Lawrence Berkeley National Laboratory
Recent Work

Title
EXCHANGE COLLISIONS BETWEEN THE IONIC GROUND STATE AND THE NEUTRAL METASTABLE STATE OF ATOMS FORMED AND ALIGNED BY ELECTRON IMPACT

Permalink
https://escholarship.org/uc/item/9h58h16d

Author
Hadeishi, Tetsuo; Liu, Chung-Heng.

Publication Date
1967-07-05
EXCHANGE COLLISIONS BETWEEN THE IONIC GROUND STATE AND
THE NEUTRAL METASTABLE STATE OF ATOMS FORMED AND
ALIGNED BY ELECTRON IMPACT

Tetsuo Hadeishi and Chung-Heng Liu

July 5, 1967

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
EXCHANGE COLLISIONS BETWEEN THE IONIC GROUND STATE AND THE NEUTRAL METASTABLE STATE OF ATOMS FORMED AND ALIGNED BY ELECTRON IMPACT

Tetsuo Hadeishi and Chung-Heng Liu

July 5, 1967
EXCHANGE COLLISIONS BETWEEN THE IONIC GROUND STATE AND THE NEUTRAL METASTABLE STATE OF ATOMS FORMED AND ALIGNED BY ELECTRON IMPACT

Tetsuo Hadeishi and Chung-Heng Liu

Lawrence Radiation Laboratory
University of California
Berkeley, California, U.S.A.

July 5, 1967

The radio-frequency paramagnetic resonance method was used to observe the exchange collisions between the Xe ionic ground state having a $^2P_{3/2}$ configuration and the neutral metastable state having a 3P_2 configuration. The ionic ground-state and the metastable-state atoms are both formed and aligned by unidirectional-low energy, high flux electron beam impact. The magnetic resonance of the ionic ground-state atoms was observed by monitoring changes in the transparency of the resonance radiation to the metastable state.

By unidirectional-low energy electron impact excitation of Xe atoms from the 1S_0 ground state to the 3P_2 metastable state, the magnetic sublevels $M_J = 0$ and ± 1 are more selectively excited than those with $M_J = \pm 2$. This is also experimentally verified from the paramagnetic resonance experiment of the metastable state. Similarly, certain magnetic sublevels of Xe$^+(^2P_{3/2})$ are expected to be selectively excited by the electron impact. Suppose if one would produce a high concentration of the aligned Xe$^+(^2P_{3/2})$ and Xe(3P_2) state atoms by high flux electron beam, a certain population equilibrium will be reached in a steady state. A destruction of the alignment of Xe$^+(^2P_{3/2})$ would result in a new population re-distribution of the Xe(3P_2) metastable state. Such a phenomenon is observable by monitoring
the change of transparency of linearly polarized resonance radiation due to
the absorption of the light by the metastable state.

The high flux, low energy-unidirectional electron beam was obtained by
means of space charge neutralized electron flow using a planar diode structure
electron tube with an indirectly heated "hot" cathode operating under the
Xe gas pressure of about 5×10^{-4} torr at 70 mA/cm2 electron current density
at slightly above the ionization potential of Xe. The first slide shows the
relevant energy level diagram. The second slide shows the experimental
arrangement.

The third slide shows an experimental result which gives the $3P_2$ as
well as $2P_{3/2}$ magnetic resonances. The fourth slide shows the magnetic
resonances of Xe$^{129}(3P_2)$, Xe$^{131}(3P_2)$, and even isotope Xe$^+(2P_{3/2})$.

Recently we observed that the nucleus of Xe131 having $I = 3/2$ can
also be aligned by metastability exchange between an initially randomly
oriented nucleus in the $1S_0$ ground state and aligned Xe$^{131}(3P_2)$ by electron
impact. The fifth slide shows the experimental result of nuclear alignment
by metastability exchange collisions.

Thus by means of an extremely simple apparatus, we have found that:
(1) it is possible to observe alignment of the ionic ground state and (2)
it is possible to align the nucleus in the $1S_0$ ground state. A more detailed
investigation is presently in progress to study the mechanisms involved
more precisely.
Electron-impact excitation

Relevant energy level used in Xe ($^{3}P_{2}$) resonance absorption

Slide 1.
Slide 2.
Slide 3.

\[H(\text{gauss}) \]

\[\begin{align*}
2.422 & \quad 2.719 \\
\end{align*} \]

- Relative signal (1000 counts)
- Channel number

- \(^3P_2 \) of Xe I rf resonance
- \(^2P_{3/2} \) of Xe II rf resonance
Slide 4.

The graph shows the relative signal (in 10^3 counts) as a function of channel number, with magnetic field (H in gauss) on the top axis. The peaks at 5.508 and 5.275 gauss correspond to identified resonances of Xe^{129} (3P_2) and Xe^{131} (3P_2), respectively. The peak at 4.944 gauss is an unidentified resonance. The channel number ranges from 10 to 200.
Magnetic field (gauss)

\(\nu = 15.45590 \text{ MHz} \)
\(H = 7.3577 \text{ G} \)

\(\nu = 2.5680 \text{ kc} \)
\(H = 7.3516 \text{ G} \)

\(\nu = 2.5680 \text{ kHz} \)

Relative signal

Slide 5.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.