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The double cleavage drilled compression (DCDC) geometry is useful for creating large cracks in a 

material in a controlled manner.  Several models for estimating fracture toughness from DCDC 

measurements have been proposed, but each is suitable for a subset of geometries and material 

properties.  In this work, a series of finite element fracture simulations are performed over a range 

of sample widths, hole sizes, heights, Young’s moduli, Poisson’s ratios, critical stress intensity 

factors, and boundary conditions.  Analyzing the simulation results, fracture toughness is found to 

be a simple function of sample width, hole size, and an extrapolated stress at zero crack length 

obtained from a linear fit of the data.  Experimental results in the literature are found to agree with 

this simple relationship. 

DCDC, finite element modeling, fracture toughness 

1 Introduction 

 Axial compression is used to drive tensile cracks in the double cleavage 

drilled compression (DCDC) specimen (Janssen 1974).  This interesting fracture 

behavior results from the specimen geometry transforming the global compression 

into local regions of tension.  The specimen consists of a long rectangular column 

with a central hole (Fig. 1).  Symmetric cracks initiated at the crown and base of 

the hole propagate along the axis of the specimen in the direction of the applied 

compression (Horii and Nemat-Nasser 1985).  The test is stable when the 

compression required to grow the cracks increases with crack length.  A detailed 

description of a displacement-controlled DCDC experiment is given by Nielsen et 

al. (2012). 

 One of the advantages of the DCDC specimen is that the geometry and 

boundary conditions will arrest the cracks before they reach the ends of the 
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specimen.  The final specimen remains intact after unloading and contains large 

axial cracks.  This is a desirable configuration, particularly for crack healing 

studies (Plaisted and Nemat-Nasser 2007), where the sample would otherwise 

have to be manually reassembled (Chen et al. 2002). 

 The relationship between the applied compression and the length of the cracks 

can be used to estimate a material’s fracture toughness, and a few models have 

been proposed.  He et al. (1995) generated a linear relationship by fitting the 

results from linear elastic, plane strain finite element calculations for a variety of 

DCDC geometries.  Nonlinear geometric effects were not considered, meaning the 

He model is limited to cases with short cracks or very stiff and brittle materials.  

Analyses using linear geometries cannot include beam-column effects such as 

buckling.  For typical geometries, the He model predicts relatively large increases 

in axial stress with increases in crack length.  This result does not agree with later 

DCDC experimental observations made by Plaisted et al. (2006) where two 

distinct regimes of crack growth were observed.  After an initial period of 

increasing axial stress with increasing crack length, a plateau was reached and the 

cracks continued to grow at an almost constant stress level.  Plaisted et al. 

developed a new, analytical model where the DCDC test is subdivided into short 

crack and long crack growth regimes.  In the short crack growth regime, the 

sample is treated as a plate with cracks emanating from the central hole using 

similar assumptions of linear elasticity as He et al.  Once the cracks are 

sufficiently long, the DCDC sample is treated as four beam-columns subjected to 

bending due to a moment created by the hole and the applied axial compression.  

As the cracks grow, the lengths of the beams increase.  The fracture toughness of 

the material is related to the induced moment, which is assumed to be constant 

with crack length in the linear geometry case.  The model predicts that crack 

growth in the long crack growth regime would require a constant stress, a result 

that nicely fit Plaisted’s experimental data.  Other experimental results, such as 

those obtained by Michalske et al. (1993), did not exhibit a similar plateau stress.  

Adding nonlinear geometric effects to the long crack model is discussed by 

Plaisted et al.  A better estimate of the effective bending moment, particularly as a 

function of crack length, could improve the model. 

 We have previously created a finite element simulation scheme to study the 

DCDC test (Nielsen et al. 2012).  The method was originally developed to study 
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the evolution of the bending moment during the test, but it was determined that 

fracture toughness could be directly estimated from the output.  One quarter of the 

DCDC geometry is simulated, and the change in internal energy is calculated as 

the crack is progressively lengthened.  The simulation data are correlated with the 

experimental results to estimate fracture toughness as a function of crack length.  

This approach is time-consuming.  A simple, single-value estimate of fracture 

toughness would be useful.  In the present work, we perform a series of finite 

element simulations where the DCDC sample hole size, width, length, Young’s 

modulus, Poisson’s ratio, critical stress intensity factor, and boundary conditions 

are systematically varied.  The results are used to develop a simple empirical 

relationship, which can be used to estimate fracture toughness from DCDC 

experimental results for a range of geometries and material properties. 

2 Simulations 

 The 2D finite element simulation approach previously discussed (Nielsen et 

al. 2012) was modified to investigate the effect of sample geometry and material 

properties on the DCDC fracture test.  The modified method uses a prescribed 

critical stress intensity factor to estimate the applied stress as a function of the 

crack length.  Hence, no DCDC experimental data is required as an input for 

analysis. 

 One-quarter of the DCDC geometry is modeled (Fig. 1), and the test is 

simulated for a given crack length, l, using two-dimensional plane stress shell 

elements, a linear elastic isotropic material model, and considering geometric 

nonlinearities in the finite element solver.  At each displacement step, the crack is 

virtually grown by one element, and the change in the internal energy, energy 

release rate, and critical stress intensity factor, KIc, are calculated.  When the 

simulation KIc matches the prescribed KIc, the applied force (stress) at that 

displacement is associated with the crack length l.  Repeating this procedure at 

successive crack lengths yields a curve of applied stress versus crack length.  

Table 1 summarizes all of the modeled geometries, material properties, and 

boundary conditions. 

 The approach was applied to DCDC experiments on fused silica by Michalske 

et al. (1993) (Table 1, line 1).  The sample geometry and material properties given 

in the paper were used in the simulation.  The critical stress intensity factor of 
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0.740 MPa·m
½
 had previously been determined by double cantilever beam (DCB) 

fracture experiments (Weiderhorn et al. 1974).  The results of the simulation give 

stress versus crack length results that closely match the experimentally observed 

behavior. 

 The simulation method was also applied to the DCDC experimental geometry 

and material properties given by Nielsen et al. (2012) (Table 1, line 2).  Similar to 

experimental observations, the computational results show an initial region of 

increasing stress followed by a plateau region with smaller changes in the fracture 

stress (Fig. 2 open circles).  A period of instability where continued crack growth 

requires less applied displacement is also observed to initiate at a normalized 

crack length (l/R) of 6.4.  This instability is due to nonlinear geometric effects 

associated with buckling.  No rapid jumps in crack length were noted during the 

experiments (Nielsen et al. 2012).  Reviewing the experimental data, six of the 

seven samples with cracks that exceeded this critical length show a slight decrease 

in the applied stress beyond a normalized crack length of ~7.  While the 

simulations considered a linear elastic material, the experiments were conducted 

on PMMA, a viscoelastic polymer.  A non-linear material response, particularly 

around the hole where the compressive stresses were magnified by the geometry, 

may have inhibited or masked unstable crack growth during the experiments.   

 The sample length, width, hole size, critical stress intensity factor, Young’s 

modulus, Poisson’s ratio, and displacement boundary condition were varied from 

the experimental conditions in Nielsen et al. (2012) (Table 1, lines 3-17).  

Reducing the hole size or width, or increasing the Young’s modulus or critical 

stress intensity factor increases the axial stresses required for crack propagation.  

Periods of unstable crack growth are observed in most simulations.  Increasing the 

sample length or Young’s modulus, reducing the critical stress intensity factor, or 

having a friction-free boundary condition (e.g. greased loading platens) are found 

to delay the onset of the instability.  The studied Poisson’s ratios did not have a 

significant effect on the results. 

3 Estimating fracture toughness 

 The linear model of He et al. (1996) and the nonlinear model of Plaisted et al. 

(2006) for estimating KIc were applied to the axial stress versus crack length 

simulation results.  Generally, the estimates of fracture toughness varied 
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significantly from the prescribed values, and the overall linear fits were poor.  

Both models fail to properly capture the slope of the data, with He’s empirical 

model expecting a relatively steep slope and  Plaisted’s theoretical model 

expecting a constant plateau stress after a brief initial period with a steep slope.  

The simulation results generally exhibit an initial period of steep increases in 

stress followed by a longer period of crack growth with much smaller increases in 

stress.  The slopes of both regimes are affected by the DCDC geometry and 

material properties. 

 Inspecting the simulation results, a linear region is apparent during stable long 

crack growth, typically from approximately l/R=2 to l/R=5.  A line was fit to this 

region in each simulation.  The parameters of these lines are given in Table 1.  

The y-intercept of each line, , appears to only depend on the sample width, hole 

size, and critical stress intensity factor.  Plotting  as a function of these 

parameters (Fig. 3 solid squares) gives an approximately linear relationship.  A 

simple model (Fig. 3 line), 

 , (1) 

is found to closely follow the observed behavior with an R-squared value of 

0.998. 

4 Comparison with experiments 

 Published DCDC experimental results (Michalske et al. 1993; Plaisted et al. 

2006; Nielsen et al. 2012) were compared with the derived model.  The linear fit 

parameters (m, ) for the experimental data are listed in Table 2, and the  

parameters are plotted as hollow diamonds in Fig. 3.  The experimental points 

follow the same trend observed in the simulation results, although with more 

deviation from equation (1) (R
2
=0.966). 

 Linear fits of the experimental data from Michalske et al. (1993) and the 

simulation results for the same geometry and material properties yield fit 

parameters that straddle the line given by equation (1).  The extrapolated stresses 

at zero crack length derived from the experimental results are 7-8 % less than the 

 fit parameter derived from the simulation data.  Since the stress versus crack 

length data from the experiments and simulation are similar for the period of 
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crack growth where they coincide, the discrepancy could be attributed to the range 

of data points available for fitting.  The minimum crack length of the reported 

experimental data is l/R=3, while the simulation results were fit between l/R=2 

and l/R=5.  Having sufficient data points and choosing the appropriate range for 

fitting are two challenges associated with linear extrapolation and applying 

equation (1). 

 Data for PMMA from Plaisted et al. (2006) were grouped by sample 

geometry, and linear fits were applied to the initial portions of the long crack 

regimes.   The reference critical stress intensity factor was assumed constant and 

taken as the average of the range determined by Nielsen et al. (2012).  The 

average fit parameter  from each group of experimental data was compared 

with equation (1) and generally in good agreement, although two of the 

geometries show >10 % variation.  In the case of the w/R=2 samples, there was a 

limited number of data points for fitting, which led to wide variation in the fit 

results. 

 The experimental results from the DCDC sample thickness study conducted 

by Nielsen et al. (2012) show an increase in the axial stresses required to 

propagate long cracks in thicker samples.  This translates to an increasing fit 

parameter .  Since the empirical model, equation (1), was developed using two-

dimensional simulations, thickness is not considered, and the associated changes 

in  leads to variation in the results.  For the assumed KIc for PMMA, the 

thinnest samples show the best agreement with the model.  This correlates with 

the conclusion in Nielsen et al. (2012) that the two-dimensional simulations are 

more applicable to the thinner tested geometries. 

5 Conclusions 

 A series of finite element simulations were used to investigate the effect of 

sample geometry, material properties, and displacement boundary condition on 

crack growth behavior during the DCDC fracture test.  The linear region of the 

long crack regime was used to develop a simple estimate of KIc.  While the models 

given by He et al. (1993) and Plaisted et al. (2006) are applicable to separate, 

limited ranges of materials and geometries, the empirical model given here was 

found to give reasonable estimates of KIc for all considered DCDC cases.  A 

drawback of this model is that the linear region is not always obvious for fitting, 
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and there is variation in the appropriate range of crack lengths.  Care must be 

taken in applying this model to experimental data.  Unstable crack growth can be 

hard to distinguish from stable growth, as noted for a viscoelastic material like 

PMMA.  Developing a model that includes the slope of the linear fit as a second 

parameter may be beneficial.  The ability to predict the slope of the crack growth 

behavior in the long crack regime would also be useful for cases where a constant 

plateau stress is desired (Hamilton et al. 2010). 

 The model given here was developed empirically and does not illuminate the 

underlying reasons for the observed behavior.  More work is needed to understand 

these reasons and develop a complete, analytical model. 

This work was funded by Air Force Office of Scientific Research grant FA9550-08-1-0314 to UC 

San Diego. 
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Fig. 1 The DCDC sample geometry for fracture experiments and simulations. 
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Fig. 2 Simulation results based on the experimental conditions of Nielsen et al. (2012) are 

plotted (open circles), and the linear region of the long crack regime is fitted (solid line). 
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Fig. 3 The simulation results (solid squares), experimental results (open diamonds), and 

empirical model (solid line) are plotted for comparison. 
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Table 1 The simulated DCDC geometries, materials properties, and boundary conditions, and 

linear fits of the corresponding long crack regime.  Crack growth in the E=1 GPa case became 

unstable early in the simulation and a reasonable linear fit could not be made. 

Geometry Material 
B.C. 

 

w/R w (mm) L (mm) E (GPa) KIc (MPa·m
½

) ν m  (MPa) 

3.75 3.75 75 73 0.740 0.17 Frictional 5.7273 58.366 

4 6 50 3.1 0.7 0.4 Frictional 1.4215 50.490 

2 6 50 3.1 0.7 0.4 Frictional 0.8289 14.028 

3 6 50 3.1 0.7 0.4 Frictional 1.3344 29.582 

5 6 50 3.1 0.7 0.4 Frictional 1.1400 76.475 

4 4 50 3.1 0.7 0.4 Frictional 1.4787 60.892 

4 8 50 3.1 0.7 0.4 Frictional 0.0055 45.644 

4 6 30 3.1 0.7 0.4 Frictional 0.3995 47.311 

4 6 100 3.1 0.7 0.4 Frictional 1.7500 49.259 

4 6 50 1 0.7 0.4 Frictional - - 

4 6 50 10 0.7 0.4 Frictional 3.3126 50.342 

4 6 50 73 0.7 0.4 Frictional 4.3675 49.976 

4 6 50 3.1 0.4 0.4 Frictional 1.4244 28.948 

4 6 50 3.1 1.0 0.4 Frictional 0.9059 71.561 

4 6 50 3.1 0.7 0.3 Frictional 1.4911 50.177 

4 6 50 3.1 0.7 0.495 Frictional 1.3537 50.792 

4 6 50 3.1 0.7 0.4 Friction-free 1.7738 49.676 
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Table 2 The experimental DCDC geometries, material properties, and boundary conditions, and 

linear fits of the corresponding long crack regimes. 

Data 

Source 

Geometry Material 

B.C. 

 

w/R 
w 

(mm) 

L 

(mm) 

t  

(mm) 

E 

(GPa) 

KIc 

(MPa·m
½

) 
ν m 

 

(MPa) 

[1] 3.75 3.75 75 6.5 73 0.740 0.17 Frictional 6.6878 54.112 

[1] 3.75 3.75 75 6.5 73 0.740 0.17 Frictional 6.5426 53.664 

[2] 2 4 50 11 3.1 0.68 0.4 Frictional 0.9795 19.178 

[2] 2 4 50 11 3.1 0.68 0.4 Frictional 0.9795 19.178 

[2] 2 4 100 11 3.1 0.68 0.4 Frictional 2.4303 16.697 

[2] 3 6 50 11 3.1 0.68 0.4 Frictional 0.7495 29.607 

[2] 3 6 100 11 3.1 0.68 0.4 Frictional 0.6237 27.959 

[2] 3 8 100 11 3.1 0.68 0.4 Frictional 0.5890 27.525 

[2] 4 8 50 11 3.1 0.68 0.4 Frictional 1.0554 42.561 

[2] 4 8 100 11 3.1 0.68 0.4 Frictional 0.5155 38.488 

[3] 5 8 50 11 3.1 0.68 0.4 Frictional 1.1592 63.895 

[3] 4 6 50 3 3.1 0.68 0.4 Frictional 0.8603 48.793 

[3] 4 6 50 4 3.1 0.68 0.4 Frictional 0.9449 48.600 

[3] 4 6 50 5 3.1 0.68 0.4 Frictional 0.9386 49.628 

[3] 4 6 50 8 3.1 0.68 0.4 Frictional 0.6409 52.228 

[1]  Michalski et al. 1993 

[2]  Plaisted et al. 2006 

[3]  Nielsen et al. 2012 
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