Title
THE VAPOR PRESSURE OF NITROBENZENE AT LOW TEMPERATURES

Permalink
https://escholarship.org/uc/item/9f75k14p

Authors
Lynch, Edward J.
Wilke, Charles R.

Publication Date
1959-01-14
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE VAPOR PRESSURE OF NITROBENZENE AT LOW TEMPERATURES

Edward J. Lynch and Charles R. Wilke

January 14, 1959

Berkeley, California
THE VAPOR PRESSURE OF NITROBENZENE AT LOW TEMPERATURES

Edward J. Lynch and Charles R. Wilke
Radiation Laboratory, Department of Chemical Engineering
University of California, Berkeley, California

ABSTRACT

The vapor pressures of nitrobenzene were measured over a range of temperatures from 6°C to 23°C and at atmospheric pressure using a packed bed technique. The data could be correlated by the following relationship:

\[
\log_{10} p_{mm} = 7.545 - \frac{2064}{t + 230}
\]
INTRODUCTION AND THEORY

In the study of the gas phase resistance to mass transfer in packed beds, it is advantageous to use an organic material of low vapor pressure as the transferable medium. Unfortunately the vapor pressures of such substances are generally not known with certainty because of the difficulty entailed in the direct measurement of pressures below 1 mm of Hg. A number of such vapor pressure measurements are reported in a review article by Stull\(^1\) for nitrobenzene. In general there is a considerable region of disagreement among the various authors, and in some cases there is even a lack of thermodynamic consistency. Since it is not possible to use such data with confidence, a study of the vapor pressure of nitrobenzene was undertaken to provide a basis for calculations in subsequent mass transfer experiments.

In the usual packed bed experiment, the desired information is the rate of mass transfer; consequently, the length of the bed is set so that the concentration of vapor in the exit gas stream is 50 to 80 percent of saturation. By increasing the length of the bed sufficiently, essentially complete saturation can be obtained. The partial pressure of the transferred component in the effluent gas can then be considered equal to the equilibrium pressure of the solid or liquid material of which the bed is composed. (For the poorest operating conditions used in these measurements, mass transfer calculations indicate that the exit gas stream was within 0.2% of saturation. This is an error of approximately 0.0004 mm in the vapor pressure.) In practice it is necessary to measure only the weight loss of the bed, the flow rate of the carrier gas, the total pressure, and the temperature of the exit gas stream. The application of Dalton's law then provides the desired vapor pressure.
EXPERIMENTAL

Materials

The nitrobenzene was Eastman Kodak's White Label Grade. This was distilled under vacuum in an Oldershaw column, the center cut being retained. The boiling point was measured as 210.8°C in good agreement with the accepted value of 210.9°C.

Apparatus and Experimental Procedure

The apparatus used is shown schematically in Figure 1. Nitrogen gas from cylinder A was introduced into the system at a rate which was controlled by a pressure regulator and needle valve B. The gas was passed through drying tube C to remove any water that may have been present. A 25 foot length of coiled copper tubing, D, located in the thermostat, B, served to bring the incoming gas stream to the temperature of the packed bed, F. The bed was made of a glass U-tube with side arms which was packed with porous alundum spheres soaked with nitrobenzene. The temperature of the exit gas stream was determined with a copper-constantin thermocouple, G, and an L and N Portable Precision Potentiometer, H, to the nearest 0.04°C. The amount of gas passing through the bed was determined with the wet-test meter, J. The bed was weighed to the nearest 0.0001 gm on a chainomatic balance before and after the run to determine the weight loss.
EXPERIMENTAL RESULTS

The vapor pressures of nitrobenzene are given in Table 1 and Figure 2 for the temperature range from 6.09 to 23.14°C. Figure 2 is plotted according to an empirical method suggested by Calingaert and Davis1 based on the Clausius-Clapeyron equation. The equation of the line representing the data is:

$$\log_{10} p_{mm} = 7.545 - \frac{2064}{t + 230}$$

where p_{mm} is in millimeters of mercury, and t is in degrees centigrade. Also shown on Figure 2 are the datum point of Puck and Wise3 at 25°C and the extrapolation of the data of Stull4 which were given for a range of pressures from 1 to 760 mm.
Fig. 1. Vapor pressure apparatus.
Fig. 2. Vapor pressure of nitrobenzene.
Table I

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Vapor pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.09</td>
<td>0.066</td>
</tr>
<tr>
<td>12.57</td>
<td>0.111</td>
</tr>
<tr>
<td>12.67</td>
<td>0.100</td>
</tr>
<tr>
<td>14.67</td>
<td>0.127</td>
</tr>
<tr>
<td>14.72</td>
<td>0.133</td>
</tr>
<tr>
<td>21.37</td>
<td>0.218</td>
</tr>
<tr>
<td>21.54</td>
<td>0.220</td>
</tr>
<tr>
<td>23.12</td>
<td>0.242</td>
</tr>
<tr>
<td>23.14</td>
<td>0.242</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.