 315.08°)

Figure 7. Averages of elevation difference caused by horizontal shift in terms of aspect: (a) represents case of shift toward east and
(b) represents case of shift toward northwest.
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shows possibly interesting patterns of variation
between the shifts estimated from blocks.

One might argue that the selection of block size in
the experiment may affect the results. In order to
explore a possible effect, the optimization procedure
was performed on 14 different block sizes with linear
dimensions: 250 m, 500 m, 1 km, 1.2 km, 1.4 km, 1.6 km.
1.8 km, 2 km, 3 km, 4 km, 5 km, 6 km, and 7 km; and
study area as a whole. We found that the shifts
obtained from different block sizes are all similar, with
offset falling in ranges between 24.3 m and 26.6 m and
angle ranges from −24.5° to −23.2° in the SGM region.
The misregistrations obtained in the SMM region fall
between 16.78 m and 19.13 m of offset and the angle
of the shift ranges from −28.78° to −26.02°.

Besides the multi-scale analysis, we also generated a
map of the elevation differences between the original
SRTM and NED data. Figure 9 shows these differences
averaged and plotted by aspect for 1.4 km blocks. The
peak differences for the SGM region occur when aspect
equals 337° and for the SMM region when aspect

equals 332° These values are consistent with the shifts
(−23.6° in the SGM region and −27.6° in the SMM
region) identified during the registration procedure.
This experiment further verifies the effectiveness of
the proposed method in detecting the misregistration.

7. Discussion and conclusion

This article presents a robust optimization technique to
identify the spatial variation in horizontal misregistra-
tion between multi-source DEMs, through an extension
of the method proposed by Nuth and Kääb (2011). We
introduced the formulation of the problem by propos-
ing a block-specific shift vector that considers elevation
differences, local slope and aspect. The Nelder–Mead
algorithm applied to solve the multidimensional uncon-
strained non-linear minimization problem produced
satisfying results through a number of experiments
using both synthetic data, and real data sets in the
SGM and SMM regions.

Figure 8. Visualization of identified shift at 1.4 km × 1.4 km scale from both SGM (a) and SMM (b) regions.
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Quantification of horizontal misregistration on a sub-
pixel level is essential for performing precise scientific
analyses. From the multi-scale analysis, we estimated an
average horizontal shift in the SGM region of 25.8 m with
23.6° deviation to the north; for the SMM region, the
average horizontal shift is 17.89 m with 27.6° deviation
to the north. We also found that the horizontal misregis-
tration is a relatively systematic offset in continuous ter-
rains that have similar topographical features. However,
the misregistration is not a global offset; its value tends to
be larger in steeper terrains (such as the SGM region) and
smaller in less steep terrains (such as the SMM region).

The major contribution of this article is thus the
extension of the method of Nuth and Kääb (2011) to
blocks, allowing the spatial variation in offset to be
estimated. We found that such variation can be

estimated satisfactorily in hilly terrains. Where the ter-
rain is relatively flat, the error term estimated in the
model tends to be close to 0 (affected by the tan θ
term in Equation 1), making it hard to detect the mis-
registration pattern during the optimization simulation.
Therefore, it would be difficult to estimate offsets using
this method. This raises an issue for implementation,
when corrections are applied to real data. If sharp
changes in estimated offsets occur at block boundaries,
there is the danger that this will introduce unwanted
effects in the resultant DEMs. Thus for implementation,
we suggest that estimates for relatively flat blocks be
replaced by interpolated estimates from nearby hilly
blocks. Clearly this will be problematic in large areas
of flat terrain, but in such areas DEM misregistration is
less likely to cause problems in applications.

Figure 9. Average of elevation differences between SRTM and NED plotted against aspect in the SGM (a) and SMM (b) regions.
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Technically, one difficulty to overcome in solving the
optimization problem is local optimality due to the
non-convex nature of this problem. During the experi-
ment, we found some evidence of local optima in some
blocks. For example, the original shift identified in the
SGM region for the block at row 3 and column 11 was
(34.47 m, −23.23°), which implies an overestimation of
the offset, given that the averaged shift for the SGM
region is (25.8 m, −23.6°). When such indications of a
local optimum occurred, the optimization algorithm
was rerun on the block by using the average shifts as
an initial state. If the new estimates led to a smaller
objective function, that is, a better solution, the original
local estimates would be replaced. In this way, at least
some of the local optima could be avoided.

However, after removing the local minima, there
remain some anomalies in the shifts. For instance, con-
sider the obviously abnormal shifts identified in two
scenes numbered 1 and 2 in the black box in Figure 8
(b). By looking into the actual satellite images of both
blocks, we found that substantial portions of both blocks
are developed, and there are large warehouses in block 1
and many residential buildings in block 2. The elevation
surface containing the heights of the buildings in the
SRTM data is not consistent with the actual terrain sur-
face anymore. Development and other inherent uncer-
tainties in DEM data sets, such as those caused by the
coarse resolution, are probably the reason for these
anomalies, along with the general flatness of the terrain
in these blocks. Nevertheless, using the proposed
method, we are still able to produce valid and satisfying
results for most of the regions in our study area.

In the future, we will work on quantifying uncertain-
ties (such as terrain complexity and existence of build-
ups and non-natural features) that cause the anomalies
in the estimation of DEM misregistration, in order to
produce more accurate results. Then we will expand
this research to detect misregistrations in urban areas.
Both of the research directions require an effective
mechanism in detecting the locations of human con-
struction, and a method to remove the effects caused
by these features in the DSM data. Land-use data indi-
cating the footprints of buildings need to be considered
and a more complicated optimization procedure needs
to be developed. We will also work on improving the
computing performance of the optimization process. For
the study areas used in this article, a single workstation
(Intel Core i5 CPU with 2*3.2 GHz cores; 8 G memory) can
finish processing the DEM registration using both SRTM
and NED data set in about 0.2 h. When dealing with the
problem over a much larger extent and with finer-reso-
lution data, a single workstation will be far less satisfying
in computing performance. As the optimization is

conducted on equally sized regions, it fits naturally the
divide-and-conquer paradigm employed in GPGPU (gen-
eral purpose graphics processing unit) processing.
Therefore, parallelization and optimization of the algo-
rithm, and its adaptation to GPU clusters, will be another
focus of our further work.
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