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ABSTRACT
This paper uses path synthesis techniques to design four-bar

linkage modules to constrain the movement of a 3R chain. The
result is a 10-bar linkage. The goal is to develop a design pro-
cedure for a robotic system that guides the human leg during the
walking gait cycle. A 3R chain is designed to match the dimen-
sions of a human leg and the two four-bar linkages are synthe-
sized using 9 point path synthesis to constrain the trajectory of
the ankle and the toe. Precision points are derived from a basis
spline equation. A numerical example is given using data col-
lected from a motion capture system.

INTRODUCTION
In this paper, we present a synthesis procedure for a 10-bar

linkage that is intended to guide and support the human leg dur-
ing the walking gait cycle. The goal is to use linkage synthesis
techniques to design a mechanism to support the cyclic motions
required in robotic rehabilitation and exoskeleton applications.
The design of this particular 10-bar linkage begins with a serial
3R chain that is then constrained by two four-bar linkages. The
four-bar linkages are designed using a combination of path syn-
thesis and basis spline techniques. The desired path of the link-
ages is gathered from joint locations of the leg during the gait
cycle.

Many of the recent robotic rehabilitation devices and ex-
oskeletons have many degrees of freedom and require a large

collection of actuators. The Pelvic Assist Manipulator (PAM)
and the Pneumatically Operated Gait Orthosis (POGO) utilize
linear actuators that are pneumatically powered to move a user’s
pelvis and legs during treadmill training. This work was done
by Aoyagi et al. and Ichinose et. al [1] - [4]. The Active Leg
Exoskeleton (ALEX), by Banala et al. [5] - [7], is another pow-
ered orthosis that has multi-DOF and attaches to the trunk, thigh,
and foot. Other devices that are relatively similar in function are
the Ambulation-assisting Robotic Tool for Human Rehabilitation
(ARTHuR), by Emken et al. [8], the Lokomat by Jezernik et al.
and Klobucka et al. [9] - [11], and the Lower Extremity Pow-
ered Exoskeleton (LOPES), by Reinger et al. [12]. All of which
require elaborate control theory.

Another area of existing research is in single-DOF walking
mechanisms and can provide a basis for the design of similar
linkages for robotic rehabilitation. The Theo Jansen linkage is
a walking linkage that was implemented on a wind powered ki-
netic sculpture. This linkage has been studied by Aan and Hein-
loo, Giesbrech et al., Komoda and Wagatsuma [13]- [16]. The
Klann linkage is another patented walking mechanism that is of-
ten used on multi-legged robots. Lockhande and Emche [17] use
this linkage for the legs of a mechanical spider. Both of these
linkages create locomotion, but don’t follow the ankle trajectory
of the human gait.

Our goal is to extend the work by Tsuge and McCarthy [18]
by constraining a 3R chain with four bar linkages using path
synthesis. Similar procedures for constraining serial chains have
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FIGURE 1. 3R SERIAL CHAIN

also been presented by Soh and McCarthy [19] - [20] for motion
generation. The path synthesis procedure for the four-bar linkage
modules follows that of Wampler, Morgan, and Sommese [21]
and the selection of precision points is completed using basis
splines, similar to Unruh and Krishnaswami [22]. The result will
be a linkage that forces the leg to move in the plane, just as it
does in the LOKMAT rehabilitation device.

THE CONSTRAINED 3R CHAIN
The first step of the design procedure is to define an open

serial chain. The joints and link lengths correspond with the di-
mensions of human leg, as shown in figure (1). The fixed pivot,
between link I and II, corresponds with the hip joint, and the
joints attached to links II, III, and IV correspond with the knee,
ankle, and toe respectively. The designer also has the freedom
of defining two additional joint locations so that links III and IV
become triangular links. Assuming that the ankle joint locations
and the foot angle are known, inverse kinematics can be used to
determine the joint angles and locations.

Next a four-bar linkage is attached to link III of the serial
chain to constrain the motion of the ankle, figure (2). The fixed
pivots of this linkage and the fixed pivot of the 3R chain would
all be connected to link I. Next an additional four-bar linkage is
coupled to link IV to constrain the angle of the foot, as shown in
figure (3). The ground pivots of this linkage are attached to link
II. Since the ground pivots of this linkage are moving relative to
link II, the coordinates of the precision points, for the path syn-
thesis problem, must be in the same frame at link II. The result of
constraining the serial chain with two separate four-bar linkages,
using path synthesis, is a 10-bar linkage.

The path synthesis method used follows that of Wampler
[21], where the links of the four-bar linkage are represented as
a collection of vectors in complex form. The resulting formula-
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FIGURE 2. 3R CHAIN WITH ONE FOUR-BAR MODULE
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FIGURE 3. 10-BAR LINKAGE

tion of the design equations consists of 12 equations with 12 un-
known variables. This method requires that nine precision points
are defined.

SELECTION OF PRECISION POINTS
The precision points that are used in the path synthesis algo-

rithm are derived from a set of data points collected from motion
capture data of a walking subject. This data set marks the joint lo-
cations through 14 gait cycles. From this data, the lengths of the
upper leg, lower leg, and foot can be determined. These lengths
are determined by measuring the distances between the hip and
knee, knee and ankle, and ankle and toe data points respectively.
The motion capture data collected was in 3 dimensions, but only
data in 2 dimensions were used in this procedure for simplicity.
Figure (4) shows the coordinates of the ankle during multiple
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walking cycles; units are in centimeters. These points, however,
were collected in the global frame, where the hip joint is mov-
ing. Since, the synthesis procedures require that the hip joint be
stationary, a new set of data points relative to the hip is required.
The coordinates of the ankle trajectory relative to the hip joint is
shown in figure (5); the location of the hip joint was also moved
to the origin for simplicity.

Next, one of the cycles was chosen to be the desired path for
the synthesis procedure. This path consisted of 205 data points;
since 9 points are required for the four-bar path synthesis, basis
splines techniques were used. The trajectory created by the 205
data points can be represented by the equation of a basis spline.
This is a parametric equation and the data points are used as the
control points.

The parametric equation for a spline consists of a basis equa-
tion, as shown in equations 1 and 2, where t is the parameter of
the curve, k is the order of the curve, i is the ith control point, and
xi are elements of the knot vector. The knot vector deals with the
weighting of a particular control point.

Ni,1(t) =
1 if xi ≤ t < xi+1

0 otherwise (1)

Ni,k(t) =
(t−xi)Ni,k−1(t)

xi+k−1−xi
+

(xi+k− t)Ni+1,k−1(t)
xi+k−xi+1

(2)

These basis equations are then used to form the parametric
equation for the coordinates of the basis spline curve evaluated
at t j, where j is the jth point along the curve. Equations 3 and
4 are the parametric equations that yield the coordinates of the
spline curve for a given parameter t.

Px(t j) =
n−1

∑
i=0

PxiNi,k(t j) (3)

Py(t j) =
n−1

∑
i=0

PyiNi,k(t j) (4)

The 205 data points of the ankle trajectory can then be used
as the control points in the B-spline equation so that the ankle tra-
jectory can be represented by a single parametric equation. Nine
values of t, between 0 and 1, were selected and substituted into
the B-spline equations; these values of t were evenly distributed.
The result was 9 points that were distributed about the curve.
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FIGURE 4. COORDINATES OF THE ANKLE DURING MULTI-
PLE GAIT CYCLES
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FIGURE 5. COORDINATES OF THE ANKLE RELATIVE TO THE
HIP JOINT

The selected data points have a high density at the bottom of the
curve because there was a higher density of data points in this
area. With these 9 points of the ankle, the 9 precision points for
the first four-bar linkage problem can be determined, as shown
in figure (6).

This same procedure can also be used to choose precision
points for the second four-bar linkage. However, these points
will be in the same frame as the upper leg, or link II from figure
(3).

SORTING SOLUTIONS

The solutions resulting for solving the 9 point path synthesis
problem yield the joint locations, O, A, B, and C, shown in figure
(7). The values of a,b,g,h,r,α, and θ0 can be calculated from
these joint locations. The equations for the coordinates of the
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FIGURE 6. 9 PRECISION POINTS DERIVED FROM THE BASIS
SPLINE

coupler point X are given by

x0 +acos(θ +θ0)+ r cos(α +θ +θ0 +φ) (5)
y0 +asin(θ +θ0)+ r sin(α +θ +θ0 +φ),

where, x0 and y0 are the coordinates of point O. The equation for
ψ is given below [23].

ψ = arctan
(

B
A

)
± arccos

(
C√

A2 +B2

)
, (6)

where

A = 2abcosθ −2gb, (7)
B = 2absinθ

C = g2 +b2 +a2−h2−2agcosθ .

Also, the equation for φ is

φ = arctan
(

bsinψ +asinθ

g+bcosψ−acosθ

)
−θ . (8)

When the known variables are substituted into the equations
for the coordinates of X, the equations become a parametric
equation that varies with θ . A parametric plot of this function
will produce the coupler curve of the linkage.

The coupler curves for all of the solutions are compared with
the desired trajectory. Solutions that deviate too much from the
desired path are eliminated. In addition, linkages that do not
satisfy the Grashof condition are also removed.

Lastly, the values of the selected linkage can then be ran-
domized about a relatively small tolerance zone, in order to in-
crease the number of potential linkage solutions. The new set of
randomized solutions is also compared with the original set of
precision points. The overall process is repeated for the second
four-bar linkage in the moving frame.
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FIGURE 7. THE FOUR-BAR LINKAGE

TABLE 1. NINE PRECISION POINTS FOR THE FIRST FOUR-
BAR LINKAGE

Point x y

1 -22.4077 -854.975

2 -100.615 -840.025

3 -191.23 -823.445

4 -283.884 -793.584

5 -355.541 -717.779

6 -244.59 -611.663

7 -90.6067 -719.892

8 134.077 -846.936

9 96.8837 -854.441

NUMERICAL EXAMPLE
The design procedure was applied to a single cycle of the

gait cycle. The desired trajectories were acquired from a mo-
tion capture system. The two sets of precision points, derived
from the b-splines, for the four-bar linkage problem are in tables
1 and 2. For the 3R chain, the hip joint was set at the origin
and the lengths of the upper leg, lower leg, and foot were set
to 510.908, 526.941, and 184.343 respectively. Figure (8) illus-
trates this chain. Plots of these two sets of precision points are
shown in figures (6) and (9).

The two path synthesis problems were solved using the poly-
nomial solver, Bertini [24]. What resulted were 240 solutions for
the first four-bar linkage and 228 solutions for the second four-
bar linkage. Figure (10) shows the coupler curve of a selected
four-bar linkage. The linkage parameters were then randomized
about a tolerance of 100cm, meaning that there was an allowed
variance of the linkage dimensions in either direction of 100cm.
A new linkage was found that had a more gradual curve, figure
(11). Also, the linkage that was found for the second four-bar
linkage followed an acceptable trajectory and did not require ran-
domization. Figure (12) shows the coupler curve of this linkage
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TABLE 2. NINE PRECISION POINTS FOR THE SECOND FOUR-
BAR LINKAGE

Point x y

1 -74.7801 -488.537

2 -132.881 -479.35

3 -185.032 -463.913

4 -240.36 -433.901

5 -331.163 -352.701

6 -399.219 -258.914

7 -268.016 -408.732

8 13.3298 -486.262

9 -0.929189 -490.803
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FIGURE 8. 3R CHAIN WITH TRIANGULAR LINKS

in the moving frame. The solutions for the first and second four-
bar linkages are in tables 3 and 4.

The solutions that had the most desirable coupler cures are
shown in figure (13). The first four-bar linkage is drawn in blue
and the second linkage is drawn in red. While the resulting link-
age had acceptable coupler curves, the packaging of the linkage
did not. The overall size would make it difficult to attach this
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FIGURE 9. PRECISION POINTS FOR THE SECOND FOUR-BAR
LINKAGE IN THE MOVING FRAME
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FIGURE 10. COUPLER CURVE OF THE FIRST FOUR-BAR
LINKAGE
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FIGURE 11. COUPLER CURVE OF THE RANDOMIZED FIRST
FOUR-BAR LINKAGE

linkage to a human leg. Additional work still needs to be done
to find solutions of reduced overall size. Also, while each of the
four-bar linkages may be completely cyclic individually, the ten-
bar linkage may not be; further work is required to find analysis
techniques to determine if this is the case. Lastly, issues resulting
from linkage singularities have yet to be addressed.
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FIGURE 12. COUPLER CURVE OF SECOND FOUR-BAR LINK-
AGE
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FIGURE 13. FINAL TEN-BAR LINKAGE SOLUTION

TABLE 3. First Four-Bar Solution

O (-1657.82, 1430.38)

A (-1724.49, 1208.35)

B (1816.42, 2249)

C (1903.3, 1899.64)

CONCLUSION
In this paper, we present a procedure to design a 10-bar link-

age that is intended to guide the movement of the human leg
during walking. The procedure consists of constraining a serial
chain that matches the dimensions of a user’s leg. The chain is
constrained by two separate four bar linkages that are synthe-
sized using path synthesis techniques.

The precision points for the path synthesis problem are ac-
quired by deriving a basis spline equation from the desired leg

TABLE 4. Second Four-Bar Solution

O (-154.111, -811.408)

A (13.9757,-788.164)

B (-40.8045, -1064.83)

C (217.512, -585.897)

trajectory. The nine points are selected by substituting 9, evenly
distributed, values of the parameter into the basis spline equa-
tion. These 9 points are then used in the path synthesis problem
and solved using a polynomial solver. Coupler curves of the re-
sulting linkage solutions are compared with desired trajectories.
Solutions are then randomized about a tolerance zone, in order
to search for additional linkage candidates.

A numerical example was given using motion capture data.
There were 240 solutions found for the first four-bar linkage and
228 solutions found for the second linkage. Additional solutions
candidates could be found with further randomization of linkage
parameters.

The design procedure provides a means to design a linkage
that matches the gait pattern; the linkage can then be attached to
a user’s leg as an exoskeleton or rehabilitation device.
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