A PULSED ELECTRIC LENS FOR NDCX

by
E.P. Lee

Lawrence Berkeley National Laboratory (on behalf of U.S. HIFS-VNL)
1 Cyclotron Road, Berkeley, CA 94720,

Accelerator Fusion Research Division
Ernest Orlando Lawrence Berkeley National Laboratory
University of California
Berkeley, California 94720

July 2007

This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
A pulsed electric lens for NDCX

Ed Lee
July 18, 2007

- To compress pulse, \(\frac{v_{\text{Tail}}}{v_{\text{Head}}} \)
- This causes a chromatic aberration:

\[\text{Hodg Focus} \]
\[\text{Tail Focus} \]

- Place fast pulsed lens here to compensate velocity "tilt"

Strong Lens (Solenoid)

Considerations

Time scale is ~ pulse length ~ 60 ms
Lens works only in vacuum
Lens must be compact (~ 30 cm)
Voltages ~ 100 kV
Programmable waveform
Reasonable cost - look at energy/power
Solenoid \(\approx 1.0 \text{ kJ} \), \(10^9 \text{ watts} \)
Electric lens \(\approx 30 \text{ mJ} \), 30 kV
Axisymmetric multigap lens system

\[\phi(r, z, t) = \left(\text{Potential per gap} \right) \approx \frac{V(t)}{2} \left(1 - \cos \left(\frac{2\pi z}{L} \right) \right) \]

- Inside: \(r = R \)
- Outside: \(r = 0 \)

Length: \(n \Delta P \)

\(n = \# \text{ of periods} \) \((=3 \text{ in drawing}) \)

Potential inside the bore \(r < R \)

\(\nabla^2 \phi = 0 \) \((E = -\nabla \phi) \)

\[\phi(r, z, t) = \phi_0(r, t) - \frac{\partial \phi_0}{\partial z} \frac{r^2}{4} \]

\(\phi_0(r, t) = \text{on-axis potential} \)

\[\text{Solve} \quad \frac{\partial^2 \phi_0}{\partial z^2} - \frac{1}{r^2} \frac{\partial \phi_0}{\partial r} = -\frac{V(t)}{2} \left(1 - \cos \left(\frac{2\pi z}{L} \right) \right) \]

Outside:

\[E_r = -\frac{\partial \phi_0}{\partial r} \]

Near axis values:

\[E_r = \frac{\partial^2 \phi_0}{\partial z^2} \]

- This can be done analytically...
Solve for ion orbits

\[
\frac{d\gamma(t)}{dt} = \gamma(t)
\]

\[
\frac{d\gamma(t)}{dt} = -\frac{e\gamma}{M} \frac{d^2}{dt^2} (\zeta(t) \gamma(t))
\]

\[
\frac{d\lambda(t)}{dt} = \lambda(t)
\]

\[
\frac{d\lambda(t)}{dt} = \frac{3e}{2M} \frac{d^2}{dt^2} (\zeta(t) \lambda(t)) \lambda(t)
\]

Worked case:

\[V(t) = (950 \text{ keV}) \sqrt{\frac{t}{10 \mu s}}\]

\[n = 4 \text{ periods}\]

\[R = 2 \text{ cm}\]

\[P = 6 \text{ cm}\]

\[300 \text{ keV} \quad K^7 \quad (m_0 = 38.96 \text{ gm u})\]
\[t = 1.0 \mu s \text{ for all} \]
ion starts at 1.0 μs
To find a focal length start ions
at various times with $x = 10 \text{cm}$
$
\frac{dx}{dt} = 0 \text{,}
$

$F = \frac{x_{\text{initial}}}{(\frac{dx}{dt})_{\text{final}}}$

<table>
<thead>
<tr>
<th>Initial time</th>
<th>Final x</th>
<th>Focal length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.0321</td>
<td>3.12 m</td>
</tr>
<tr>
<td>1.25</td>
<td>-0.0716</td>
<td>1.40</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.0162</td>
<td>1.860</td>
</tr>
<tr>
<td>1.6</td>
<td>-0.0197</td>
<td>1.615</td>
</tr>
<tr>
<td>1.8</td>
<td>-0.0210</td>
<td>1.477</td>
</tr>
<tr>
<td>2.0</td>
<td>-0.0257</td>
<td>1.389</td>
</tr>
</tbody>
</table>