Lawrence Berkeley National Laboratory
Recent Work

Title
Exposure to Methylene Chloride from Controlled Use of a Paint Remover in Residences

Permalink
https://escholarship.org/uc/item/9dz1h9ng

Authors
Hodgson, A.T.
Girman, J.R.

Publication Date
1987-06-01
Presented at the 80th Annual Meeting of the
Air Pollution Control Association,
New York, NY, June 21-26, 1987

EXPOSURE TO METHYLENE CHLORIDE FROM CONTROLLED
USE OF A PAINT REMOVER IN RESIDENCES

A.T. Hodgson and J.R. Girman

June 1987

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
EXPOSURE TO METHYLENE CHLORIDE FROM CONTROLLED USE OF A PAINT REMOVER IN RESIDENCES

Alfred T. Hodgson and John R. Girman*

June 1987

Indoor Environment Program
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

*Current Address:
Indoor Air Quality Program
Air and Industrial Hygiene Laboratory
California Department of Health Services
Berkeley, California 94704

This work was supported by the Directorate of Health Sciences of the U.S. Consumer Product Safety Commission under Contract No. CPSC-1AG-84-1171 and by the Assistant Secretary for Conservation and Renewable Energy, Office of Building and Community Systems, Building Systems Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
ABSTRACT

A recent laboratory investigation characterized personal exposures to methylene chloride (CH₂Cl₂) for simulated typical uses of paint removers and aerosol finishes containing CH₂Cl₂ in a room-size environmental chamber at two ventilation rates. Because paint removers produced relatively large exposures to CH₂Cl₂ in these experiments, the present investigation was undertaken to measure exposures to CH₂Cl₂ for standardized use of a paint remover in a variety of residential environments. A total of 21 experiments were conducted outdoors and indoors in a garage, a basement workshop, and large and small rooms of a house. In the indoor work areas, ventilation patterns and rates were varied by opening windows and doors and by the use of a household fan. Finishes were removed from uniformly-prepared panels and from chairs. The personal exposure of the worker was determined from the continuous measurement of CH₂Cl₂ concentration in a pumped breathing-zone sample.

Personal exposures resulting from the outdoor use of paint remover were very low (6-36 ppm·h). Exposures resulting from the use of paint remover indoors without mechanical exhaust ventilation were considerably higher (190-2090 ppm·h). In each indoor location, an open window or exterior door reduced exposures by one half relative to the closed condition. Exposures were greatly reduced by a fan placed near the work area and exhausting out through an open window or door (11-142 ppm·h).

A single-equation mass-balance model was used to produce estimates of theoretical exposures for experiments conducted indoors. The efficacy of the model for predicting exposures was evaluated by comparing theoretical and measured personal exposures. The model performed best for small-volume work areas with low ventilation rates. In general, the model had an accuracy of ±50 percent when applied to experiments conducted in enclosed work areas without an exhaust fan.

Key Words: Breathing zone, consumer product, indoor air quality, mass-balance model, methylene chloride, paint remover, personal exposure, residences, source strength, ventilation rate
INTRODUCTION

Methylene chloride, or dichloromethane (CH$_2$Cl$_2$), is used in many consumer products. It is the major constituent of most paint removers and is included in the formulation of a number of aerosol products such as paints, polyurethane finishes, pesticides, and lubricants.

There is concern about consumers' exposures to CH$_2$Cl$_2$ because of a variety of adverse health effects that can result from inhalation of high concentrations of this chemical. These health effects include neurologic toxicity (dizziness, nausea, headache), carbon monoxide poisoning leading to anoxic stress (Stewart et al., 1972), and pulmonary edema (Buie et al., 1986). In addition, a National Toxicology Program inhalation bioassay found "clear evidence of carcinogenicity" of CH$_2$Cl$_2$ in rats and mice (National Toxicology Program, 1985).

Paint removers probably have the highest potential for toxic exposure to CH$_2$Cl$_2$ among the various consumer products because they typically contain a high percentage of the chemical. For example, use of paint removers in poorly ventilated spaces was shown to result in concentrations of CH$_2$Cl$_2$ that exceeded occupational guideline concentrations of 100 and 500 ppm for 8-h work periods established by the American Conference of Governmental Industrial Hygienists and by the U.S. Occupational Safety and Health Administration, respectively (Otson et al., 1981; Girman and Hodgson, 1986). This comparison of consumer product use to occupational guidelines lends perspective to the observed concentrations but is not considered a health assessment.

Since concentrations of CH$_2$Cl$_2$ during use of paint removers are often high and the work periods often have relatively long durations, the resulting personal exposures to CH$_2$Cl$_2$ can be quite high. Controlled use of paint removers on standard panels in a 20-m3 (706-ft3) environmental chamber at two ventilation rates produced exposures ranging from approximately 900 ppm-h to over 2000 ppm-h for 90-minute work periods (Girman and
Hodgson, 1986). These exposures were ten or more times higher than exposures produced from the use of several aerosol finishes containing CH$_2$Cl$_2$ under similar conditions.

In addition to measuring and comparing personal exposures from different sources, one of the objectives of the previous investigation was to develop and validate a model to predict exposures for other use conditions. The source strength of CH$_2$Cl$_2$ was calculated from the product composition and application data and was applied to a single-equation mass-balance model for average-volume concentration which when integrated over the work period produced an estimate of exposure. For paint remover use in the chamber, the model predicted personal exposure within approximately ten percent.

The objectives of the present investigation were: (1) to determine exposures to CH$_2$Cl$_2$ resulting from standardized use of a paint remover in a variety of typical residential environments including outdoor work areas; (2) to identify practical ways to minimize personal exposures to CH$_2$Cl$_2$ resulting from the use of a paint remover; and (3) to evaluate the efficacy of the mass-balance model for predicting exposures in the residential environment.

EXPERIMENTAL

A nationally-distributed brand of non-flammable, semi-paste paint remover was selected for this investigation. This product was one of the two paint removers used in the previous laboratory investigation (Girman and Hodgson, 1986). All containers used for analysis and experiments were from the same manufacturer's lot. The percent weight composition of the non-volatile fraction of this paint remover was determined by air drying aliquots of the product to constant weight. The major compounds comprising the volatile fraction were identified and quantified by gas chromatography-mass spectrometry analyses of gas-phase samples (Girman and Hodgson, 1986).
Two different substrates were selected for finish removal to represent typical consumer refinishing projects. In the majority of the experiments, finish was removed from 0.74 m² (8 ft² with dimensions 2 ft x 4 ft) panels of plywood painted on one side with a primer coat and two finish coats of an oil-base enamel. These painted panels had been air dried for over ten months prior to use. A set of identical, straight-back, wood chairs were used in other experiments. These chairs, which were at least several years old, were finished with a clear varnish. For finish removal, a panel was attached to a stationary metal stand which held the panel horizontally at a 45° angle with its lower edge at waist level. A chair was placed directly on the floor of the work area and was rotated and inverted as needed during finish removal.

A common household fan was used to increase ventilation rates in some experiments. This fan was a three-speed, 51-cm (20-in), five-blade appliance designed primarily for use in windows or doorways. It was operated at its highest speed setting with a power consumption of ~225 watts. It was positioned near an open window or exterior door so that it exhausted air out of the work area.

A total of 21 experiments were conducted at several outdoor and four indoor environments. These environments were selected to represent work areas that consumers' typically use for refinishing projects. In three of the indoor work areas, ventilation rates were varied by opening windows and doors and by the use of the fan.

Two of the work areas were located in a single-story house. This three-bedroom, one-bath house had a volume based on interior dimensions of 249 m³ (8790 ft³). It was estimated that the furniture, appliances, and other household items occupied ten percent of the volume giving a ventilated volume of 224 m³ (7910 ft³). A floor plan of the house showing the two work areas and two experimental arrangements is presented in Fig. 1. All windows and
exterior doors were closed and all interior doors were open during the experiments with the exception of openings to the bedroom work area, which were opened and closed in several combinations to vary the ventilation rate. A total of six experiments were conducted in the bedroom. This room enclosed a volume of 26.6 m^3 (939 ft^3). It was estimated that 15 percent of the room was occupied giving a ventilated volume of 22.6 m^3 (798 ft^3). Both a panel and a chair were stripped in this work area with the windows and interior door to the room closed. Two panels were stripped with the windows closed and the interior door open (dimensions 0.76 m x 2.0 m or 2.5 ft x 6.7 ft). The interzonal transport of CH₂Cl₂ between the bedroom and the dining area was measured in one of these experiments. Two more experiments with panels were conducted in the bedroom. In one, a window was open (dimensions 0.41 m x 0.91 m or 1.3 ft x 3.0 ft) and the interior door was closed. In the other, the fan was placed in front of the open window, and the interior door was partially open (0.3 m or 1 ft). Two experiments were conducted in the dining area of the house. The dining area, the family room, and the kitchen comprised one open, largely interconnected space with an enclosed volume of 81.3 m^3 (2870 ft^3) which was separated from the rest of the house by an open doorway. It was estimated that ten percent of the volume was occupied giving a ventilated volume of 73.2 m^3 (2580 ft^3). Both a panel and a chair were stripped in this work area with all interior doors open.

A third work area was located in the basement of a multi-story house. Because the house was built on a hillside, the basement was only partially below grade. This work area enclosed a volume of 71.4 m^3 (2520 ft^3) and had a ventilated volume of 60.7 m^3 (2140 ft^3) based on an estimate that 15 percent of the volume was occupied. The house had two floors with the main living areas located on the first floor. The enclosed volume of the first floor was 376 m^3 (13280 ft^3). The basement entry was an interior stairway located near the center of the house. A floor plan of the basement showing an experimental arrangement is presented in Fig. 2. Five experiments were conducted in this work area. In the living areas of the house, the windows and exterior doors were closed and interior doors were open during these
experiments. Both a panel and a chair were stripped with the basement window and the door leading to the stairway closed. Three additional experiments were conducted with panels. In one, the nearby window was open (dimensions 0.38 m x 0.84 m or 1.2 ft x 2.8 ft). In another, the fan was placed in front of the open window. In the final one, the window was closed and the stairway door leading to the first floor was open (dimensions 0.72 m x 1.8 m or 2.4 ft x 5.9 ft). In this experiment, the interzonal transport of CH\textsubscript{2}Cl\textsubscript{2} between the basement and the central area of the first floor was measured.

The fourth indoor work area was a single-car garage with a volume based on interior dimensions of 85.0 m3 (3000 ft3). It was estimated that 20 percent of the volume was occupied giving a ventilated volume of 68.0 m3 (2400 ft3). The floor plan and an experimental arrangement for the garage are shown in Fig. 3. Four experiments were conducted in this work area. Both a panel and a chair were stripped with all exterior openings closed. Finish was also removed from a panel with the garage door open (dimensions 2.4 m x 2.1 m or 8.0 ft x 7.0 ft). In another experiment with a panel, both the rear door (dimensions 0.79 m x 2.0 m or 2.6 ft x 6.7 ft) and the garage door were open and the fan was placed on the floor halfway between the worker and the garage door.

Ventilation rates in the indoor work areas were determined by measuring tracer-gas decays. Immediately prior to an experiment, the tracer gas (SF\textsubscript{6}) was uniformly mixed in the work area by injecting pure gas with a syringe in front of a small, hand-held fan. Mixing was continued with the fan for approximately five minutes after the injection was completed. Experimental conditions were established by opening a window and/or doors if required; the fan was turned off; and concentrations of SF\textsubscript{6} in a sample drawn from a stationary point at a height of 1.5 m near the substrate were measured at 1-min intervals with a gas chromatograph equipped with an electron capture detector. Decay was measured over the dynamic range of the instrument or until the experiment was completed. In experiments with high ventilation rates, one or more decays were measured prior to initiation of the work period. However,
once the work period began, no additional tracer-gas injections were made. Consequently, for experiments with high ventilation rates and rapid decays, measurements could only be made during the first portion of the work periods.

Local wind speed, wind direction, and outdoor temperature were monitored for each experiment with a ground-based meteorological system (Meteorology Research, Inc., Altadena, CA). The system was sited adjacent to outdoor work areas or near the houses so that the sensors were exposed to the prevailing wind. The sensors were positioned approximately two meters above the ground. Atmospheric pressure was monitored with a pressure transducer. Indoor temperature was monitored with a type-T thermocouple positioned at a height of 1.5 m near the substrate.

Air near the breathing zone of the worker was continuously sampled for CH$_2$Cl$_2$ in all but the two interzonal transport experiments. This air was drawn from the top of the worker's right shoulder through a sampling line at a flowrate of \sim20 L min$^{-1}$. To determine interzonal transport, air was drawn from a stationary point in the target area at a height of 1.5 m. Sample-line components were Teflon and stainless steel.

The pumped air sample was continuously analyzed for CH$_2$Cl$_2$ with a single-beam, variable-filter, infrared spectrometer (MIRAN 1A, Foxboro, Co., South Norwalk, CN). The spectrometer was set at an analytical wavelength of 13.3 μm and a cell pathlength of 0.75 m. Instrument cell pressure was controlled near 500 torr and was monitored with a pressure transducer. Cell temperature was monitored with a type-T thermocouple. Multi-point calibrations over the required range were performed immediately before and after each experiment using a closed-loop calibration system. Standards were either microliter quantities of liquid CH$_2$Cl$_2$ or a diluted certified-grade gas standard (4850 ppm).
Analog output signals from the spectrometer and its associated pressure transducer and thermocouple were sampled with a data acquisition system (Series 500, Keithly/DAS, Boston, MA) at a rate of one point per second. Analog output signals from the other instruments were sampled with this system at a rate of twelve points per minute. These data were stored on magnetic diskettes for subsequent reduction and analyses.

Preparations for an experiment were made while the spectrometer and gas chromatograph were being calibrated. The substrate was positioned in the work area (see Figs. 1-3 for indoor environments). A 2-kg electronic balance was located so that it was readable by an observer. A product container, a 1-L can, a 7.6-cm wide brush, a 7.6-cm wide scraper, cloths, and a thin polyethylene sheet were taken into the work area and individually weighed. The polyethylene sheet was placed under the substrate to collect scrapings.

After calibrations and preparations were completed, tracer gas was injected (indoor work areas only) and ventilation-rate measurements and data acquisition were initiated. The worker put on disposable coveralls and entered the work area. The worker next put on a pressure-demand breathing apparatus with full face mask (Model 801548-02, Scott Aviation, Lancaster, NY) and Viton gloves. Monitoring of the breathing-zone sample for CH_2Cl_2 was initiated, and the worker began the application procedure. All of the worker's activities were recorded by an observer positioned outside of the work area.

Paint remover was used according to the instructions on the container label. The procedure was the same as that used in the previous laboratory investigation (Girman and Hodgson, 1986). The container was shaken; a portion of the product was transferred to the 1-L can; and the can and application brush were weighed. Thick coats of product were sequentially applied to the substrate using single brush strokes in one direction only. The details of the entire paint removal procedure for panels were as follows: (1) paint remover was applied to the first quarter of the panel, and the can and brush were weighed; (2) after the
remover had remained undisturbed on the first quarter of the panel for ten minutes, remover was applied to the second quarter, and the can and brush were weighed; (3) softened paint was scraped from the first quarter, and paint scrapings were collected on the polyethylene sheet. This sequence was repeated until each quarter of the panel had been stripped twice. The procedure for chairs was identical in that paint remover was sequentially applied to four approximately equal segments of a chair and was repeated so that each segment was stripped twice. During the periods between scraping and the next application of product, the worker sat on a stool approximately one meter from the substrate. At the conclusion of the final scraping, the worker wiped the substrate with cloths and weighed all containers, tools, and cloths. The polyethylene sheet was folded with all scrapings inside and also weighed. The worker disconnected the breathing-zone sampling line and attached it to a stationary sampling point at a height of 1.5 m near the substrate. The worker then gathered all containers, tools, and the folded sheet and quickly exited the work area. Monitoring of air in the work area for CH\(_2\)Cl\(_2\) continued for approximately 15 minutes. The work period for an experiment was defined as the time between the initial pouring of the product into the can and the disconnection of the breathing-zone sampling line from the worker. Following the experiment, the sheet with the scrapings was spread out in a ventilated room. The scrapings were allowed to dry overnight, and the sheet was reweighed.

MODELING

A single-equation, mass-balance model which describes the average-volume concentration of a pollutant in an enclosed space (Turk, 1963) was used to calculate temporal profiles of theoretical average-volume concentrations of CH\(_2\)Cl\(_2\) in the work area for all indoor experiments. This is the same model which was used in the previous laboratory investigation (Girman and Hodgson, 1986). It assumes perfect mixing so that exfiltrating air and indoor air have the same average pollutant concentrations. The mathematical expression for the change in indoor pollutant concentration is:
\[
dC = PaC_0 \, dt + \frac{S}{V} \, dt - (a + k) \, C \, dt
\]
(1)

where:
\[C\] = indoor pollutant concentration (ppm or mg m\(^{-3}\));
\[C_0\] = outdoor pollutant concentration (ppm or mg m\(^{-3}\));
\[P\] = fraction of the outdoor pollutant level that penetrates the enclosed space (unitless);
\[a\] = ventilation rate in air changes per hour (h\(^{-1}\));
\[S\] = indoor pollutant source strength (mL h\(^{-1}\) or mg h\(^{-1}\), 1 mg h\(^{-1}\) = 1.67 x 10\(^{-6}\) g min\(^{-1}\));
\[V\] = volume (m\(^3\));
\[k\] = net rate of removal processes other than ventilation (h\(^{-1}\));
\[t\] = time (h).

Assuming \(C_0\), \(P\), \(S\), \(a\), and \(k\) are constant over the time period of interest, Equation 1 can be solved for \(C(t)\) to give:

\[
C(t) = \frac{PaC_0 + S/V}{a + k} \left[1 - e^{-(a+k)t} \right] + C(0) \, e^{-(a+k)t}
\]
(2)

For the application of a consumer product in an enclosed space, the theoretical exposure (ppm·h) received by an occupant of the space to a pollutant emitted by the product can be derived from Equation 2 by a second integration over the time interval of the work period. Assuming that \(C_0\) is negligible and the \(C(0)\) equals zero at the start of product application, integration of Equation 2 with respect to time from the start of product application (\(t=0\)) to the completion of product application (\(t=t_f\)) with constant \(S\), \(a\), and \(k\) yields:
\[\int_0^{t_1} C(t) \, dt = \frac{S t_1}{(a + k)V} - \frac{S}{(a + k)^2 V} [1 - e^{-(a + k)t_1}] \] (3)

Using the above assumptions, \(C(t_1) \) calculated from Equation 2 can be substituted into Equation 3 to yield:

\[\int_0^{t_1} C(t) \, dt = \frac{S t_1}{(a + k)V} - \frac{C(t_1)}{(a + k)} \] (4)

The first term on the right side of Equations 3 and 4 is the exposure that would be received by the occupant at steady-state conditions, and the second term can be viewed as a correction to the steady-state exposure which accounts for the time required to reach steady-state conditions and is, therefore, inversely proportional to the pollutant removal rate \((a + k) \).

For these experiments, \(k \) was not measured and was assumed to be negligible. The source term, \(S \), which was calculated from the material-balance data, was assumed to be constant over the work period.

RESULTS AND DISCUSSION

Ventilation Rates

Data from experiments conducted in the indoor environments with standard panels are presented in Table 1 along with data from experiments conducted in a 20-m³ environmental chamber at two ventilation rates with standard panels and the same brand of paint remover (Girman and Hodgson, 1986).
The bedroom had a ventilation rate of only 0.13 h⁻¹ with the windows and interior door closed. In the experiment with the interior door open, there appeared to be a substantial flow of air between the bedroom and the rest of the house. This flowrate, which is driven primarily by temperature differentials, is difficult to determine, but can be greater than the flowrate of outdoor air supplied to the whole house (Sandberg, 1984). With the interior door closed and the window open, the ventilation rate for the room increased by a factor of twelve over the closed condition. The ventilation rate of 18.7 h⁻¹ with the interior door open and the fan exhausting out through the open window was 144 times higher than the ventilations rate when the room was closed.

The closed basement workshop was a relatively leaky room with a ventilation rate of 1.6 h⁻¹. This relatively high ventilation rate may not be atypical for a basement since in many houses ventilation rates for basements exceed ventilation rates for the occupied floors (B. Turk, LBL, personal communication). The ventilation rate increased by a factor of three with the window open. With the fan exhausting out through the open window and no other window or door open, there was a seven-fold increase in ventilation rate over the completely closed condition.

The garage, which was also a leaky structure, had a ventilation rate of 2.1 h⁻¹ with the garage and rear doors closed. With the garage door open, there was a factor of five increase in ventilation rate. With the rear door also open and the fan placed on the floor half-way between the garage door and the panel and exhausting out, there was a nine-fold increase in ventilation rate over the completely closed condition.

Changes in ventilation rate with changes in operating conditions were greatest in the bedroom primarily because of its small volume and low ventilation rate when closed. However, the ventilation rates achieved in the bedroom and the garage with the fan were nearly identical. The ventilation rate in the basement with the fan on was lower, perhaps,
because there was no large-area air inlet.

Concentrations and Personal Exposures

Profiles of breathing-zone concentrations for experiments conducted with standard panels in the chamber and in the three indoor environments in which ventilation rates were varied are shown in Fig. 4. Major fluctuations in concentrations with time were due to the worker's activities. Most of the profiles have a small initial peak which resulted from the transfer of the product from the original container to the can followed by eight, irregular peaks which were produced by the sequential application and stripping procedure. The intervening lower concentrations occurred during the rest periods. Differences in concentrations between rest periods and application and stripping activities often approached or exceeded 400 ppm in both the chamber and the indoor environments.

When integrated over the work period, the profiles of breathing-zone concentrations provide measures of personal exposure. Personal exposures for experiments conducted in the chamber and in the indoor environments with standard panels are given in Table 1. Table 2 presents personal exposures for experiments conducted outdoors with panels at different wind conditions. Personal exposures from the use of paint remover on panels in the indoor environments ranged from approximately 10 ppm·h to over 2000 ppm·h due primarily to differences in room volume and ventilation rate. The highest exposure, which occurred in the closed bedroom, was almost identical to the exposure measured in the environmental chamber at the low ventilation rate. In both experiments, peak concentrations of CH₂Cl₂ exceeded 2000 ppm. In all three indoor environments, simply opening a window or a door reduced exposures by at least half. However, the exposure in the bedroom of nearly 1000 ppm·h with the window open was still relatively high. The fan exhausting out at high speed reduced exposure by more than 95 percent in both the bedroom and the garage where there was an open door on the opposite side of the work area from the fan to provide cross ventilation. The exposures at
these conditions approached or were lower than some exposures measured outdoors. The fan was less effective in reducing exposure in the basement where there was no large opening for cross ventilation.

In each indoor work area, personal exposures were always reduced by an increase in ventilation rate. However, the effect of ventilation rate on exposure was often nonlinear. This was particularly noticeable in the bedroom where a factor of twelve increase in ventilation because of the open window resulted in only a two-fold reduction in exposure. The nonlinear effect of ventilation rate in the bedroom was due to the short duration of the work period relative to the time required to reach steady-state concentrations particularly at the low ventilation rate (Girman and Hodgson, 1986). In locations where ventilation rates were higher, steady-state concentrations were quickly approached, and increased ventilation rate had a more linear effect on exposure. For example, in the basement workshop, the open window produced a factor of three increase in ventilation rate and a similar decrease in personal exposure.

In all four experiments conducted outdoors, exposures were low and generally inversely related to average wind speed with the lowest and highest exposures occurring at the highest and lowest wind speeds, respectively. The profile of breathing-zone concentration for the experiment which resulted in the highest outdoor exposure of 36 ppm·h is included in Fig. 4.

Modeling

The total mass of product applied to the substrate was calculated for each experiment (Tables 1-3). This mass was the sum of the differences between the before and after weights of the 1-L can plus brush for the eight applications of paint remover. The mean and standard deviation was 406 ± 35 g for the 17 experiments with panels and 382 ± 73g for the four experiments with chairs.
The percent weight composition of the paint remover is shown in Table 4. The non-volatile component was only four percent of the total. The volatile component was composed of two alcohols and several alkyl-aromatic hydrocarbons in addition to CH2Cl2 which was 78.6 percent of the total.

A time-averaged source strength of CH2Cl2 (g min⁻¹) was calculated for each experiment (Tables 1-3) from the duration of the work period, the composition of the product, and the weights of the containers, all tools, and the polyethylene sheet, as follows: (1) the initial weight of the sheet was subtracted from its final dry weight to yield the weight of finish that was removed from the substrate; (2) the weight of the finish that was removed was subtracted from the total weight of all items at the exit from the work area, and this difference was subtracted from the total initial weight of all items to yield the weight of product that was volatilized; (3) the weight of product volatilized was multiplied by the fractional composition of CH2Cl2 in the volatiles to yield the weight of CH2Cl2 volatilized; and (4) this weight was divided by the duration of the work period in minutes. The mean and standard deviation of the mass of CH2Cl2 volatilized was 256 ± 29 g for the 17 experiments with panels and 216 ± 17 g for the four experiments with chairs. The mean and standard deviation of the percentage ratio of the mass of CH2Cl2 volatilized to the mass of product applied was 65.3 ± 8.3 percent for the 17 experiments with panels and 57.4 ± 5.8 percent for the four experiments with chairs. The mean and standard deviation of the source strength was 2.87 ± 0.38 g min⁻¹ for the 17 experiments with panels and 2.37 ± 0.16 g min⁻¹ for the four experiments with chairs.

Theoretical average-volume concentrations were calculated for each indoor experiment using the single-equation mass-balance model with the estimated ventilated volume of the work area, the measured ventilation rate, the duration of the work period, and the time-averaged source strength as model inputs. Theoretical exposures for experiments with standard
panels were derived from these concentrations and are presented in Table 1. Profiles of theoretical concentrations for indoor experiments with panels are shown in Fig. 5.

Theoretical exposures were compared to measured personal exposures. For the twelve experiments (including two chamber experiments) with panels in which ventilation-rate measurements were made, the difference between theoretical and measured exposures ranged from -381 to 278 ppm-h. The absolute errors were within 150 ppm-h for nine of these experiments and were within 100 ppm-h for six experiments. The largest absolute errors occurred in experiments in the dining area, the closed basement, and the bedroom with the window open. On a relative basis, three of the twelve experiments had theoretical exposures within 10 percent of personal exposures, five had theoretical exposures within 25 percent of personal exposures, and eight had theoretical exposures within 50 percent of personal exposures. The best relative agreement was obtained for experiments in the chamber and the closed bedroom. These three experiments were conducted in a small volume with a low or controlled ventilation rate. The worst relative agreement was obtained for experiments in the bedroom with the fan on and in the garage with the door open and the fan either on or off. However, the absolute differences between the theoretical and personal exposures were small (≤100 ppm-h). The poor relative agreement for these experiments with high ventilation rates may have been largely due to a lack of good mixing. The model also did not do a good job of predicting personal exposure for the experiment conducted in the dining area when the volume and the ventilation rate for the whole house were used in the calculation probably because the gradient between breathing-zone concentration and the average-volume concentration for the whole house was large. Using the estimated ventilated volume of the dining area/family room/kitchen and assuming that the ventilation rate for this area was the same as the ventilation rate for the whole house, the theoretical exposure was 592 ppm-h which was 103 percent of the measured exposure.
Effect of Substrate Type

Finish was removed from chairs in the four indoor environments. Experiments with chairs were conducted at the closed, low ventilation rate condition. These experiments were compared with equivalent experiments with panels. Profiles of measured breathing-zone concentrations for each pair of experiments are shown in Fig. 6. These concentration profiles were integrated over the work periods to produce estimates of personal exposures which are given in Table 3.

The ventilation rate, the work-period duration, and the source strength were similar for each pair of experiments. As a result, theoretical exposures were similar. This similarity is illustrated by the paired profiles of theoretical concentrations (Fig. 7).

In all four environments, personal exposures in experiments with chairs were lower than personal exposures in experiments with panels. The ratios of personal exposures from working with the chair and the panel are shown in Table 3. These ratios were normalized to equivalent conditions for ventilation rate, work-period duration, and source strength by multiplying by the ratio of theoretical exposures for the panel and the chair. Personal exposures from use of paint remover on chairs were, on average, 70 percent (range 52–90 percent) of exposures from equivalent use of paint remover on panels. The reason for this difference is not known. Since the amount of CH₂Cl₂ volatilized was assumed to be the amount of CH₂Cl₂ unaccounted for in the material balance, a possible explanation is that more CH₂Cl₂ remained in the wood of the chair than in the panel at the end of an experiment. It is also possible that there was more vertical stratification with higher concentrations near the floor in experiments with chairs since the chairs were placed directly on the floor. However, the potential impact of stratification on exposures would have been at least partially offset since the worker's average breathing-zone location was closer to the floor in experiments with chairs.

16
Theoretical exposures were compared to measured personal exposures for the four experiments with chairs (Table 3). When the ventilated volume for the whole house was used in the calculation for the experiment in the dining area, the model significantly underpredicted exposure. However, when the ventilated volume of the dining area/family room/kitchen was used, the model results were 503 ppm·h and 115 percent of the measured exposure. Excluding the experiment in the dining area, the model on an absolute basis predicted exposures for two of three experiments within 50 ppm·h; on a relative basis, the model overpredicted exposures by 21 percent on average.

Interzonal Transport

Use of a paint remover in a residence can expose occupants other than the worker to \(\text{CH}_2\text{Cl}_2 \) if \(\text{CH}_2\text{Cl}_2 \) gets transported from the work area to the rest of the house. This interzonal transport was examined in the single-story and multi-story houses. In both houses, personal exposures that would have been received by occupants were compared to the personal exposures received by the worker.

In the multi-story house, paint removal was done in the basement workshop with the window closed and the stairway door leading to the first floor open. Concentrations at a height of 1.5 m were measured in a central location on the first floor near the stairway. The profile of breathing-zone concentration that an occupant might have been exposed to is shown in Fig. 8 along with the profile of breathing-zone concentration for the worker in the basement measured in another experiment with the window and the interior door closed (concentrations in the basement with the interior door open were not measured but would have been lower). It took approximately 20 minutes before measurable concentrations were recorded in the living area of the house. These concentrations seemed to peak at about 110 minutes. The personal exposure for this period was 67 ppm·h. If the decay portion of the
profile was a mirror image of concentration buildup, then the exposure for the occupant would have been 134 ppm·h or 16 percent of the exposure received by the worker in the basement during the work period.

In the single-story house, paint removal was done in the bedroom with the window closed and the interior door to the rest of the house open while concentrations were measured in the dining area. The profile of concentration in the dining area is shown in Fig. 8 along with the profile of breathing-zone concentration for the worker in the bedroom from another experiment with the same operating conditions and ventilation rate. Methylene chloride quickly spread to the dining area and reached higher concentrations than in the multi-story house since the volume and the ventilation rate of the single-story house were lower. In addition, the infiltration rate in the work area of the single-story house was much lower (interzonal transport rates for the two houses were unknown but also may have been different). Concentrations seemed to peak at about 130 minutes resulting in an exposure for an occupant of 143 ppm·h. If this is doubled to include the decay period, an occupant would have had an exposure of 286 ppm·h or 37 percent of the worker's exposure.

SUMMARY AND CONCLUSIONS

Exposures to CH₂Cl₂ were determined for standardized use of a paint remover in a variety of typical residential environments. The results of these experiments were used to define the range of exposures for this standardized use, to suggest ways to minimize exposures, and to evaluate the efficacy of a mass-balance model for predicting exposures.

Exposures resulting from the outdoor use of paint remover on standard panels were very low (range 6-36 ppm·h). Exposures resulting from the use of paint remover indoors without mechanical exhaust ventilation were up to two orders of magnitude higher (range 190-2090 ppm·h). The highest exposures occurred in a small-volume work area which had low
ventilation rates. The highest exposure of 2090 ppm·h was probably above the range of most consumers' exposures for a comparable work period since the irritant effects and odor from the high concentrations (>2000 ppm) may not be tolerable to most individuals without breathing protection. In the work areas included in this study, an open window or exterior door increased ventilation rates by a factor of three to twelve and reduced exposures by approximately one half relative to the closed condition. Exposures were greatly reduced by the use of a fan placed near the work area and exhausting out through an open window or door (range 11-142 ppm·h). Exposures when using the fan were similar to those measured in experiments conducted outdoors if a large-area opening for cross ventilation was provided. Although exposures were always reduced by an increase in ventilation rate, the relationship was often nonlinear with less reduction in exposure than would be predicted by assuming steady-state conditions. This nonlinearity was most evident in the work area with the lowest ventilation rate because the time required to achieve steady-state concentrations was long relative to the duration of the work period.

The effect of substrate type on exposure to CH₂Cl₂ was evaluated by removing finish from chairs and from flat panels. When small differences in ventilation rate, work period duration, and source strength were accounted for, there remained an unexplained difference in exposures resulting from the use of paint remover on chairs versus use on panels. Exposures from use of paint remover on chairs were 70 percent, on average, of exposures from equivalent use on panels.

The transport of CH₂Cl₂ from the work area to the rest of a house when interior doors were open was investigated to evaluate the potential exposure of occupants versus the exposure of the worker. In experiments conducted in a multi-story and a single-story house, occupants would have received exposures that were 16 and 37 percent, respectively, of the exposures received by the worker during the work period.
From these results, it can be concluded that exposures to CH$_2$Cl$_2$ from the use of paint remover will be minimized when the work is done outdoors. A common household fan exhausting out through an open window or door can greatly reduce exposures when the work must be done indoors. A fan appears to be most effective if it is placed between the worker and the opening, and if a large-area opening is provided for cross ventilation. The exposures of other occupants in a house can be minimized by the use of an exhaust fan in the work area or by closing off the work area from the rest of the house.

A single-equation mass-balance model was used to calculate temporal profiles of theoretical average-volume concentrations for experiments that were conducted indoors. Average source strengths of CH$_2$Cl$_2$ for each experiment were derived from product composition and application data and were used in these calculations. The concentration profiles were integrated over the work periods to produce estimates of theoretical exposures. The efficacy of the mass-balance model for predicting exposures was evaluated by comparing theoretical exposures and measured personal exposures.

Absolute errors between theoretical and personal exposures were within 150 ppm·h for 11 of the 16 experiments conducted with panels and chairs in which ventilation rates were measured and were within 100 ppm·h for half of the 16 experiments. On a relative basis, 11 of the 16 experiments had theoretical exposures within 50 percent of personal exposures while four had theoretical exposures within ten percent of measured values. In general, the best relative agreement was obtained for experiments conducted in small-volume work areas with low or well-controlled ventilation rates. When a fan was used to increase ventilation rates, the relative errors were large. However, the absolute differences in these experiments were less than 100 ppm·h. For experiments in closed, relatively small-volume work areas with panels and chairs, the model underpredicted exposures for panels and overpredicted exposures for chairs by approximately equal amounts (22 percent).
The biggest deficiency of the mass-balance model was that it greatly underpredicted exposures for experiments conducted in a relatively large-volume, open-area of a house. Theoretical exposures for finish removal from both a panel and a chair in the dining area of the house were only one-third of actual exposures. The model did not work well in this situation because the average volume concentration for the whole house was low and not representative of the concentration in the immediate work area. When the volume of the dining area/family room/kitchen was used in the calculations, the theoretical exposures agreed well with the measured exposures. However, since the exchange rates among areas of the house were unknown, it was assumed in these calculations that the work area had the same ventilation rate as the whole house. Even though the assumption seems to be valid in this case, it is not always justified. In the same house when the interior door was open to the bedroom, there appeared to be a substantial exchange between the room and the rest of the house.

In conclusion, the single-equation mass-balance model is most useful for predicting exposures in relatively small, enclosed work areas where concentrations and exposures will be the highest. These areas are typically well mixed so that average-volume concentrations are representative of breathing-zone concentrations. On the other hand, the model will underpredict, often significantly, exposures in relatively large, irregularly-shaped work areas and in work areas that are open to the large volume of a house. In these work areas, mixing is not uniform and concentrations in a given location are determined by interzonal air flowrates. A multi-chamber model could be used to predict concentrations in interconnected zones of a house. However, interzonal air flowrates must be known. These are difficult to determine and are inherently variable, but can be estimated from tracer-gas concentrations measured under controlled conditions (Maldonado and Woods, 1983).
ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of Dr. Marilyn Wind and Warren Porter of the U.S. Consumer Product Safety Commission, Bethesda, MD.

This work was supported by the Directorate of Health Sciences of the U.S. Consumer Product Safety Commission under Contract No. CPSC-IAG-84-1171 and by the Assistant Secretary for Conservation and Renewable Energy, Office of Building and Community Systems, Building Systems Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The opinions are those of the authors and do not necessarily reflect those of the U.S. Consumer Product Safety Commission or the U.S. Department of Energy. The use of product names does not imply endorsement. This material is in the public domain and, in accordance with 17 USC 105, may be fully copied or reprinted.
REFERENCES

Table 1. Effect of ventilation rate on personal exposure to CH\textsubscript{2}Cl\textsubscript{2} from indoor use of paint remover on panels.

<table>
<thead>
<tr>
<th>Location/Conditions</th>
<th>Ventilation Rate (h-1)</th>
<th>Work Period (min)</th>
<th>Mass of Product Applied (g)</th>
<th>CH\textsubscript{2}Cl\textsubscript{2} Source Strength (g min-1)</th>
<th>Theoretical Exposure (ppm\cdot h)</th>
<th>Personal Exposure (ppm\cdot h)</th>
<th>Theor./Personal Exposure Reduction a (%)</th>
<th>Personal Exposure Reduction a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber (20.1 m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. ventilated</td>
<td>0.62</td>
<td>86</td>
<td>339</td>
<td>3.14</td>
<td>2100</td>
<td>1970</td>
<td>107</td>
<td>---</td>
</tr>
<tr>
<td>Mech. ventilated</td>
<td>3.19</td>
<td>86</td>
<td>341</td>
<td>2.98</td>
<td>944</td>
<td>1040</td>
<td>90.8</td>
<td>47.2</td>
</tr>
<tr>
<td>Bedroom (22.6 m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed</td>
<td>0.13</td>
<td>102</td>
<td>402</td>
<td>1.91</td>
<td>1940</td>
<td>2090</td>
<td>92.8</td>
<td>---</td>
</tr>
<tr>
<td>Interior door open</td>
<td>---b</td>
<td>89</td>
<td>360</td>
<td>2.51</td>
<td>---</td>
<td>771</td>
<td>---</td>
<td>63.1</td>
</tr>
<tr>
<td>Window open</td>
<td>1.57</td>
<td>90</td>
<td>410</td>
<td>2.82</td>
<td>1260</td>
<td>982</td>
<td>128</td>
<td>53.0</td>
</tr>
<tr>
<td>Window, door open,</td>
<td>18.7</td>
<td>88</td>
<td>375</td>
<td>2.85</td>
<td>161</td>
<td>71</td>
<td>227</td>
<td>96.6</td>
</tr>
<tr>
<td>fan on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dining Room (224 m3)</td>
<td>0.23</td>
<td>88</td>
<td>398</td>
<td>2.63</td>
<td>193c</td>
<td>574</td>
<td>33.6</td>
<td>---</td>
</tr>
<tr>
<td>Basement (60.7 m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed</td>
<td>1.60</td>
<td>92</td>
<td>380</td>
<td>2.69</td>
<td>451</td>
<td>818</td>
<td>55.1</td>
<td>---</td>
</tr>
<tr>
<td>Window open</td>
<td>4.72</td>
<td>87</td>
<td>440</td>
<td>3.25</td>
<td>241</td>
<td>276</td>
<td>87.3</td>
<td>66.3</td>
</tr>
<tr>
<td>Window open, fan on</td>
<td>11.0</td>
<td>89</td>
<td>397</td>
<td>2.63</td>
<td>93</td>
<td>142</td>
<td>65.5</td>
<td>82.6</td>
</tr>
<tr>
<td>Garage (68.0 m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed</td>
<td>2.09</td>
<td>90</td>
<td>377</td>
<td>2.77</td>
<td>348</td>
<td>415</td>
<td>83.9</td>
<td>---</td>
</tr>
<tr>
<td>Garage door open</td>
<td>10.8</td>
<td>86</td>
<td>409</td>
<td>2.82</td>
<td>89</td>
<td>100</td>
<td>46.8</td>
<td>54.2</td>
</tr>
<tr>
<td>Doors open, fan on</td>
<td>18.9</td>
<td>89</td>
<td>461</td>
<td>3.32</td>
<td>63</td>
<td>11</td>
<td>573</td>
<td>97.3</td>
</tr>
</tbody>
</table>

a Relative to lowest ventilation rate condition at each location.

b Interzonal air flowrate not measured.

c Calculated using volume and ventilation rate for whole house.
Table 2. Personal Exposure to CH$_2$Cl$_2$ from outdoor use of paint remover on panels.

<table>
<thead>
<tr>
<th>Wind Speed (m s$^{-1}$)</th>
<th>Relative Wind Direction</th>
<th>Work Period (min)</th>
<th>Mass of Product Applied (g)</th>
<th>CH$_2$Cl$_2$ Source Strength (g min$^{-1}$)</th>
<th>Personal Exposure (ppm·h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Rear</td>
<td>90</td>
<td>384</td>
<td>3.07</td>
<td>6</td>
</tr>
<tr>
<td>2.0</td>
<td>Side</td>
<td>87</td>
<td>441</td>
<td>3.57</td>
<td>16</td>
</tr>
<tr>
<td>1.8</td>
<td>Side</td>
<td>88</td>
<td>360</td>
<td>3.25</td>
<td>12</td>
</tr>
<tr>
<td>0.9</td>
<td>Front</td>
<td>87</td>
<td>458</td>
<td>3.03</td>
<td>36</td>
</tr>
</tbody>
</table>
Table 3. Effect of substrate type on personal exposure to CH$_2$Cl$_2$ from indoor use of paint remover.

<table>
<thead>
<tr>
<th>Location/Substrate</th>
<th>Ventilation Rate (h$^{-1}$)</th>
<th>Work Period (min)</th>
<th>Mass of Product Applied (g)</th>
<th>CH$_2$Cl$_2$ Source Strength (g min$^{-1}$)</th>
<th>Theoretical Exposure (ppm•h)</th>
<th>Personal Exposure (ppm•h)</th>
<th>Theor./Personal Exposure (%)</th>
<th>Chair/Panel Personal Exposurea (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedroom (22.6 m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel</td>
<td>0.13</td>
<td>102</td>
<td>402</td>
<td>1.91</td>
<td>1940</td>
<td>2090</td>
<td>92.8</td>
<td>---</td>
</tr>
<tr>
<td>Chair</td>
<td>0.16</td>
<td>92</td>
<td>489</td>
<td>2.60</td>
<td>2120</td>
<td>1520</td>
<td>140</td>
<td>66.5</td>
</tr>
<tr>
<td>Dining Room (224 m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel</td>
<td>0.23</td>
<td>88</td>
<td>398</td>
<td>2.63</td>
<td>193b</td>
<td>574</td>
<td>33.6</td>
<td>---</td>
</tr>
<tr>
<td>Chair</td>
<td>0.31</td>
<td>89</td>
<td>329</td>
<td>2.23</td>
<td>164b</td>
<td>437</td>
<td>37.5</td>
<td>89.6</td>
</tr>
<tr>
<td>Basement (60.7 m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel</td>
<td>1.60</td>
<td>92</td>
<td>380</td>
<td>2.69</td>
<td>451</td>
<td>818</td>
<td>55.1</td>
<td>---</td>
</tr>
<tr>
<td>Chair</td>
<td>1.44</td>
<td>91</td>
<td>364</td>
<td>2.37</td>
<td>417</td>
<td>397</td>
<td>105</td>
<td>52.5</td>
</tr>
<tr>
<td>Garage (68.0 m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel</td>
<td>2.09</td>
<td>90</td>
<td>377</td>
<td>2.77</td>
<td>348</td>
<td>415</td>
<td>88.9</td>
<td>---</td>
</tr>
<tr>
<td>Chair</td>
<td>2.11</td>
<td>93</td>
<td>347</td>
<td>2.29</td>
<td>292</td>
<td>245</td>
<td>119</td>
<td>70.4</td>
</tr>
</tbody>
</table>

a Normalized to identical conditions using ratio of theoretical exposures.

b Calculated using volume and ventilation rate for whole house.
Table 4. Composition of paint remover by weight.

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-volatile</td>
<td>4.0 ± 0.0(^a)</td>
</tr>
<tr>
<td>Methanol</td>
<td>3.1 ± 0.3</td>
</tr>
<tr>
<td>Ethanol</td>
<td>7.4 ± 0.2</td>
</tr>
<tr>
<td>CH(_2)Cl(_2)</td>
<td>78.6 ± 10.4</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.7 ± 0.1</td>
</tr>
<tr>
<td>Xylenes</td>
<td>2.9 ± 0.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>96.7</td>
</tr>
</tbody>
</table>

\(^a\)Mean ± 1 standard deviation for triplicate analyses.
FIGURE CAPTIONS

Fig. 1. Floor plan of single-story house showing experimental arrangements in the bedroom for the experiment with a panel, window and door open and fan on and in the dining room for the experiment with a panel.

Fig. 2. Floor plan of basement workshop in multi-story house showing experimental arrangement for the experiment with a panel, window open and fan on.

Fig. 3. Floor plan of single-car garage showing experimental arrangement for the experiment with a panel, doors open and fan on.

Fig. 4. Temporal profiles of breathing-zone concentrations of CH$_2$Cl$_2$ for experiments with panels conducted in an environmental chamber at two ventilation rates, in three indoor environments at three ventilation rates, and outdoors at low wind speed.

Fig. 5. Temporal profiles of theoretical concentrations of CH$_2$Cl$_2$ for experiments conducted with panels. Profiles correspond to profiles of breathing-zone concentrations in Fig. 4.

Fig. 6. Temporal profiles of breathing-zone concentrations of CH$_2$Cl$_2$ for experiments conducted under similar conditions with a panel and a chair in each of four indoor environments.

Fig. 7. Temporal profiles of theoretical concentrations of CH$_2$Cl$_2$ for experiments conducted under similar conditions with a panel and a chair in each of four indoor environments. Profiles correspond to profiles of breathing-zone concentrations in Fig. 6.
Fig. 8. Temporal profiles of breathing-zone concentrations of CH$_2$Cl$_2$ for a worker and an occupant in a multi-story and a single-story house. Each of the four experiments was conducted with a panel with an interior door open between the work area and the main living area of the house with the exception of the experiment with the worker in the multi-story house in which the interior door was closed.
Figure 1.
Scale 0.5 cm = 1 ft

Figure 2.
Figure 3.
Figure 4.

Chamber

Bedroom

Basement

Garage

Outdoors

Concentration (ppm, thousands)

Minutes

0.62 h⁻¹

3.19 h⁻¹

0.13 h⁻¹

1.57 h⁻¹

18.7 h⁻¹

1.60 h⁻¹

4.72 h⁻¹

11.0 h⁻¹

2.09 h⁻¹

10.8 h⁻¹

18.9 h⁻¹

0.9 m s⁻¹

XCG 874-6884
Figure 5.
Figure 6.
Figure 7.