Lawrence Berkeley National Laboratory
Recent Work

Title
Beta-Delayed Two-Proton Decay of \(^{39}\)Ti

Permalink
https://escholarship.org/uc/item/9g01g9rb

Journal
Zeitschrift fuer physik A - atomic nuclei, 342

Authors
Moltz, Dennis M.
Batchelder, J.C.
Lang, T.F.
et al.

Publication Date
1991-04-01
Submitted to Physics Letters B

Beta-Delayed Two-Proton Decay of 39Ti

April 1991

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
D. M. Moltz, J.C. Batchelder, T.F. Lang, T.J. Ognibene and Joseph Cerny
Department of Chemistry and Nuclear Science Division
Lawrence Berkeley Laboratory,
University of California, Berkeley, California 94720, USA

P.E. Haustein
Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973

P.L. Reeder
Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA 99352

Beta-delayed Two-Proton Decay of 39Ti

April, 1991

Abstract

The beta-delayed two-proton decay of the $T_Z = -5/2$ nuclide 39Ti has been observed. The 39Sc isobaric analog state has been calculated to lie at 8.82 MeV using the measured two-proton sum energy of 4750±40KeV for its decay to the 37K ground state. Combining this excitation energy with a Coulomb displacement energy calculation has lowered the energy available for ground state two-proton emission of 39Ti from 760 to 530 KeV.

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098
Studies of nuclei near the proton drip line permit examination of very exotic decay modes and analysis of specific nuclear structure problems not addressable nearer stability. Of course at the drip line there exists the potential for proton emission ($S_p < 0$) on a timescale sufficiently long to be classified as radioactivity. To date, only four examples of this ground state decay mode have been discovered [1], 151Lu, 147Tm, 113Cs and 109I. Of equal interest would be the decay of a nuclide for which $S_p > 0$ and $S_{2p} < 0$ via the simultaneous emission of two protons. Ground state two-proton decay was first predicted by Gol’danskii [2,3], but is as yet unobserved. In principle, many candidates exist [4,5]. However, the exponential dependence of the half-life on the available decay energy creates a very narrow window between beta decay as the dominant decay mode and the nuclide being totally unbound. An experimentally accessible candidate for which these criteria appear to be favorable is 39Ti [4,5].

The most important input parameter in making this choice is the selection of an atomic mass prediction [6]. Since, however, these predictions vary widely, for very neutron deficient light nuclei we employ the charge-symmetric Kelson-Garvey mass relation [7]. The predicted decay scheme for 39Ti shown in Fig. 1 has utilized this Kelson-Garvey approach and the recently measured 28 ms half-life at GANIL [8,9]. This "long" half-life indicates that 39Ti will decay primarily via beta decay. In addition to depicting the two-proton decay channel, Fig.1 shows the numerous particle-decay channels energetically allowed following super-allowed beta decay to the isobaric analog state (IAS). These particle-decay channels include p, 2p, 3p, α and αp. In fact, because the beta daughter (39Sc) is unbound to proton emission by 600 keV [10,11], any beta decay branch of 39Ti necessarily is followed by particle emission.

Prior to learning of the GANIL results [8,9], we had undertaken several experiments to search for ground state two-proton decay from 39Ti. We collected recoil products from the 110 MeV 3He$^{2+}$ + natCa reactions in 200 μg/cm2 Al catcher foils located on our fast rotating
wheel [12]. Utilizing our recently developed low-energy proton detectors [13] with 250 keV proton thresholds permitted us to search for this decay mode in the 100 μs to 10 ms half-life range. That these searches were unsuccessful is in agreement with GANIL [9].

Although the GANIL results determined the \(^{39}\)Ti half-life via βp emission, these results did not determine the location of the IAS in \(^{39}\)Sc (from which one can estimate the mass of \(^{39}\)Ti and hence an improved direct 2p decay energy). It was decided to search for the decay of \(^{39}\)Ti via its beta decay to the \(^{39}\)Sc IAS and subsequent 2p emission. Beta-delayed two-proton decay was first observed in \(^{22}\)Al decay [14,15] and has now been observed in \(^{26}\)P [15], \(^{35}\)Ca [16], \(^{31}\)Ar [12,17,18] and \(^{27}\)S [19]. β2p decay also has the distinct observational advantage of requiring the coincidence of two particles and thus it significantly reduces the background.

We chose to use the helium-jet transport method (short capillary transit time ~25 ms; see ref. [15]) in conjunction with an array of modified gas-Si proton telescopes (see ref. [12] for a description of the original proton telescope). A schematic diagram of one of these modified telescopes is shown in Fig. 2. The primary modification to the original telescope is the addition of a second gas-ΔE detector to create a gas-gas-Si telescope. These three detectors are used as a triple coincidence system for low energy (0.3–4 MeV) protons. Any particle which fires the trigger gas detector and the silicon detector constitutes a potentially valid event. Figure 3 shows the effect of the various gates on one sample calibration spectrum of beta-delayed protons arising from \(^{25}\)Si decays. \(^{25}\)Si was produced in the 40 MeV \(^{3}\)He\(^{2+}\) + \(^{24}\)Mg reaction. Figure 3a represents a two-dimensional plot of the differential energy in the trigger detector (ordinate) and the energy in the silicon detector (abscissa). The proton band is clearly marked as are the regions containing betas and alpha particles (alphas are from \(^{20}\)Na decay). A one-dimensional Si energy projection of events in the proton gate is given in Fig. 3b. The requirement that a particle also fire the filter detector (a valid 3-fold coincidence) and be identified as a proton utilizing the proton gate drawn in Fig. 3c (filter detector vs. silicon energy) yields the very low background \(^{25}\)Si spectrum shown in Fig. 3d. In all cases the proton energy is determined from the measured pulse height in the silicon detector; the gas
detectors are used only for identification and the small energy loss therein is compensated for in the silicon energy calibration. This type of energy calibration has been used for every separate experiment.

Titanium-39 was produced in the 110 MeV $^3\text{He}^{2+} + ^{40}\text{Ca}$ reaction. At this energy, the statistical fusion evaporation code ALICE [20] predicts a total cross section of 40 nb. The $^3\text{He}^{2+}$ ions were ionized with the LBL ECR source and then injected into and accelerated by the 88-Inch Cyclotron. The 8 μA beam was pulsed on a 100 ms time scale (40 ms on and 60 ms off) by rapidly cycling (2 μs) electric field deflection plates in the ECR injection line. Data were collected only during the beam-off phase because the large neutron flux induced an intolerable background level (of real protons). Triple detector telescopes were placed on five faces of a cube (one face was used for collecting activity from the helium-jet). Although four telescopes were identical, a pair of telescopes was mounted in a single housing opposite the collection spot to permit the measurement of narrow angle coincidences so that there were six telescopes in all. Four of these telescopes subtended solid angles of $\sim 3\%$ of 4π whereas the remaining two telescopes (180° from each other) subtended solid angles of only 1% of 4π. Three separate bombardments of approximately equal integrated beam current were obtained. All events which fired two telescopes and -for calibration purposes- 1/16 of all events which fired only one telescope were recorded in an event-by-event mode on magnetic tape for subsequent analysis.

Typical two-dimensional proton gates are shown in Fig. 3. Gates were refined as necessary for each run from the simultaneous, and copious, production of the beta-delayed proton emitters ^{37}Ca, ^{40}Sc and ^{41}Ti. All coincidence data were subjected to the following minimum requirements to be considered a nominal two-proton event: 1) a valid proton in each trigger gas-Si 2D spectrum and 2) either a) a valid 20 ns Si-Si TAC signal for both protons or b) a valid proton in the filter gas-Si 2D spectrum if $E_p < 700$ keV. All events which met these requirements were then subjected to detailed analysis of the original raw event (both $p\alpha$ and $3p$ events were looked for, but none were observed). Approximately 50% of these
nominal two-proton events could then be eliminated, primarily by being shown to be beta particle-proton coincidences at the edge of the gates. (For example, an event with a 300-keV particle in one telescope at the lowest edge of the proton gate, a 3100-keV particle in the second telescope and a valid TAC was eliminated as a simple beta-proton coincidence arising from the principal decay group in 37Ca.) The final two-proton sum-energy spectrum shown in Fig. 4 was generated by individually summing the energies of each separate proton (i.e., no 2p energy scale was utilized in the peak energy determination).

The data presented in Fig. 4 have been normalized to $\theta_L = 90^\circ$ because 12 of the 15 detector permutations are at this angle. Only two features are noticeable: a cluster of 4 events at \sim4.75 MeV and a larger cluster of 7 events at \sim2.50 MeV. These two peaks can be attributed to the beta-delayed two-proton decay of 39Ti. The only other beta-delayed two-proton emitters which could be produced in this reaction are 31Ar and 35Ca, both of which have been characterized [12, 16, 17, 18]. Argon nuclei are not transported with the helium jet; the ground state β2p decay of 35Ca would be observed at 4.1 MeV and could be present. Additionally, β2p emitters produced in reactions on the most plausible target contaminant (i.e., 24Mg) can be discounted because the observed peaks do not correspond to the known β2p emitter 22Al [15].

The peak labelled 1) in Fig. 4 has a measured energy of 4750 ± 40 keV and is 230 keV smaller than the predicted ground state β2p decay energy. This extra stability is consistent with the observation that 39Ti decays primarily via beta decay [9]. If one assumes that peak 1) corresponds to β2p decay to the ground state of 37K, then the arrows 2), 3) and 4) delineate where the next three groups of excited states in 37K would fall in this spectrum (both 2) and 3) are doublets). Good agreement with 3) and our observed peak at 2480 keV is seen. (Unfortunately, which state in the doublet is populated is not known. Thus, this energy could not be used in determining the excitation energy of the IAS in 39Sc.) This spectroscopic information has been used to construct the partial decay scheme given in Fig. 5. The paucity of statistics does not permit the assignment of the assumed sequential decay to intermediate states in 38Ca.
The 4.87 MeV center of mass decay energy was used to determine the excitation energy of the \(T = 5/2 \) isobaric analog state in \(^{39}\text{Sc} \) to be 8.82 MeV. By using Coulomb displacement energy calculations [21], the mass of \(^{39}\text{Ti} \) can also be estimated and is shown in Fig. 5. When combined with the ground state mass of \(^{37}\text{Ca} \), the energy available for 2p decay is reduced to \(530 \pm 65 \text{ keV} \) (the 40 keV error from this measurement has been added in quadrature to an estimated 50 keV error from the Coulomb displacement energy [21]). This result is also consistent with the recurring observation that masses predicted by the Kelson-Garvey relations [7] near the edge of stability are in fact better bound by 100-200 keV (KG 2p energy ~760 keV). Our measurement is also 130 keV better bound than the improved shell model prediction of Brown [5]. Although this mass does not preclude a small direct 2p decay branch, it constrains it to less than 0.1% (based on our mass plus upper error limit).

When these results are combined with recent calculations [22] predicting that the two proton/one proton decay ratios from the isobaric analog states of \(^{31}\text{Ar}, ^{35}\text{Ca} \) and \(^{39}\text{Ti} \) would be 3, 1 and 1, respectively, it is interesting to note that the observed \(^{39}\text{Ti} \) yield in this reaction is consistent with those observed earlier for \(^{35}\text{Ca} \) from the \(^{40}\text{Ca} \) \((^{3}\text{He}, \alpha 4n)\) reaction at \(E_{^{3}\text{He}} = 135 \text{ MeV} \) [16] and for \(^{31}\text{Ar} \) from the \(^{32}\text{S} \) \((^{3}\text{He}, 4n)\) reaction at \(E_{^{3}\text{He}} = 110 \text{ MeV} \) [12].

The beta-delayed two-proton decay of the \(T_z = -5/2 \) nuclide \(^{39}\text{Ti} \) has been observed via its daughter isobaric analog state. Unfortunately, these data lead to a predicted \(^{39}\text{Ti} \) mass with a \(S_{2p} \) of \(-530 \pm 65 \text{ keV} \), which seriously restricts the partial half-life for ground state two proton emission in competition with its 28 ms beta decay. Following the general trend for greater than expected stability of highly proton rich nuclides near the drip line, this \(S_{2p} \) is 230 keV better bound than that predicted by the Kelson Garvey approach [7] and 130 keV better bound than shell model calculations by Brown [5] with the inclusion of some \(f_{7/2} \) orbitals.

This work was supported by Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U. S. Department of Energy under Contracts DE-AC03-76SF00098 with Lawrence Berkeley Laboratory, DE-AC02-
76CH00016 with Brookhaven National Laboratory and DE-AC06-76RL0 1830 with Pacific Northwest Laboratories.
REFERENCES

‡Permanent address: UCSF Physics Research Laboratory, 389 Oyster Point Blvd., South San Francisco, CA 94080.

FIGURE CAPTIONS

1. Calculated partial decay scheme for ^{39}Ti.

3. Delayed proton spectra from ^{25}Si decay. a) Two-dimensional (trigger gas vs. silicon energy) spectrum showing the alpha, proton and beta bands. b) One-dimensional Si energy projection of the proton gate in a). c) Two-dimensional (filter gas vs. silicon energy) spectrum showing the same particle bands. c) is necessarily a subset of a). d) One-dimensional Si energy projection of the proton gate in c). Energies are in keV.

4. Two-proton sum energy spectrum resulting from the bombardment of a ^{nat}Ca target with 2.9C of 110 MeV $^3\text{He}^{2+}$ beam. See text.

5. Proposed partial decay scheme for ^{39}Ti. The intermediate state in ^{38}Ca is not known. See text.
Trigger Detector

Cooling Block (Typically ~ 20°C)

Distance (in mm)

<table>
<thead>
<tr>
<th>Distance</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grid (at Ground)</td>
</tr>
<tr>
<td>3</td>
<td>100 μg/cm² Ni Electrode (+530 V)</td>
</tr>
<tr>
<td>3</td>
<td>Grid (at Ground)</td>
</tr>
<tr>
<td>3</td>
<td>100 μg/cm² Ni Electrode (+530 V)</td>
</tr>
<tr>
<td>3</td>
<td>Grid (at Ground)</td>
</tr>
<tr>
<td>1</td>
<td>30 μg/cm² polypropylene window</td>
</tr>
</tbody>
</table>

450 mm² Silicon Detector

XBL 913-505
40 MeV^3 He^{2+} + Mg

a) Trigger gas signal
 Alphas
 Betas
 Protons

b) \(^{25}\text{Si}\) delayed protons

c) Filter gas signal
 Alphas
 Protons

Silicon energy →

XBL 912-6441
All data normalized to 90°

110 MeV $^3\text{He}^{2+} + \text{Ca}$

2.9 C

Predicted $\beta 2p$ ground state

Counts

Two proton sum energy (MeV)
\[
\begin{align*}
3/2^+ \sim 16.15 & \quad T = 5/2 \\
^{39}\text{Ti}_{17} & \\
t_{1/2} = 28 \text{ ms} & \\
\beta^+ = 14\% & \\
\hline
3/2^+ \quad 8.82 & \quad T = 5/2 \\
\hline
3/2^+ \quad 3.95 & \\
^{37}\text{K}_{19} & \\
6.12 & \\
\hline
0^+ \quad -0.60 & \\
^{38}\text{Ca}_{18} & \\
\hline
7/2^- & \\
^{39}\text{Sc}_{21} & \\
\end{align*}
\]